Novel Molecular Probes

  • Min YangEmail author
  • Yuping Xu
  • Xinyu Wang
  • Yu Liu
  • Yanting Wang
  • Huimin Zhao
  • Jie Sheng
  • Yaoqi Li


Molecular imaging is important for early disease diagnosis, personalized therapy guidance, and new drug development. Nuclear scintigraphy using SPECT or PET is the widely used example in the clinic. To achieve functional visualization, specific probes are indispensable. For nuclear probes, radionuclides and targeting ligands (small compounds, peptide, affibody, etc.) are the main contents (Fig. 20.1). Some popular radioisotopes are listed in Table 20.1. In this chapter, we focused on 18F-, 11C-, 68Ga-, 89Zr-, 64Cu-, 90Y-, and 177Lu-labeled probes.


  1. 1.
    Wan W, Guo N, Pan D et al (2013) First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med 54(5):691–698CrossRefGoogle Scholar
  2. 2.
    Yu C, Pan D, Mi B et al (2015) (18)F-Alfatide II PET/CT in healthy human volunteers and patients with brain metastases. Eur J Nucl Med Mol Imaging 42(13):2021–2028CrossRefGoogle Scholar
  3. 3.
    Mi B, Yu C, Pan D et al (2015) Pilot prospective evaluation of (18)F-Alfatide II for detection of skeletal metastases. Theranostics 5(10):1115–1121CrossRefGoogle Scholar
  4. 4.
    Sah BR, Burger IA, Schibli R et al (2015) Dosimetry and first clinical evaluation of the new 18F-radiolabeled bombesin analogue BAY 864367 in patients with prostate cancer. J Nucl Med 56(3):372–378CrossRefGoogle Scholar
  5. 5.
    Xu Q, Zhu C, Xu Y et al (2015) Preliminary evaluation of [18F]AlF-NOTA-MAL-Cys39-exendin-4 in insulinoma with PET. J Drug Target 23(9):813–820CrossRefGoogle Scholar
  6. 6.
    Kaasinen V, Ruottinen HM, Någren K et al (2000) Upregulation of putaminal dopamine D2 receptors in early Parkinson’s disease: a comparative PET study with [11C] raclopride and [11C]N-methylspiperone. J Nucl Med 41(1):65–70PubMedGoogle Scholar
  7. 7.
    Talvik M, Nordström AL, Nyberg S et al (2001) No support for regional selectivity in clozapine-treated patients: a PET study with [(11)C] raclopride and [(11)C]FLB 457. Am J Psychiatr 158(6):926–930CrossRefGoogle Scholar
  8. 8.
    Froklage FE, Postnov A, Yaqub MM et al (2017) Altered GABAA receptor density and unaltered blood-brain barrier [11C] flumazenil transport in drug-resistant epilepsy patients with mesial temporal sclerosis. J Cereb Blood Flow Metab 37(1):97–105CrossRefGoogle Scholar
  9. 9.
    Pieterman RM, Que TH, Elsinga PH et al (2002) Comparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 43(2):167–172PubMedGoogle Scholar
  10. 10.
    Weber WA, Wester HJ, Grosu AL et al (2000) O-(2-[18F] fluoroethyl)-L-tyrosine and L-[methyl-11C] methionine uptake in brain tumors: initial results of a comparative study. Eur J Nucl Med 27(5):542–549CrossRefGoogle Scholar
  11. 11.
    Pieterman R, Willemsen A, Appel M et al (2002) Visualisation and assessment of the protein synthesis rate of lung cancer using carbon-11 tyrosine and positron emission tomography. Eur J Nucl Med Mol Imaging 29(2):243–247CrossRefGoogle Scholar
  12. 12.
    Velikyan I (2015) 68Ga-based radiopharmaceuticals: production and application relationship. Molecules 20(7):12913CrossRefGoogle Scholar
  13. 13.
    Kowalski J, Henze M, Schuhmacher J, Mäcke HR, Hofmann M, Haberkorn U (2003) Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 5(1):42–48CrossRefGoogle Scholar
  14. 14.
    Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48(4):508CrossRefGoogle Scholar
  15. 15.
    Luo Y, Pan Q, Yao S, Miao Y, Wu W, Xue H et al (2016) Glucagon-like peptide-1 receptor PET/CT with 68Ga-NOTA-exendin-4 for detecting localized insulinoma: a prospective cohort study. J Nucl Med 57(5):715CrossRefGoogle Scholar
  16. 16.
    Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M et al (2014) Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging 41(5):887–897CrossRefGoogle Scholar
  17. 17.
    Sörensen J, Velikyan I, Dan S, Wennborg A, Feldwisch J, Tolmachev V et al (2016) Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics 6(2):262–271CrossRefGoogle Scholar
  18. 18.
    Nanni C, Errani C, Boriani L, Fantini L, Ambrosini V, Boschi S et al (2010) 68Ga-citrate PET/CT for evaluating patients with infections of the bone: preliminary results. J Nucl Med 51(12):1932CrossRefGoogle Scholar
  19. 19.
    Hofman MS, Beauregard JM, Barber TW, Neels OC, Eu P, Hicks RJ (2011) 68Ga PET/CT ventilation-perfusion imaging for pulmonary embolism: a pilot study with comparison to conventional scintigraphy. J Nucl Med 52(10):1513–1519CrossRefGoogle Scholar
  20. 20.
    van de Watering FC, Rijpkema M, Perk L, Brinkmann U, Oyen WJ, Boerman OC (2014) Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. Biomed Res Int 2014:203601PubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang Y, Hong H, Cai W (2011) PET tracers based on Zirconium-89. Curr Radiopharm 4(2):131–139CrossRefGoogle Scholar
  22. 22.
    Wooten AL, Madrid E, Schweitzer GD, Lawrence LA, Mebrahtu E, Lewis BC et al (2013) Routine production of 89Zr using an automated module. Appl Sci 3(3):593–613CrossRefGoogle Scholar
  23. 23.
    Janjigian YY, Violavillegas N, Holland JP, Divilov V, Carlin SD, Gomesdagama EM et al (2013) Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and 89Zr-trastuzumab PET. J Nucl Med 54(6):936CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Guo Z, Du T, Chen J, Wang W, Xu K et al (2013) Prostate specific membrane antigen (PSMA): a novel modulator of p38 for proliferation, migration, and survival in prostate cancer cells. Prostate 73(8):835–841CrossRefGoogle Scholar
  25. 25.
    Heskamp S, van Laarhoven HW, Molkenboer-Kuenen JD, Franssen GM, Versleijen-Jonkers YM, Oyen WJ et al (2010) ImmunoSPECT and immunoPET of IGF-1R expression with the radiolabeled antibody R1507 in a triple-negative breast cancer model. J Nucl Med 51(10):1565CrossRefGoogle Scholar
  26. 26.
    Li ZB, Cai W, Cao Q et al (2007) 64Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor αvβ3 integrin expression. J Nucl Med 48(7):1162–1171CrossRefGoogle Scholar
  27. 27.
    Hong H, Yang Y, Zhang Y et al (2011) Positron emission tomography imaging of CD105 expression during tumor angiogenesis. Eur J Nucl Med Mol Imaging 38(7):1335–1343CrossRefGoogle Scholar
  28. 28.
    Henry KE, Ulaner GA, Lewis JS (2017) Human epidermal growth factor receptor 2-targeted PET/single-photon emission computed tomography imaging of breast cancer. PET Clin 12(3):269–288CrossRefGoogle Scholar
  29. 29.
    Eberle AN, Rout B, Bigliardi QM et al (2017) Synthetic peptide drugs for targeting skin cancer: malignant melanoma and melanotic lesions. Curr Med Chem 24(17):1797–1826CrossRefGoogle Scholar
  30. 30.
    Chen K, Cui M (2017) Recent progress in the development of metal complexes as β-amyloid imaging probes in the brain. MedChemComm 8(7):1393–1407CrossRefGoogle Scholar
  31. 31.
    Agarwal KK et al (2015) (177)Lu-EDTMP for palliation of pain from bone metastases in patients with prostate and breast cancer: a phase II study. Eur J Nucl Med Mol Imaging 42(1):79–88CrossRefGoogle Scholar
  32. 32.
    Thapa P et al (2015) Clinical efficacy and safety comparison of 177Lu-EDTMP with 153Sm-EDTMP on an equidose basis in patients with painful skeletal metastases. J Nucl Med 56(10):1513–1519CrossRefGoogle Scholar
  33. 33.
    Shinto AS et al (2014) (1)(7)(7)Lu-EDTMP for treatment of bone pain in patients with disseminated skeletal metastases. J Nucl Med Technol 42(1):55–61CrossRefGoogle Scholar
  34. 34.
    Kwekkeboom DJ, Bakker WH, Kooij PP, Konijnenberg MW, Srinivasan A, Erion JL, Schmidt MA, Bugaj JL, de Jong M, Krenning EP (2001) [177Lu-DOTA0, Tyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med 28(2):1319–1325CrossRefGoogle Scholar
  35. 35.
    Kwekkeboom DJ, Bakker WH, Kam BL, Teunissen JJM, Kooij PPM, Herder WW et al (2003) Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA0,Tyr3]octreotate. Eur J Nucl Med Mol Imaging 30(3):417–422CrossRefGoogle Scholar
  36. 36.
    Tounissen JJ, Kwekkeboom DJ, Kooij PP (2005) Peptide receptor radionuclide therapy for non-radio dine—avid differentiated thyroid carcinoma. J Nucl Med 46(Suppl):107S–114SGoogle Scholar
  37. 37.
    Strosberg J et al (2017) Phase 3 trial of (177)Lu-Dotatate for Midgut neuroendocrine tumors. N Engl J Med 376(2):125–135CrossRefGoogle Scholar
  38. 38.
    Lantry LE, Cappelletti E, Maddalena ME, Fox JS, Feng W, Chen J, Thomas R, Eaton SM, Bogdan NJ, Arunachalam T, Reubi JC, Raju N, Metcalfe EC, Lattuada L, Linder KE, Swenson RE, Tweedle MF, Nunn AD (2006) 177Lu—AMBA:synthesis and characterization of a selective 177Lu—labeled GRP-R agonist or systemic radiotherapy of prostate cancer. J Nucl Med 47:1144–1152PubMedGoogle Scholar
  39. 39.
    Hu F et al (2002) Pm-149 DOTA bombesin analogs for potential radiotherapy. In vivo comparison with Sm-153 and Lu-177 labeled DO3A-amide-betaAla-BBN(7-14)NH(2). Nucl Med Biol 29(4):423–430CrossRefGoogle Scholar
  40. 40.
    Yadav MP et al (2017) (177)Lu-DKFZ-PSMA-617 therapy in metastatic castration resistant prostate cancer: safety, efficacy, and quality of life assessment. Eur J Nucl Med Mol Imaging 44(1):81–91CrossRefGoogle Scholar
  41. 41.
    Bander NH et al (2005) Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23(21):4591–4601CrossRefGoogle Scholar
  42. 42.
    Gerster-Gilliéron K, Forrer F, Maecke H et al (2015) 90Y-DOTATOC as a therapeutic option for complex recurrent or progressive meningiomas. J Nucl Med 56(11):1748–1751CrossRefGoogle Scholar
  43. 43.
    Kampen WU, Voth M, Pinkert J et al (2007) Therapeutic status of radiosynoviorthesis of the knee with yttrium [90Y] colloid in rheumatoid arthritis and related indications. Rheumatology (Oxford) 46(1):16–24CrossRefGoogle Scholar
  44. 44.
    Sabaté-Llobera A, Rojas-Camacho JG, Mora Salvadó J et al (2013) Treatment of cystic craniopharyngioma with 90Y-colloid. Four clinical cases. Rev Esp Med Nucl Imagen Mol 32(5):321–323PubMedGoogle Scholar
  45. 45.
    Boas FE, Bodei L, Sofocleous CT (2017) Radioembolization of colorectal liver metastases: indications, technique, and outcomes. J Nucl Med 58(Suppl 2):104S–111SCrossRefGoogle Scholar
  46. 46.
    Fidelman N, Kerlan RK, Hawkins RA et al (2016) Radioembolization with 90Y glass microspheres for the treatment of unresectable metastatic liver disease from chemotherapy-refractory gastrointestinal cancers: final report of a prospective pilot study. J Gastrointest Oncol 7(6):860–874CrossRefGoogle Scholar
  47. 47.
    Winter BM, von Rundstedt FC, Grimm MO (2017) [Radium-223 dichloride in patients with castration-refractory prostate cancer]. Urologe A 56(11):1435–1439CrossRefGoogle Scholar
  48. 48.
    de Jong M, Essers J, van Weerden WM (2014) Imaging preclinical tumour models: improving translational power. Nat Rev Cancer 14(7):481–493CrossRefGoogle Scholar
  49. 49.
    Bridot JL, Faure AC, Laurent S et al (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129(16):5076–5084CrossRefGoogle Scholar
  50. 50.
    Kircher MF, Mahmood U, King RS et al (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63(23):8122–8125PubMedGoogle Scholar
  51. 51.
    Sun Y, Ma X, Cheng K et al (2015) Strained cyclooctyne as a molecular platform for construction of multimodal imaging probes. Angew Chem Int Ed Engl 54(20):5981–5984CrossRefGoogle Scholar
  52. 52.
    Bradbury MS, Phillips E, Montero PH et al (2013) Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol (Camb) 5(1):74–86CrossRefGoogle Scholar
  53. 53.
    Houghton JL, Zeglis BM, Abdel-Atti D et al (2015) Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proc Natl Acad Sci U S A 112(52):15850–15855CrossRefGoogle Scholar
  54. 54.
    Nensa F, Beiderwellen K, Heusch P et al (2014) Clinical applications of PET/MRI: current status and future perspectives. Diagn Interv Radiol 20(5):438–447CrossRefGoogle Scholar
  55. 55.
    Lee SY, Jeon SI, Jung S et al (2014) Targeted multimodal imaging modalities. Adv Drug Deliv Rev 76:60–78CrossRefGoogle Scholar
  56. 56.
    Park JA, Kim JY, Lee YJ et al (2013) Gadolinium complex of (125)I/(127)I-RGD-DOTA conjugate as a tumor-targeting SPECT/MR bimodal imaging probe. ACS Med Chem Lett 4(2):216–219CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Min Yang
    • 1
    Email author
  • Yuping Xu
    • 1
  • Xinyu Wang
    • 1
  • Yu Liu
    • 1
  • Yanting Wang
    • 1
  • Huimin Zhao
    • 1
  • Jie Sheng
    • 1
  • Yaoqi Li
    • 1
  1. 1.Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear MedicineWuxiP.R. China

Personalised recommendations