Advertisement

Clinical Utility of PET/CT in Breast Cancer Management and Targeted Therapy

  • Xinzhong Hao
  • Xiaxia Meng
  • Zhifang Wu
Chapter

Abstract

Breast cancer is currently the most prevalent malignant disease affecting women’s health. Breast cancer is a highly heterogeneous tumor, comprising multiple entities associated with distinctive histological and biological features, clinical presentations, and responses to therapy. In addition to traditional treatment approaches, such as surgery, radiotherapy, endocrine therapy, and chemotherapy, targeted therapy is another emerging approach for breast cancer treatment. With the breakthrough in molecular biology and pharmacology research, new targeted drugs have been continuously applied in clinic and have achieved good clinical results.

References

  1. 1.
    Ferlay J et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    DeSantis CE et al (2016) Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin 66(1):31–42PubMedCrossRefGoogle Scholar
  3. 3.
    Fan L et al (2014) Breast cancer in China. Lancet Oncol 15(7):e279–e289PubMedCrossRefGoogle Scholar
  4. 4.
    Gage M, Wattendorf D, Henry LR (2012) Translational advances regarding hereditary breast cancer syndromes. J Surg Oncol 105(5):444–451PubMedCrossRefGoogle Scholar
  5. 5.
    Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  6. 6.
    Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ford D et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62(3):676–689PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Toss A, Cristofanilli M (2015) Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res 17:60PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Prat A, Ellis MJ, Perou CM (2011) Practical implications of gene-expression-based assays for breast oncologists. Nat Rev Clin Oncol 9(1):48–57PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Brufsky AM (2014) Current approaches and emerging directions in HER2-resistant breast cancer. Breast Cancer (Auckl) 8:109–118Google Scholar
  11. 11.
    Finn RS et al (2015) The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16(1):25–35PubMedCrossRefGoogle Scholar
  12. 12.
    Kitajima K et al (2015) Association between (1)(8)F-FDG uptake and molecular subtype of breast cancer. Eur J Nucl Med Mol Imaging 42(9):1371–1377PubMedCrossRefGoogle Scholar
  13. 13.
    Groheux D et al (2013) Performance of FDG PET/CT in the clinical management of breast cancer. Radiology 266(2):388–405PubMedCrossRefGoogle Scholar
  14. 14.
    Gil-Rendo A et al (2009) Association between [18F]fluorodeoxyglucose uptake and prognostic parameters in breast cancer. Br J Surg 96(2):166–170PubMedCrossRefGoogle Scholar
  15. 15.
    Basu S et al (2008) Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer 112(5):995–1000PubMedCrossRefGoogle Scholar
  16. 16.
    Avril N et al (2001) Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 42(1):9–16PubMedGoogle Scholar
  17. 17.
    Crippa F et al (1998) Association between [18F]fluorodeoxyglucose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: a preliminary observation. Eur J Nucl Med 25(10):1429–1434PubMedCrossRefGoogle Scholar
  18. 18.
    Buck A et al (2002) FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 29(10):1317–1323PubMedCrossRefGoogle Scholar
  19. 19.
    Avril N et al (2000) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 18(20):3495–3502PubMedCrossRefGoogle Scholar
  20. 20.
    Hindié E et al (2011) The sentinel node procedure in breast cancer: nuclear medicine as the starting point. J Nucl Med 52(3):405–414PubMedCrossRefGoogle Scholar
  21. 21.
    Caldarella C, Treglia G, Giordano A (2014) Diagnostic performance of dedicated positron emission mammography using fluorine-18-fluorodeoxyglucose in women with suspicious breast lesions: a meta-analysis. Clin Breast Cancer 14(4):241–248PubMedCrossRefGoogle Scholar
  22. 22.
    Ueda S et al (2008) Clinicopathological and prognostic relevance of uptake level using 18F-fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in primary breast cancer. Jpn J Clin Oncol 38(4):250–258PubMedCrossRefGoogle Scholar
  23. 23.
    Kalinyak JE et al (2014) Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT. Eur J Nucl Med Mol Imaging 41(2):260–275PubMedCrossRefGoogle Scholar
  24. 24.
    Iima M et al (2012) Clinical performance of 2 dedicated PET scanners for breast imaging: initial evaluation. J Nucl Med 53(10):1534–1542PubMedCrossRefGoogle Scholar
  25. 25.
    Berg WA et al (2011) Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology 258(1):59–72PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bertagna F et al (2014) Prevalence and clinical significance of incidental F18-FDG breast uptake: a systematic review and meta-analysis. Jpn J Radiol 32(2):59–68PubMedCrossRefGoogle Scholar
  27. 27.
    Kumar R et al (2005) Potential of dual-time-point imaging to improve breast cancer diagnosis with (18)F-FDG PET. J Nucl Med 46(11):1819–1824PubMedCrossRefGoogle Scholar
  28. 28.
    Heusner TA et al (2008) Breast cancer staging in a single session: whole-body PET/CT mammography. J Nucl Med 49(8):1215–1222PubMedCrossRefGoogle Scholar
  29. 29.
    Amin MB, Edge S, Greene FL (2016) AJCC cancer staging manual. Springer, New YorkGoogle Scholar
  30. 30.
    Wahl RL et al (2004) Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol 22(2):277–285PubMedCrossRefGoogle Scholar
  31. 31.
    Cooper KL et al (2011) Positron emission tomography (PET) for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis. Eur J Surg Oncol 37(3):187–198PubMedCrossRefGoogle Scholar
  32. 32.
    Veronesi U et al (2007) A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 18(3):473–478PubMedCrossRefGoogle Scholar
  33. 33.
    Ahn JH et al (2010) The role of ultrasonography and FDG-PET in axillary lymph node staging of breast cancer. Acta Radiol 51(8):859–865PubMedCrossRefGoogle Scholar
  34. 34.
    Cooper KL et al (2011) Positron emission tomography (PET) and magnetic resonance imaging (MRI) for the assessment of axillary lymph node metastases in early breast cancer: systematic review and economic evaluation. Health Technol Assess 15(4):iii–iv, 1–134PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Groheux D et al (2008) Effect of (18)F-FDG PET/CT imaging in patients with clinical Stage II and III breast cancer. Int J Radiat Oncol Biol Phys 71(3):695–704PubMedCrossRefGoogle Scholar
  36. 36.
    Aukema TS et al (2010) Detection of extra-axillary lymph node involvement with FDG PET/CT in patients with stage II-III breast cancer. Eur J Cancer 46(18):3205–3210PubMedCrossRefGoogle Scholar
  37. 37.
    Groheux D et al (2011) The yield of 18F-FDG PET/CT in patients with clinical stage IIA, IIB, or IIIA breast cancer: a prospective study. J Nucl Med 52(10):1526–1534PubMedCrossRefGoogle Scholar
  38. 38.
    Segaert I et al (2010) Additional value of PET-CT in staging of clinical stage IIB and III breast cancer. Breast J 16(6):617–624PubMedCrossRefGoogle Scholar
  39. 39.
    Bourgeois AC et al (2013) Role of positron emission tomography/computed tomography in breast cancer. Radiol Clin North Am 51(5):781–798PubMedCrossRefGoogle Scholar
  40. 40.
    Alberini JL et al (2009) 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging in the staging and prognosis of inflammatory breast cancer. Cancer 115(21):5038–5047PubMedCrossRefGoogle Scholar
  41. 41.
    Carkaci S et al (2009) Retrospective study of 18F-FDG PET/CT in the diagnosis of inflammatory breast cancer: preliminary data. J Nucl Med 50(2):231–238PubMedCrossRefGoogle Scholar
  42. 42.
    Yang WT et al (2008) Inflammatory breast cancer: PET/CT, MRI, mammography, and sonography findings. Breast Cancer Res Treat 109(3):417–426PubMedCrossRefGoogle Scholar
  43. 43.
    Hamaoka T et al (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22(14):2942–2953PubMedCrossRefGoogle Scholar
  44. 44.
    Schirrmeister H (2007) Detection of bone metastases in breast cancer by positron emission tomography. Radiol Clin North Am 45(4):669–676, vi.PubMedCrossRefGoogle Scholar
  45. 45.
    Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46(8):1356–1367PubMedGoogle Scholar
  46. 46.
    Hahn S et al (2011) Comparison of FDG-PET/CT and bone scintigraphy for detection of bone metastases in breast cancer. Acta Radiol 52(9):1009–1014PubMedCrossRefGoogle Scholar
  47. 47.
    Nakai T et al (2005) Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 32(11):1253–1258PubMedCrossRefGoogle Scholar
  48. 48.
    Gaeta CM et al (2013) Recurrent and metastatic breast cancer PET, PET/CT, PET/MRI: FDG and new biomarkers. Q J Nucl Med Mol Imaging 57(4):352–366PubMedGoogle Scholar
  49. 49.
    Roop MJ et al (2017) Incremental value of cocktail 18F-FDG and 18F-NaF PET/CT over 18F-FDG PET/CT alone for characterization of skeletal metastases in breast cancer. Clin Nucl Med 42(5):335–340PubMedCrossRefGoogle Scholar
  50. 50.
    Minamimoto R et al (2015) Prospective comparison of 99mTc-MDP scintigraphy, combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate cancer. J Nucl Med 56(12):1862–1868PubMedCrossRefGoogle Scholar
  51. 51.
    Gebhart G et al (2013) 18F-FDG PET/CT for early prediction of response to neoadjuvant lapatinib, trastuzumab, and their combination in HER2-positive breast cancer: results from Neo-ALTTO. J Nucl Med 54(11):1862–1868PubMedCrossRefGoogle Scholar
  52. 52.
    Schwarz-Dose J et al (2009) Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose. J Clin Oncol 27(4):535–541PubMedCrossRefGoogle Scholar
  53. 53.
    Rousseau C et al (2006) Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 24(34):5366–5372PubMedCrossRefGoogle Scholar
  54. 54.
    Tian F et al (2017) The accuracy of (18)F-FDG PET/CT in predicting the pathological response to neoadjuvant chemotherapy in patients with breast cancer: a meta-analysis and systematic review. Eur Radiol 27(11):4786–4796PubMedCrossRefGoogle Scholar
  55. 55.
    Mortimer JE et al (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19(11):2797–2803PubMedCrossRefGoogle Scholar
  56. 56.
    Schmidt GP et al (2008) Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT. Eur J Radiol 65(1):47–58PubMedCrossRefGoogle Scholar
  57. 57.
    Dirisamer A et al (2010) Integrated contrast-enhanced diagnostic whole-body PET/CT as a first-line restaging modality in patients with suspected metastatic recurrence of breast cancer. Eur J Radiol 73(2):294–299PubMedCrossRefGoogle Scholar
  58. 58.
    Aukema TS et al (2010) The role of FDG PET/CT in patients with locoregional breast cancer recurrence: a comparison to conventional imaging techniques. Eur J Surg Oncol 36(4):387–392PubMedCrossRefGoogle Scholar
  59. 59.
    Evangelista L et al (2012) Tumor marker-guided PET in breast cancer patients-a recipe for a perfect wedding: a systematic literature review and meta-analysis. Clin Nucl Med 37(5):467–474PubMedCrossRefGoogle Scholar
  60. 60.
    Champion L et al (2011) Breast cancer recurrence diagnosis suspected on tumor marker rising: value of whole-body 18FDG-PET/CT imaging and impact on patient management. Cancer 117(8):1621–1629PubMedCrossRefGoogle Scholar
  61. 61.
    Haug AR et al (2007) F-18-fluoro-2-deoxyglucose positron emission tomography/computed tomography in the follow-up of breast cancer with elevated levels of tumor markers. J Comput Assist Tomogr 31(4):629–634PubMedCrossRefGoogle Scholar
  62. 62.
    Veit-Haibach P et al (2007) FDG-PET/CT in restaging of patients with recurrent breast cancer: possible impact on staging and therapy. Br J Radiol 80(955):508–515PubMedCrossRefGoogle Scholar
  63. 63.
    Kenny LM (2013) 18F-FDG PET/CT for early prediction of response to neoadjuvant lapatinib, trastuzumab, and their combination in HER2-positive breast cancer: results from Neo-ALTTO. J Nucl Med 54(11):1855–1856PubMedCrossRefGoogle Scholar
  64. 64.
    Groheux D et al (2012) Prognostic impact of (18)FDG-PET-CT findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst 104(24):1879–1887PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Inoue T et al (2004) Preoperative evaluation of prognosis in breast cancer patients by [(18)F]2-Deoxy-2-fluoro-D-glucose-positron emission tomography. J Cancer Res Clin Oncol 130(5):273–278PubMedCrossRefGoogle Scholar
  66. 66.
    Peterson LM et al (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 49(3):367–374PubMedCrossRefGoogle Scholar
  67. 67.
    Gemignani ML et al (2013) Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer. J Nucl Med 54(10):1697–1702PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Linden HM et al (2006) Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 24(18):2793–2799PubMedCrossRefGoogle Scholar
  69. 69.
    Dehdashti F et al (2009) PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat 113(3):509–517PubMedCrossRefGoogle Scholar
  70. 70.
    van Kruchten M et al (2015) Positron emission tomography of tumour [(18)F]fluoroestradiol uptake in patients with acquired hormone-resistant metastatic breast cancer prior to oestradiol therapy. Eur J Nucl Med Mol Imaging 42(11):1674–1681PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Xinzhong Hao
    • 1
  • Xiaxia Meng
    • 1
  • Zhifang Wu
    • 1
  1. 1.The First Hospital of Shanxi Medical UniversityShanxiP. R. China

Personalised recommendations