Equipment for Imaging and Mechanism of Radiation Protection

  • Rui Li
  • Qiang Jia
  • Zhaowei Meng
  • Shen Wang
  • Ruiguo Zhang
  • Wensen Jin
  • Bin Liu
  • Yu Chen
  • Tian Tian
  • Rong Tian


The use of positron-emitting radionuclide molecular imaging is important in the diagnosis and staging of malignant disease response and monitoring of treatment. In order to cope with emerging clinical needs, the imaging performance has been greatly improved recently. These developments are usually limited by the application of positron emission tomography (PET) physics; hence the primary goal in PET scanner designing is to improve spatial resolution, sensitivity, and the ratio of true coincidence count rate relative to the noise [1]. In addition to the photon counting-related statistical effects, scattered and random coincidence processes also contribute to background noise in PET. Recent advances in new models of scintillator and electronic equipment and statistically based algorithms of PET image reconstruction have greatly improved the clinical performance of PET [2, 3]. Nowadays, the new PET imaging technology is able to complete anatomically and functionally in a few minutes, which largely reduce the waiting time in clinic while maintaining a good imaging quality.


  1. 1.
    Kanno I, Miura S, Yamamoto S et al (1985) Design and evaluation of a positron emission tomography: HEADTOME III. J Comput Assist Tomogr 9(5):931–939PubMedGoogle Scholar
  2. 2.
    Kwee TC, Torigian DA, Alavi A (2013) Overview of positron emission tomography, hybrid positron emission tomography instrumentation, and positron emission tomography quantification. J Thorac Imaging 28(1):4–10PubMedGoogle Scholar
  3. 3.
    Berg E, Cherry SR (2018) Innovations in instrumentation for positron emission tomography. Semin Nucl Med 48(4):311–331PubMedPubMedCentralGoogle Scholar
  4. 4.
    Volkow ND, Mullani NA, Bendriem B (1988) Positron emission tomography instrumentation: an overview. Am J Physiol Imaging 3(3):142–153PubMedGoogle Scholar
  5. 5.
    Porenta G (1994) Positron emission tomography: physics, instrumentation, and image analysis. Wien Klin Wochenschr 106(15):466–477PubMedGoogle Scholar
  6. 6.
    Budinger TF, Derenzo SE, Huesman RH (1984) Instrumentation for positron emission tomography. Ann Neurol 15(Suppl):S35–S43PubMedGoogle Scholar
  7. 7.
    McLean FC (1963) The use of isotopes in orthopaedics. I. The atomic nucleus and isotopes. J Bone Joint Surg Am 45:1067–1072PubMedGoogle Scholar
  8. 8.
    Gambini DJ. [Basic concepts of radiology physics]. J Radiol. 2010;91(11 Pt 2):1186–1188Google Scholar
  9. 9.
    Casey ME, Hoffman EJ (1986) Quantitation in positron emission computed tomography: 7. A technique to reduce noise in accidental coincidence measurements and coincidence efficiency calibration. J Comput Assist Tomogr 10(5):845–850PubMedGoogle Scholar
  10. 10.
    Trebossen R, Comtat C, Brulon V et al (2009) Comparison of two commercial whole body PET systems based on LSO and BGO crystals respectively for brain imaging. Med Phys 36(4):1399–1409PubMedGoogle Scholar
  11. 11.
    Matheoud R, Goertzen AL, Vigna L et al (2012) Five-year experience of quality control for a 3D LSO-based whole-body PET scanner: results and considerations. Phys Med 28(3):210–220PubMedGoogle Scholar
  12. 12.
    Conti M, Eriksson L, Rothfuss H et al (2017) Characterization of (176)Lu background in LSO-based PET scanners. Phys Med Biol 62(9):3700–3711PubMedGoogle Scholar
  13. 13.
    Shao L, Freifelder R, Karp JS (1994) Triple energy window scatter correction technique in PET. IEEE Trans Med Imaging 13(4):641–648PubMedGoogle Scholar
  14. 14.
    Lupton LR, Keller NA (1983) Performance study of single-slice positron emission tomography scanners by Monte Carlo techniques. IEEE Trans Med Imaging 2(4):154–168PubMedGoogle Scholar
  15. 15.
    Colsher JG (1980) Fully three-dimensional positron emission tomography. Phys Med Biol 25(1):103–115PubMedGoogle Scholar
  16. 16.
    Daube-Witherspoon ME, Muehllehner G (1987) Treatment of axial data in three-dimensional PET. J Nucl Med 28(11):1717–1724PubMedGoogle Scholar
  17. 17.
    Ollinger JM (1996) Model-based scatter correction for fully 3D PET. Phys Med Biol 41(1):153–176PubMedPubMedCentralGoogle Scholar
  18. 18.
    Derenzo SE (1980) Method for optimizing side shielding in positron-emission tomographs and for comparing detector materials. J Nucl Med 21(10):971–977PubMedGoogle Scholar
  19. 19.
    Bergstrom M, Eriksson L, Bohm C et al (1983) Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 7(1):42–50PubMedGoogle Scholar
  20. 20.
    Kinahan PE, Townsend DW, Beyer T et al (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25(10):2046–2053PubMedGoogle Scholar
  21. 21.
    Oda K, Toyama H, Uemura K et al (2001) Comparison of parametric FBP and OS-EM reconstruction algorithm images for PET dynamic study. Ann Nucl Med 15(5):417–423PubMedGoogle Scholar
  22. 22.
    Morey AM, Kadrmas DJ (2013) Effect of varying number of OSEM subsets on PET lesion detectability. J Nucl Med Technol 41(4):268–273PubMedGoogle Scholar
  23. 23.
    Chism CB, Ravizzini GC, Macapinlac HA et al (2017) Quantitative comparison between regularized time-of-flight and OSEM PET reconstructions for small 18F-FDG-avid lesions. Nucl Med Commun 38(6):529–536PubMedGoogle Scholar
  24. 24.
    Castro P, Huerga C, Chamorro P et al (2018) Characterization and simulation of noise in PET images reconstructed with OSEM: development of a method for the generation of synthetic images. Rev Esp Med Nucl Imagen Mol 37(4):229–236PubMedGoogle Scholar
  25. 25.
    DeGrado TR, Turkington TG, Williams JJ et al (1994) Performance characteristics of a whole-body PET scanner. J Nucl Med 35(8):1398–1406PubMedGoogle Scholar
  26. 26.
    Linet MS, Slovis TL, Miller DL et al (2012) Cancer risks associated with external radiation from diagnostic imaging procedures. CA Cancer J Clin 62(2):75–100PubMedPubMedCentralGoogle Scholar
  27. 27.
    Andersson M, Johansson L, Minarik D, Leide-Svegborn S, Mattsson S (2014) Effective dose to adult patients from 338 radiopharmaceuticals estimated using ICRP biokinetic data, ICRP/ICRU computational reference phantoms and ICRP 2007 tissue weighting factors. EJNMMI Phys 1(1):9PubMedPubMedCentralGoogle Scholar
  28. 28.
    ICRP (2008) Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP publication 53. ICRP publication 106. Approved by the commission in October 2007. Ann ICRP 38(1–2):1–197PubMedGoogle Scholar
  29. 29.
    Kamiya K, Ozasa K, Akiba S et al (2015) Long-term effects of radiation exposure on health. Lancet 386(9992):469–478PubMedGoogle Scholar
  30. 30.
    Calabrese EJ, O'Connor MK (2014) Estimating risk of low radiation doses—a critical review of the BEIR VII report and its use of the linear no-threshold (LNT) hypothesis. Radiat Res 182(5):463–474PubMedGoogle Scholar
  31. 31.
    Andersson M, Eckerman K, Mattsson LJS (2017) Lifetime attributable risk as an alternative to effective dose to describe the risk of cancer for patients in diagnostic and therapeutic nuclear medicine. Phys Med Biol 62(24):9177–9188PubMedGoogle Scholar
  32. 32.
    Health Physics Society. Radiation risk in perspective: position statement of the health physics society.
  33. 33.
    Hendee WR, O’Connor MK (2012) Radiation risks of medical imaging: separating fact from fantasy. Radiology 264(2):312–321PubMedGoogle Scholar
  34. 34.
    Gelfand MJ, Parisi MT, Treves ST et al (2011) Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med 52(2):318–322PubMedGoogle Scholar
  35. 35.
    Ayres KL, Spottswood SE, Delbeke D et al (2015) Dose optimization of the administered activity in pediatric bone scintigraphy: validation of the North American consensus guidelines. J Nucl Med 56(9):1391–1394PubMedGoogle Scholar
  36. 36.
    Benson CB, Doubilet PM (2014) The history of imaging in obstetrics. Radiology 273(2S):S92–S110PubMedGoogle Scholar
  37. 37.
    Lazarus E, Debenedectis C, North D, Spencer PK, Mayo-Smith WW (2009) Utilization of imaging in pregnant patients: 10-year review of 5270 examinations in 3285 patients—1997-2006. Radiology 251(2):517–524PubMedGoogle Scholar
  38. 38.
    Williams PM, Fletcher S (2010) Health effects of prenatal radiation exposure. Am Fam Physician 82(5):488–493PubMedGoogle Scholar
  39. 39.
    Wang PI, Chong ST, Kielar AZ et al (2012) Imaging of pregnant and lactating patients: part 1, evidence-based review and recommendations. Am J Roentgenol 198(4):778–784Google Scholar
  40. 40.
    Wang PI, Chong ST, Kielar AZ et al (2012) Imaging of pregnant and lactating patients: part 2, evidence-based review and recommendations. Am J Roentgenol 198(4):785–792Google Scholar
  41. 41.
    ICRP (2000) Pregnancy and medical radiation. Ann ICRP 30(1):iii–viii, 1–43Google Scholar
  42. 42.
    Committee on Obstetric Gynecology Committee Opinion No. 723 (2017) Guidelines for diagnostic imaging during pregnancy and lactation. Obstet Gynecol 130(4):e210–e216Google Scholar
  43. 43.
    Liepe K, Becker A (2016) Excretion of radionuclides in human breast milk after nuclear medicine examinations. Biokinetic and dosimetric data and recommendations on breastfeeding interruption. Eur J Nucl Med Mol Imaging 43(5):805–807PubMedGoogle Scholar
  44. 44.
    Liu L, Liu B, Huang R, Kuang A (2017) Radiation protection and safety of nuclear medicine. Chin J Med Imaging Technol 33(12):102–106Google Scholar
  45. 45.
    ICRP (2004) Release of patients after therapy with unsealed radionuclides. Ann ICRP 34(2):v–vi, 1–79Google Scholar
  46. 46.
    IAEA (2009) Release of patients after radionuclide therapy. Safety report series no. 63. Vienna, AustriaGoogle Scholar
  47. 47.
    Liu B, Peng W, Huang R et al (2014) Thyroid cancer: radiation safety precautions in 131I therapy based on actual biokinetic measurements. Radiology 273(1):211–219PubMedGoogle Scholar
  48. 48.
    Liu B, Tian R, Peng W et al (2015) Radiation safety precautions in 131I therapy of Graves’ disease based on actual biokinetic measurements. J Clin Endocrinol Metab 100(8):2934–2941PubMedGoogle Scholar
  49. 49.
    NRC (2008) New NRC guidance on release of patients after 131I treatment. J Nucl Med 49(7):16NGoogle Scholar
  50. 50.
    Sans-Merce M, Ruiz N, Barth I et al (2011) Recommendations to reduce hand exposure for standard nuclear medicine procedures. Radiat Meas 46(11):1330–1333Google Scholar
  51. 51.
    Leide-Svegborn S (2012) External radiation exposure of personnel in nuclear medicine from 18F, 99mTC and 131I with special reference to fingers, eyes and thyroid. Radiat Prot Dosim 149(2):196–206Google Scholar
  52. 52.
    Sans Merce M, Ruiz N, Barth I et al (2011) Extremity exposure in nuclear medicine: preliminary results of a European study. Radiat Prot Dosim 144(1–4):515–520Google Scholar
  53. 53.
    Kaljevic J, Stankovic K, Stankovic J, Ciraj-Bjelac O, Arandjic D (2016) Hand dose evaluation of occupationally exposed staff in nuclear medicine. Radiat Prot Dosim 170(1–4):292–296Google Scholar
  54. 54.
    Krajewska G, Pachocki KA (2013) Assessment of exposure of workers to ionizing radiation from radioiodine and technetium in nuclear medicine departmental facilities. Med Pr 64(5):625–630PubMedGoogle Scholar
  55. 55.
    IAEA (2005) Applying radiation safety standards in nuclear medicine. IAEA safety report series no. 40. Vienna, AustriaGoogle Scholar
  56. 56.
    Feuardent J, Scanff P, Crescini D, Rannou A (2013) Occupational external exposure to ionising radiation in France (2005-2011). Radiat Prot Dosim 157(4):610–618Google Scholar
  57. 57.
    Mattsson S (2013) Radiation protection in nuclear medicine. Springer, Berlin, pp 1–7Google Scholar
  58. 58.
    Rajaraman P, Doody MM, Yu CL et al (2016) Incidence and mortality risks for circulatory diseases in US radiologic technologists who worked with fluoroscopically guided interventional procedures, 1994-2008. Occup Environ Med 73(1):21–27PubMedGoogle Scholar
  59. 59.
    Yoshinaga S, Mabuchi K, Sigurdson AJ, Doody MM, Ron E (2004) Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology 233(2):313–321PubMedGoogle Scholar
  60. 60.
    Simon SL, Weinstock RM, Doody MM et al (2006) Estimating historical radiation doses to a cohort of U.S. radiologic technologists. Radiat Res 166(1):174–192PubMedGoogle Scholar
  61. 61.
    Berrington de Gonzalez A, Ntowe E, Kitahara CM et al (2016) Long-term mortality in 43763 U.S. radiologists compared with 64 990 U.S. psychiatrists. Radiology 281(3):847–857PubMedPubMedCentralGoogle Scholar
  62. 62.
    Linet MS, Kitahara CM, Ntowe E et al (2017) Mortality in U.S. physicians likely to perform fluoroscopy-guided interventional procedures compared with psychiatrists, 1979 to 2008. Radiology 284(2):482–494PubMedPubMedCentralGoogle Scholar
  63. 63.
    Linet MS, Kim KP, Miller DL, Kleinerman RA, Simon SL, Berrington de Gonzalez A (2010) Historical review of occupational exposures and cancer risks in medical radiation workers. Radiat Res 74(6):793–808Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Rui Li
    • 1
  • Qiang Jia
    • 2
  • Zhaowei Meng
    • 2
  • Shen Wang
    • 2
  • Ruiguo Zhang
    • 2
  • Wensen Jin
    • 3
  • Bin Liu
    • 4
  • Yu Chen
    • 5
  • Tian Tian
    • 4
  • Rong Tian
    • 4
  1. 1.Department of Nuclear MedicineRenJi Hospital, School of Medicine, Shanghai JiaoTong UniversityShanghaiP. R. China
  2. 2.Department of Nuclear MedicineTianjin Medical University General HospitalTianjinP. R. China
  3. 3.Teaching and Research Section of Nuclear MedicineAnhui Medical UniversityHefeiP. R. China
  4. 4.Department of Nuclear MedicineWest China Hospital, Sichuan UniversityChengduP. R. China
  5. 5.Department of Operation ManagementWest China Hospital, Sichuan UniversityChengduP. R. China

Personalised recommendations