Molecular Imaging and Targeted Therapy in Neurology

  • Qian Xu
  • Weishan Zhang
  • Chuantao Zuo


As the most common motor neurodegenerative disorder, Parkinson’s disease has been the second most common neurodegenerative disorder after Alzheimer’s disease (AD). The prevalence of Parkinson’s disease (PD) is around 1% at age 60 and 4–5% at 85. Bradykinesia is the most important symptoms in PD, and resting tremor, rigidity, and postural instability are the other three cardinal motor symptoms presented in the disease. Two main neuropathologies of PD are characterized by progressive cell loss of dopaminergic neurons predominately of the ventrolateral part of the pars compacta of the substantia nigra and the presence of Lewy pathology including Lewy bodies (LBs) and Lewy neurites (LNs).


  1. 1.
    Hsiao IT, Weng YH, Hsieh CJ et al (2014) Correlation of Parkinson disease severity and 18F-DTBZ positron emission tomography. JAMA Neurol 71(6):758CrossRefGoogle Scholar
  2. 2.
    Niccolini F, Politis M (2016) A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism. Eur J Nucl Med Mol Imaging 43(12):2244–2254CrossRefGoogle Scholar
  3. 3.
    Schreckenberger M, Hägele S, Siessmeier T et al (2004) The dopamine D2 receptor ligand 18F-desmethoxyfallypride: an appropriate fluorinated PET tracer for the differential diagnosis of parkinsonism. Eur J Nucl Med Mol Imaging 31(8):1128–1135CrossRefGoogle Scholar
  4. 4.
    George S, Brundin P (2015) Immunotherapy in Parkinson’s disease: micromanaging alpha-Synuclein aggregation. J Parkinsons Dis 5(3):413–424CrossRefGoogle Scholar
  5. 5.
    Lin KJ, Weng YH, Wey SP et al (2010) Whole-body biodistribution and radiation dosimetry of 18F-FP-(+)-DTBZ (18F-AV-133): a novel vesicular monoamine transporter 2 imaging agent. J Nucl Med 51(9):1480–1485CrossRefGoogle Scholar
  6. 6.
    Kim HW, Kim JS, Oh M et al (2016) Different loss of dopamine transporter according to subtype of multiple system atrophy. Eur J Nucl Med Mol Imaging 43(3):517–525CrossRefGoogle Scholar
  7. 7.
    Wu P, Wang J, Peng S et al (2013) Metabolic brain network in the Chinese patients with Parkinson’s disease based on 18 F-FDG PET imaging. Parkinsonism Relat Disord 19(6):622–627CrossRefGoogle Scholar
  8. 8.
    Bohnen NI, Müller MLTM, Frey KA (2017) Molecular imaging and updated diagnostic criteria in Lewy body dementias. Curr Neurol Neurosci Rep 17(10):73CrossRefGoogle Scholar
  9. 9.
    Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912CrossRefGoogle Scholar
  10. 10.
    Hall B, Mak E, Cervenka S et al (2017) In vivo tau PET imaging in dementia: pathophysiology, radiotracer quantification, and a systematic review of clinical findings. Ageing Res Rev 36:50–63CrossRefGoogle Scholar
  11. 11.
    Counts SE, Ikonomovic MD, Mercado N et al (2017) Biomarkers for the early detection and progression of Alzheimer’s disease. Neurotherapeutics 14(1):35–53CrossRefGoogle Scholar
  12. 12.
    Kato T, Inui Y, Nakamura A et al (2016) Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev 30:73–84CrossRefGoogle Scholar
  13. 13.
    Villemagne VL, Chetelat G (2016) Neuroimaging biomarkers in Alzheimer’s disease and other dementias. Ageing Res Rev 30:4–16CrossRefGoogle Scholar
  14. 14.
    Villemagne VL (2016) Amyloid imaging: past, present and future perspectives. Ageing Res Rev 30:95–106CrossRefGoogle Scholar
  15. 15.
    Weiner MW, Veitch DP (2015) Introduction to special issue: overview of Alzheimer’s disease neuroimaging initiative. Alzheimers Dement 11(7):730–733CrossRefGoogle Scholar
  16. 16.
    Blennow K, Mattsson N, Scholl M et al (2015) Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci 36(5):297–309CrossRefGoogle Scholar
  17. 17.
    Smailagic N, Vacante M, Hyde C et al (2015) 18F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev (1):D10632Google Scholar
  18. 18.
    Wurtman R (2015) Biomarkers in the diagnosis and management of Alzheimer’s disease. Metabolism 64(3 Suppl 1):S47–S50CrossRefGoogle Scholar
  19. 19.
    McConathy J, Sheline YI (2015) Imaging biomarkers associated with cognitive decline: a review. Biol Psychiatry 77(8):685–692CrossRefGoogle Scholar
  20. 20.
    Albert NL, Weller M, Suchorska B et al (2016) Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 18(9):1199–1208CrossRefGoogle Scholar
  21. 21.
    Galldiks N, Langen KJ, Pope WB (2015) From the clinician’s point of view—what is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol 17(11):1434–1444CrossRefGoogle Scholar
  22. 22.
    Bell C, Dowson N, Puttick S et al (2015) Increasing feasibility and utility of (18)F-FDOPA PET for the management of glioma. Nucl Med Biol 42(10):788–795CrossRefGoogle Scholar
  23. 23.
    Glaudemans AW, Enting RH, Heesters MA et al (2013) Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 40(4):615–635CrossRefGoogle Scholar
  24. 24.
    Dunet V, Rossier C, Buck A et al (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J Nucl Med 53(2):207–214CrossRefGoogle Scholar
  25. 25.
    Calabria F, Chiaravalloti A, Di Pietro B et al (2012) Molecular imaging of brain tumors with 18F-DOPA PET and PET/CT. Nucl Med Commun 33(6):563–570CrossRefGoogle Scholar
  26. 26.
    Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48(9):1468–1481CrossRefGoogle Scholar
  27. 27.
    Damont A, Roeda D, Dollé F (2013) The potential of carbon-11 and fluorine-18 chemistry: illustration through the development of positron emission tomography radioligands targeting the translocator protein 18 kDa. J Labelled Comp Radiopharm 56(3–4):96–104. Scholar
  28. 28.
    Dollé F, Luus C, Reynolds A et al (2009) Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography. Curr Med Chem 16(22):2899–2923CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Qian Xu
    • 1
  • Weishan Zhang
    • 1
  • Chuantao Zuo
    • 1
  1. 1.PET CenterHuashan Hospital, Fudan UniversityShanghaiP. R. China

Personalised recommendations