Advertisement

Radionuclide Gene and Reporter Gene Imaging

  • Xiaoli Lan
  • Min Ye
  • Pengxin Qiao
  • Wenxia Wang
Chapter

Abstract

In the 1970s, the Johns Hopkins University School of Medicine (JHUSOM) and Harvard Medical School discovered that antisense oligonucleotides (ASON) could actually block the expression of specific genes. Since then, a new genetic engineering technology—antisense technology—has emerged. According to the principle of complementary base pairing, ASON is specifically used to bind the genes or mRNA in cells and regulate gene expression by blocking the transcription of gene or translation of mRNA. After the artificially synthesized radionuclide-labeled ASON is introduced into the body, it binds specifically to intracellular target genes or mRNAs through the principle of complementary base pairing, and then an imaging instrument is used to display the target genes or tissue that is overexpressed in genes, thereby forming a new diagnosis method—radionuclide antisense gene imaging [1, 2].

References

  1. 1.
    Tavitian B (2000) In vivo antisense imaging. Q J Nucl Med 44(3):236–255PubMedGoogle Scholar
  2. 2.
    Hnatowich DJ (1999) Antisense and nuclear medicine. J Nucl Med 40:693–703PubMedGoogle Scholar
  3. 3.
    Agrawal S (1999) Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochim Biophys Acta 1489(1):53–68CrossRefGoogle Scholar
  4. 4.
    Mani S, Gu Y, Wadler S et al (1999) Antisense therapeutics in oncology: points to consider in their clinical evaluation. Antisense Nucleic Acid Drug Dev 9(6):543–547CrossRefGoogle Scholar
  5. 5.
    Dewanjee MK, Ghafouripour A, Werner R et al (1991) Development of sensitive radioiodinated anti-sense oligonucleotide probes by conjugation techniques. Bioconjug Chem 2(4):195–200CrossRefGoogle Scholar
  6. 6.
    Dolle F, Hinnen F, Vaufrey F et al (1997) A general method for labeling oligodeoxynucleotides with 18 F for in vivo PET imaging. J Labelled Comp Radiopharm 39(4):319–330CrossRefGoogle Scholar
  7. 7.
    Dewanjee MK, Ghafouripour AK, Kapadvanjwala M et al (1994) Noninvasive imaging of C-myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumor-bearing mouse model. J Nucl Med 35:1054–1063PubMedGoogle Scholar
  8. 8.
    Cammilleri S, Sangrajrang S, Perdereau B et al (1996) Biodistribution of iodine −125 tyramine transforming growth factor alpha antisense oligonucleotide in athymic mice with a human mammary tumour xenograft following intratumoral injection. Eur J Nucl Med 23:448–452CrossRefGoogle Scholar
  9. 9.
    Mardirossian G, Lei K, Rusckowski M et al (1997) In vivo hybridization of technetium- 99m labeled peptide nucleic acid (PNA). J Nucl Med 38:907–913PubMedGoogle Scholar
  10. 10.
    Blasberg RG, Tjuvajev JG (2003) Molecular-genetic imaging: current and future perspectives. J Clin Invest 111(11):1620–1629CrossRefGoogle Scholar
  11. 11.
    Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580CrossRefGoogle Scholar
  12. 12.
    Ray P, De A, Min JJ et al (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64(4):1323–1330CrossRefGoogle Scholar
  13. 13.
    Ponomarev V, Doubrovin M, Serganova I et al (2004) A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31(5):740–751CrossRefGoogle Scholar
  14. 14.
    Kim YJ, Dubey P, Ray P et al (2004) Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Mol Imaging Biol 6(5):331–340CrossRefGoogle Scholar
  15. 15.
    Sun N, Lee A, Wu JC (2009) Long term non-invasive imaging of embryonic stem cells using reporter genes. Nat Protoc 4(8):1192–1201CrossRefGoogle Scholar
  16. 16.
    Willmann JRK, Paulmurugan R, Rodriguez-Porcel M et al (2009) Imaging gene expression in human mesenchymal stem cells: from small to large animals. Radiology 252(1):117CrossRefGoogle Scholar
  17. 17.
    Love Z, Wang F, Dennis J et al (2007) Imaging of mesenchymal stem cell transplant by bioluminescence and PET. J Nucl Med 48(12):2011–2020CrossRefGoogle Scholar
  18. 18.
    Roelants V, Labar D, de Meester C et al (2008) Comparison between adenoviral and retroviral vectors for the transduction of the thymidine kinase PET reporter gene in rat mesenchymal stem cells. J Nucl Med 49(11):1836–1844CrossRefGoogle Scholar
  19. 19.
    Terrovitis J, Kwok KF, Lautamäki R et al (2008) Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 52(20):1652–1660CrossRefGoogle Scholar
  20. 20.
    Lan X, Liu Y, He Y et al (2010) Autoradiography study and SPECT imaging of reporter gene HSV1-tk expression in heart. Nucl Med Biol 37(3):371–380CrossRefGoogle Scholar
  21. 21.
    Hofmann M (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202CrossRefGoogle Scholar
  22. 22.
    Blasberg RG (2003) Molecular imaging and cancer. Mol Cancer Ther 2(3):335–343PubMedGoogle Scholar
  23. 23.
    Wu JC (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108(11):1302–1305CrossRefGoogle Scholar
  24. 24.
    Higuchi T, Anton M, Dumler K et al (2009) Combined reporter gene PET and iron oxide MRI for monitoring survival and localization of transplanted cells in the rat heart. J Nucl Med 50(7):1088–1094CrossRefGoogle Scholar
  25. 25.
    Pei Z, Lan X, Cheng Z, Qin C, Wang P, He Y, Yen TC, Tian Y, Mghanga FP, Zhang Y (2012) A multimodality reporter gene for monitoring transplanted stem cells. Nucl Med Biol 39(6):813–820CrossRefGoogle Scholar
  26. 26.
    Kang Y, He W, Tulley S et al (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A 102(39):13909–13914CrossRefGoogle Scholar
  27. 27.
    Ottobrini L, Ciana P, Biserni A et al (2006) Molecular imaging: a new way to study molecular processes in vivo. Mol Cell Endocrinol 246(1-2):69–75CrossRefGoogle Scholar
  28. 28.
    Ray P, Pimenta H, Paulmurugan R et al (2002) Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc Natl Acad Sci U S A 99(5):3105–3110CrossRefGoogle Scholar
  29. 29.
    Paulmurugan R, Massoud TF, Huang J et al (2004) Molecular imaging of drug-modulated protein-protein interactions in living subjects. Cancer Res 64(6):2113–2119CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Xiaoli Lan
    • 1
  • Min Ye
    • 1
  • Pengxin Qiao
    • 1
  • Wenxia Wang
    • 1
  1. 1.Department of Nuclear MedicineUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanP. R. China

Personalised recommendations