Advertisement

Apoptosis Imaging

  • Hui Wang
  • Xiao-Jun Zhang
Chapter

Abstract

Apoptosis, which was first proposed by Kerr in 1972, is a basic physiological mechanism of life, and it is also the pathological basis for the development of many diseases [1]. With the deepening of research, increasingly explicit about mechanism of apoptosis was considered to be one of the most important progresses in biological field in recent decades. In the field of cancer treatment, apoptosis has a broad application prospect in the observation of curative effect or new drug evaluation. Radionuclide imaging using radiopharmaceuticals detects apoptosis by targeting apoptotic cells with high sensitivity and specificity. With decades of effort, the radioactive probes for different targets of the apoptotic cells were developed and evaluated. Many kinds of probes have been applied in clinical research [2].

References

  1. 1.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257PubMedPubMedCentralGoogle Scholar
  2. 2.
    Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X (2015) Molecular imaging of apoptosis: from micro to macro. Theranostics 5(6):559–582PubMedPubMedCentralGoogle Scholar
  3. 3.
    Blankenberg FG (2008) In vivo detection of apoptosis. J Nucl Med 49(2):81S–95SPubMedGoogle Scholar
  4. 4.
    Tan ML, Ooi JP, Ismail N et al (2009) Programmed cell death pathways and current antitumor targets. Pharm Res 26(7):1547–1560PubMedGoogle Scholar
  5. 5.
    Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD. Cell Death Differ 22:58–73PubMedGoogle Scholar
  6. 6.
    Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9(7):501–507PubMedGoogle Scholar
  7. 7.
    Tan ML, Ooi JP, Ismail N, Moad AI, Muhammad TS (2009) Programmed cell death pathways and current antitumor targets. Pharm Res 26(7):1547–1560PubMedGoogle Scholar
  8. 8.
    Goh AM, Xue Y, Leushacke M, Li L, Wong JS, Chiam PC, Rahmat SA, Mann MB, Mann KM, Barker N, Lozano G, Terzian T, Lane DP (2015) Mutant p53 accumulates in cycling and proliferating cells in the normal tissues of p53 R172H mutant mice. Oncotarget 6(20):17968–17980PubMedPubMedCentralGoogle Scholar
  9. 9.
    Peng Y-T, Chen P, Ouyang R-Y, Song L (2015) Multifaceted role of prohibitin in cell survival and apoptosis. Apoptosis 20(9):1135–1149PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kiraz Y, Adan A, Kartal YM, Baran Y (2016) Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 37(7):8471–8486PubMedGoogle Scholar
  11. 11.
    Fulda S (2009) Tumor resistance to apoptosis. Int J Cancer 124(3):511–515PubMedGoogle Scholar
  12. 12.
    Mohammad RM, Muqbil I, Lowe L et al (2015) Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 35(Supplement):S78–S103PubMedPubMedCentralGoogle Scholar
  13. 13.
    Heneweer C, Grimm J (2011) Clinical applications in molecular imaging. Pediatr Radiol 41(2):199–207PubMedGoogle Scholar
  14. 14.
    Lee BW, Olin MR, Johnson GL, Griffin RJ (2008) In vitro and in vivo apoptosis detection using membrane permeant fluorescent labeled inhibitors of caspases. Methods Mol Biol 414:109–135PubMedGoogle Scholar
  15. 15.
    Niu G, Chen X (2010) Apoptosis imaging: beyond annexin V. J Nucl Med 51(11):1659–1662PubMedGoogle Scholar
  16. 16.
    Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 19(19):107–120PubMedGoogle Scholar
  17. 17.
    Cai J, Li F (2013) Single-photon emission computed tomography tracers for predicting and monitoring cancer therapy. Curr Pharm Biotechnol 14(7):693–707PubMedGoogle Scholar
  18. 18.
    Kemerink GJ, Liu X, Kieffer D et al (2003) Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med 44(6):947–952PubMedGoogle Scholar
  19. 19.
    Rottey S, Slegers G, Van Belle S, Goethals I, Van de Wiele C (2006) Sequential 99mTc-hydrazinonicotinamide-annexin V imaging for predicting response to chemotherapy. J Nucl Med 47(11):1813–1818PubMedGoogle Scholar
  20. 20.
    Schaper FL, Reutelingsperger CP (2013) 99mTc-HYNIC-annexin A5 in oncology: evaluating efficacy of anti-cancer therapies. Cancer 5(2):550–568Google Scholar
  21. 21.
    Hardy JW, Levashova Z, Schmidt TL, Contag CH, Blankenberg FG (2015) 99mTc-annexin V-128 SPECT monitoring of splenic and disseminated listeriosis in mice: a model of imaging sepsis. Mol Imaging Biol 17(3):345–354PubMedGoogle Scholar
  22. 22.
    Belhocine TZ, Blankenberg FG, Kartachova MS et al (2015) 99mTc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials. Eur J Nucl Med Mol Imaging 42(13):2083–2097PubMedGoogle Scholar
  23. 23.
    Perreault A, Knight JC, Wang M, Way J, Wuest F (2016) 18F-labeled wild-type annexin V: comparison of random and site-selective radiolabeling methods. Amino Acids 48(1):65–74PubMedGoogle Scholar
  24. 24.
    Lu C, Jiang Q, Hu M, Tan C, Yu H, Hua Z (2015) Preliminary biological evaluation of 18F-FBEM-Cys-Annexin V a novel apoptosis imaging agent. Molecules 20(3):4902–4914PubMedPubMedCentralGoogle Scholar
  25. 25.
    Yanjie H, Biao L, Zizheng W et al (2010) Automatic synthesis of N-succinimidyl 4-18F-fluorobenzoate and its utility for 18F labeled C2A donain of synaptotagmin I. Chin J Nucl Med Mol Imaging 30(6):414–418Google Scholar
  26. 26.
    Song S, Xiong C, Lu W, Ku G, Huang G, Li C (2013) Apoptosis imaging probe predicts early chemotherapy response in preclinical models: a comparative study with 18F-FDG PET. J Nucl Med 54(1):104–110PubMedGoogle Scholar
  27. 27.
    Zhao M, Li Z (2012) A single-step kit formulation for the 99mTc-labeling of HYNIC-Duramycin. Nucl Med Biol 39(7):1006–1011PubMedGoogle Scholar
  28. 28.
    Elvas F, Vangestel C, Pak K et al (2016) Early prediction of tumor response to treatment: preclinical validation of 99mTc-Duramycin. J Nucl Med 57(5):805–811PubMedGoogle Scholar
  29. 29.
    Yao S, Hu K, Tang G et al (2014) Positron emission tomography imaging of cell death with 18F-FPDuramycin. Apoptosis 19(5):841–850PubMedGoogle Scholar
  30. 30.
    Xia CF, Chen G, Gangadharmath U et al (2013) In vitro and in vivo evaluation of the caspase-3 substrate-based radiotracer 18F-CP18 for PET imaging of apoptosis in tumors. Mol Imaging Biol 15(6):748–757PubMedGoogle Scholar
  31. 31.
    Bao-shi Z, Nai-kang Z, Hui W et al (2011) Imaging of apoptosis with 18F-FP-peptide focused on the evaluation of tumor response to chemotherapy. Chin J Nucl Med Mol Imaging 2:84–89. [中文发表]Google Scholar
  32. 32.
    Doss M, Kolb HC, Walsh JC et al (2013) Biodistribution and radiation dosimetry of 18F-CP-18, a potential apoptosis imaging agent, as determined from PET/CT scans in healthy volunteers. J Nucl Med 54(12):2087–2092PubMedGoogle Scholar
  33. 33.
    Wyffels L, Gray BD, Barber C et al (2011) Synthesis and preliminary evaluation of radiolabeled bis (zinc(II)-dipicolylamine) coordination complexes as cell death imaging agents. Bioorg Med Chem 19(11):3425–3433PubMedPubMedCentralGoogle Scholar
  34. 34.
    Sun T, Tang G, Tian H et al (2015) Positron emission tomography imaging of cardiomyocyte apoptosis with a novel molecule probe 18F-FP-DPAZn2. Oncotarget 6(31):30579–30591PubMedPubMedCentralGoogle Scholar
  35. 35.
    Lee D, Long SA, Adams JL et al (2000) Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. J Biol Chem 275(21):16007–16014PubMedGoogle Scholar
  36. 36.
    Limpachayaporn P, Schafers M, Haufe G (2015) Isatin sulfonamides: potent caspases-3 and -7 inhibitors, and promising PET and SPECT radiotracers for apoptosis imaging. Future Med Chem 7(9):1173–1196PubMedGoogle Scholar
  37. 37.
    Chen DL, Zhou D, Chu W et al (2012) Radiolabeled isatin binding to caspase-3 activation induced by anti-Fas antibody. Nucl Med Biol 39(1):137–144PubMedGoogle Scholar
  38. 38.
    Zhou D, Chu W, Rothfuss J et al (2006) Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg Med Chem Lett 16(19):5041–5046PubMedGoogle Scholar
  39. 39.
    Challapalli A, Kenny LM, Hallett WA et al (2013) 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis: biodistribution and radiation dosimetry. J Nucl Med 54(9):1551–1556PubMedGoogle Scholar
  40. 40.
    Thukkani AK, Shoghi KI, Zhou D et al (2016) PET imaging of in vivo caspase-3/7 activity following myocardial ischemia-reperfusion injury with the radiolabeled isatin sulfonamide analogue 18F-WC-4-116. Am J Nucl Med Mol Imaging 6(2):110–119PubMedPubMedCentralGoogle Scholar
  41. 41.
    Xiaojun Z, Li Y, Jian L et al (2016) Preparation and biodistribution of 2-(5-[18F]fluoro-pentyl)-2-methyl-malonic acid and its primary clinical application[J]. Chin J Nucl Med Mol Imaging 36(2):131–136. [中文发表]Google Scholar
  42. 42.
    Basuli F, Wu H, Shi ZD et al (2012) Synthesis of ApoSense compound [18F]2-(5-(dimethylamino)naphthalene-1-sulfonamido)-2-(fluoromethyl)butanoic acid ([18F]-NST732) by nucleophilic ring opening of an aziridine precursor. Nucl Med Biol 39(5):687–696PubMedPubMedCentralGoogle Scholar
  43. 43.
    Cohen A, Shirvan A, Levin G, Grimberg H, Reshef A, Ziv I (2009) From the Gla domain to a novel small-molecule detector of apoptosis. Cell Res 19(5):625–637PubMedGoogle Scholar
  44. 44.
    Hoglund J, Shirvan A, Antoni G et al (2011) 18F-ML-10, a PET tracer for apoptosis: first human study. J Nucl Med 52(5):720–725PubMedGoogle Scholar
  45. 45.
    Sun L, Zhou K, Wang W et al (2018) 18F-ML-10 imaging for assessment of apoptosis response of intracranial tumor early after radiotherapy by PET/CT. Contrast Media Mol Imaging 2018(3):1–9Google Scholar
  46. 46.
    Oborski MJ, Laymon CM, Qian Y, Lieberman FS, Nelson AD, Mountz JM (2014) Challenges and approaches to quantitative therapy response assessment in glioblastoma multiforme using the novel apoptosis positron emission tomography tracer F-18 ML-10. Transl Oncol 7(1):111–119PubMedPubMedCentralGoogle Scholar
  47. 47.
    Bauwens M, De Saint-Hubert M, Cleynhens J, Vandeputte C, Li J, Devos E (2013) In vitro and in vivo comparison of 18F and 123I-labeled ML10 with 68Ga-Cys2-AnxA5 for molecular imaging of apoptosis. Q J Nucl Med Mol Imaging 57(2):187–200PubMedGoogle Scholar
  48. 48.
    Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8(2):115–128PubMedGoogle Scholar
  49. 49.
    Madar I, Ravert H, Nelkin B et al (2007) Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation. Eur J Nucl Med Mol Imaging 34(12):2057–2065PubMedGoogle Scholar
  50. 50.
    Madar I, Huang Y, Ravert H et al (2009) Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenyl phosphonium. J Nucl Med 50(5):774–780PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Hui Wang
    • 1
  • Xiao-Jun Zhang
    • 2
  1. 1.Nuclear Medicine DepartmentHainan Branch of the Chinese PLA General HospitalSanyaP. R. China
  2. 2.Nuclear Medicine DepartmentThe Chinese PLA General HospitalBeijingP. R. China

Personalised recommendations