Advertisement

Radioimmunoimaging and Targeted Therapy

  • Yafu Yin
  • Steven Rowe
Chapter
  • 518 Downloads

Abstract

More than 20 years ago, Dr. Zhu from China said, “As the world-renowned achievements of radioimmunoassay for trace substance detection are attributed to the multidisciplinary effect of nuclear medicine and immunology, likewise, success of radioimmunoimaging (RII) and radioimmunotherapy (RIT) are dependent on the interaction of these two disciplines, which opens up a new way for the diagnosis and treatment of cancer.” RII and RIT, together termed radioimmunotheranostics, are characterized by radioisotope-labeled antibody or fragments which can recognize some specific antigen; the ultimate goal of which is to diagnose or treat cancer or other diseases. Radioimmunotheranostics has a 70-year history of development, and numerous scholars who came from diverse fields including medicine, immunology, bioengineering, etc. dedicated in this field made unremittent efforts for human health. With the rapid development of medical and bioengineering technology, novel theranostic probes, which can recognize a specific antigen on the cancer cell or are associated with the tumor microenvironment, are not limited to antibodies but include some small-molecule ligands. In this chapter, we would also give some introduction of radionuclide-labeled non-antibody imaging and therapy, while the major focus will be on traditional RII and RIT.

References

  1. 1.
    Lachmann PJ (1984) Tumour immunology: a review. J R Soc Med 77:1023–1029PubMedPubMedCentralGoogle Scholar
  2. 2.
    Pressman D, Keighley G (1948) The zone of activity of antibodies as determined by the use of radioactive tracers; the zone of activity of nephrotoxic antikidney serum. J Immunol 59:141–146PubMedGoogle Scholar
  3. 3.
    Hust M, Jostock T, Menzel C et al (2007) Single chain Fab (scFab) fragment. BMC Biotechnol 7:14PubMedPubMedCentralGoogle Scholar
  4. 4.
    Chakravarty R, Goel S, Cai W (2014) Nanobody: the “magic bullet” for molecular imaging? Theranostics 4:386–398PubMedPubMedCentralGoogle Scholar
  5. 5.
    Goldenberg DM, Preston DF, Primus FJ et al (1974) Photoscan localization of GW-39 tumors in hamsters using radiolabeled anticarcinoembryonic antigen immunoglobulin G. Cancer Res 34:1–9PubMedGoogle Scholar
  6. 6.
    Goldenberg DM, Deland F, Kim E et al (1978) Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med 298:1384–1386PubMedGoogle Scholar
  7. 7.
    Song IH, Noh Y, Kwon J et al (2017) Immuno-PET imaging based radioimmunotherapy in head and neck squamous cell carcinoma model. Oncotarget 8:92090–92105PubMedPubMedCentralGoogle Scholar
  8. 8.
    Colombo I, Overchuk M, Chen J et al (2017) Molecular imaging in drug development: update and challenges for radiolabeled antibodies and nanotechnology. Methods 130:23–35PubMedGoogle Scholar
  9. 9.
    Chatterjee S, Lesniak WG, Gabrielson M et al (2016) A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget 7:10215–10227PubMedPubMedCentralGoogle Scholar
  10. 10.
    Ledermann JA, Canevari S, Thigpen T (2015) Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Ann Oncol 26:2034–2043PubMedGoogle Scholar
  11. 11.
    Chen S, Yu L, Jiang C et al (2005) Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol 23:1538–1547PubMedGoogle Scholar
  12. 12.
    Kraeber-Bodere F, Rousseau C, Bodet-Milin C et al (2015) Tumor immunotargeting using innovative radionuclides. Int J Mol Sci 16:3932–3954PubMedPubMedCentralGoogle Scholar
  13. 13.
    Mottaghy FM (2014) Can radioimmunotherapy promote from an orphan drug to daily clinical practice? Eur J Nucl Med Mol Imaging 41:865–866PubMedGoogle Scholar
  14. 14.
    Israeli RS, Powell CT, Fair WR et al (1993) Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 53:227–230PubMedGoogle Scholar
  15. 15.
    Cho SY, Gage KL, Mease RC et al (2012) Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med 53:1883–1891PubMedPubMedCentralGoogle Scholar
  16. 16.
    Weineisen M, Schottelius M, Simecek J et al (2015) 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med 56:1169–1176PubMedGoogle Scholar
  17. 17.
    Mease RC, Dusich CL, Foss CA et al (2008) N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res 14:3036–3043PubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen Y, Pullambhatla M, Foss CA et al (2011) 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pen tanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res 17:7645–7653PubMedPubMedCentralGoogle Scholar
  19. 19.
    Szabo Z, Mena E, Rowe SP et al (2015) Initial evaluation of [(18)F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol 17:565–574PubMedPubMedCentralGoogle Scholar
  20. 20.
    Giesel FL, Hadaschik B, Cardinale J et al (2017) F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging 44:678–688PubMedGoogle Scholar
  21. 21.
    Robu S, Schottelius M, Eiber M et al (2017) Preclinical evaluation and first patient application of 99mTc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J Nucl Med 58:235–242PubMedGoogle Scholar
  22. 22.
    Maurer T, Gschwend JE, Rauscher I et al (2016) Diagnostic efficacy of (68)gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol 195:1436–1443PubMedGoogle Scholar
  23. 23.
    Pyka T, Okamoto S, Dahlbender M et al (2016) Comparison of bone scintigraphy and (68)Ga-PSMA PET for skeletal staging in prostate cancer. Eur J Nucl Med Mol Imaging 43:2114–2121PubMedGoogle Scholar
  24. 24.
    Afshar-Oromieh A, Holland-Letz T, Giesel FL et al (2017) Diagnostic performance of (68)Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging 44:1258–1268PubMedPubMedCentralGoogle Scholar
  25. 25.
    Von Eyben FE, Picchio M, Von Eyben R et al (2018) (68)Ga-labeled prostate-specific membrane antigen ligand positron emission tomography/computed tomography for prostate cancer: a systematic review and meta-analysis. Eur Urol Focus 4(5):686–693Google Scholar
  26. 26.
    Rowe SP, Gorin MA, Salas Fragomeni RA et al (2017) Clinical experience with (18)F-labeled small molecule inhibitors of prostate-specific membrane antigen. PET Clin 12:235–241PubMedGoogle Scholar
  27. 27.
    Rowe SP, Macura KJ, Ciarallo A et al (2016) Comparison of prostate-specific membrane antigen-based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naive and castration-resistant metastatic prostate cancer. J Nucl Med 57:46–53PubMedGoogle Scholar
  28. 28.
    Rowe SP, Macura KJ, Mena E et al (2016) PSMA-based [(18)F]DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol Imaging Biol 18:411–419PubMedPubMedCentralGoogle Scholar
  29. 29.
    Giesel FL, Kesch C, Yun M et al (2017) 18F-PSMA-1007 PET/CT detects micrometastases in a patient with biochemically recurrent prostate cancer. Clin Genitourin Cancer 15:e497–e499PubMedGoogle Scholar
  30. 30.
    Freitag MT, Kesch C, Cardinale J et al (2018) Simultaneous whole-body (18)F-PSMA-1007-PET/MRI with integrated high-resolution multiparametric imaging of the prostatic fossa for comprehensive oncological staging of patients with prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging 45:340–347PubMedGoogle Scholar
  31. 31.
    Giesel FL, Will L, Kesch C et al (2018) Biochemical recurrence of prostate cancer: initial results with [(18)F]PSMA-1007 PET/CT. J Nucl Med 59:632–635PubMedGoogle Scholar
  32. 32.
    Nimmagadda S, Pullambhatla M, Chen Y et al (2018) Low level endogenous prostate-specific membrane antigen (PSMA) expression in non-prostatic tumor xenografts is sufficient for in vivo tumor targeting and imaging. J Nucl Med 59(3):486–493PubMedPubMedCentralGoogle Scholar
  33. 33.
    Rowe SP, Gorin MA, Hammers HJ et al (2015) Imaging of metastatic clear cell renal cell carcinoma with PSMA-targeted (1)(8)F-DCFPyL PET/CT. Ann Nucl Med 29:877–882PubMedPubMedCentralGoogle Scholar
  34. 34.
    Rhee H, Blazak J, Tham CM et al (2016) Pilot study: use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour. EJNMMI Res 6:76PubMedPubMedCentralGoogle Scholar
  35. 35.
    Sheikhbahaei S, Afshar-Oromieh A, Eiber M et al (2017) Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging. Eur J Nucl Med Mol Imaging 44:2117–2136PubMedGoogle Scholar
  36. 36.
    Rowe SP, Pienta KJ, Pomper MG et al (2018) Proposal of a structured reporting system for prostate-specific membrane antigen (PSMA)-targeted PET imaging: PSMA-RADS version 1.0. J Nucl Med 59(3):479–485PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tagawa ST, Milowsky MI, Morris M et al (2013) Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res 19:5182–5191PubMedPubMedCentralGoogle Scholar
  38. 38.
    Vallabhajosula S, Nikolopoulou A, Jhanwar YS et al (2016) Radioimmunotherapy of metastatic prostate cancer with (1)(7)(7)lu-DOTAhuJ591 anti prostate specific membrane antigen specific monoclonal antibody. Curr Radiopharm 9:44–53PubMedGoogle Scholar
  39. 39.
    Zechmann CM, Afshar-Oromieh A, Armor T et al (2014) Radiation dosimetry and first therapy results with a (124)I/ (131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging 41:1280–1292PubMedPubMedCentralGoogle Scholar
  40. 40.
    Rahbar K, Ahmadzadehfar H, Kratochwil C et al (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58:85–90PubMedGoogle Scholar
  41. 41.
    Baum RP, Kulkarni HR, Schuchardt C et al (2016) 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med 57:1006–1013PubMedGoogle Scholar
  42. 42.
    Kratochwil C, Schmidt K, Afshar-Oromieh A et al (2018) Targeted alpha therapy of mCRPC: dosimetry estimate of (213)bismuth-PSMA-617. Eur J Nucl Med Mol Imaging 45:31–37PubMedGoogle Scholar
  43. 43.
    Kratochwil C, Bruchertseifer F, Rathke H et al (2017) Targeted alpha-therapy of metastatic castration-resistant prostate cancer with (225)ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med 58:1624–1631PubMedGoogle Scholar
  44. 44.
    Sathekge M, Knoesen O, Meckel M et al (2017) (213)Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 44:1099–1100PubMedPubMedCentralGoogle Scholar
  45. 45.
    Maurer T, Weirich G, Schottelius M et al (2015) Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer. Eur Urol 68:530–534PubMedGoogle Scholar
  46. 46.
    Rauscher I, Duwel C, Wirtz M et al (2017) Value of (111)In-prostate-specific membrane antigen (PSMA)-radioguided surgery for salvage lymphadenectomy in recurrent prostate cancer: correlation with histopathology and clinical follow-up. BJU Int 120:40–47PubMedGoogle Scholar
  47. 47.
    Neuman BP, Eifler JB, Castanares M et al (2015) Real-time, near-infrared fluorescence imaging with an optimized dye/light source/camera combination for surgical guidance of prostate cancer. Clin Cancer Res 21:771–780PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Yafu Yin
    • 1
  • Steven Rowe
    • 2
  1. 1.Department of Nuclear MedicineXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
  2. 2.The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations