Advertisement

Receptor-Targeted Radionuclide Imaging (RTRI) and Peptide Receptor Radionuclide Therapy (PRRT)

  • Weidong Yang
  • Cheng Wang
  • Gang Huang
Chapter

Abstract

Increased amount of folate is needed for cells under rapid proliferation such as cancer cells. Folate receptors (FRs) are shown to be overexpressed on the surface of tumor cells under low folate conditions and viewed as tumor-associated antigen. The FRs could specifically bind folate and folate conjugates with very high affinity and then transport these molecules into cells through an endocytic mechanism. The fact that various tumors are folate dependent has been applied to improve tumor diagnosis and treatment, developing anti-FRa antibodies, high-affinity antifolates, folate-conjugated drugs and toxins, and folate-based imaging agents.

References

  1. 1.
    Bailey LB, Gregory JF (1999) Folate metabolism and requirements. J Nutr 129(4):779–782CrossRefGoogle Scholar
  2. 2.
    Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71(1–2):121–138CrossRefGoogle Scholar
  3. 3.
    Sudimack J, Lee RJ (2002) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41(2):147–162CrossRefGoogle Scholar
  4. 4.
    Ke CY, Mathias CJ, Green MA (2004) Folate-receptor-targeted radionuclide imaging agents. Adv Drug Deliv Rev 56(8):1143–1160CrossRefGoogle Scholar
  5. 5.
    Müller C (2013) Folate-based radiotracers for PET imaging--update and perspectives. Molecules 18(5):5005–5031CrossRefGoogle Scholar
  6. 6.
    Müller C, Schibli R (2011) Folic acid conjugates for nuclear imaging of folate receptor-positive cancer. J Nucl Med 52(1):1–4CrossRefGoogle Scholar
  7. 7.
    Mathias CJ, Lewis MR, Reichert DE et al (2003) Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl Med Biol 30(7):725–731CrossRefGoogle Scholar
  8. 8.
    Wang S, Luo J, Lantrip DA et al (1997) Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug Chem 8(5):673–679CrossRefGoogle Scholar
  9. 9.
    Mathias CJ, Hubers D, And PSL et al (2000) Synthesis of [99mTc]DTPA-Folate and its evaluation as a Folate-receptor-targeted radiopharmaceutical. Bioconjug Chem 11(2):253–257CrossRefGoogle Scholar
  10. 10.
    Trump DP, Mathias CJ, Yang Z et al (2002) Synthesis and evaluation of 99mTc(CO)3-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nucl Med Biol 29(5):569–573CrossRefGoogle Scholar
  11. 11.
    Leamon CP, Parker MA, Vlahov IR et al (2002) Synthesis and biological evaluation of EC20: a new folate-derived, 99mTc-based radiopharmaceutical. Bioconjug Chem 13(6):1200–1210CrossRefGoogle Scholar
  12. 12.
    Guo W, Hinkle GH, Lee RJ (1999) 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 40(9):1563–1569PubMedGoogle Scholar
  13. 13.
    Guo Z, Gao M, Song M et al (2016) Synthesis and evaluation of 99mTc-Labeled Dimeric folic acid for FR-targeting. Molecules 21(6):817CrossRefGoogle Scholar
  14. 14.
    Fani M, Wang X, Nicolas G et al (2011) Development of new folate-based PET radiotracers: preclinical evaluation of 68Ga-DOTA-folate conjugates. Eur J Nucl Med Mol Imaging 38(1):108–119CrossRefGoogle Scholar
  15. 15.
    Müller C, Vlahov IR, Santhapuram HK et al (2011) Tumor targeting using 67Ga-DOTA-Bz-folate--investigations of methods to improve the tissue distribution of radiofolates. Nucl Med Biol 38(5):715–723CrossRefGoogle Scholar
  16. 16.
    Müller C, Zhernosekov K, Köster U et al (2012) A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β- radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med 53(12):1951–1959CrossRefGoogle Scholar
  17. 17.
    Fani M, Tamma ML, Nicolas GP et al (2012) In vivo imaging of Folate receptor positive tumor Xenografts using novel 68Ga-NODAGA-Folate conjugates. Mol Pharm 9(5):1136–1145CrossRefGoogle Scholar
  18. 18.
    Chen Q, Meng X, Mcquade P et al (2017) Folate-PEG-NOTA-Al18F, a new folate based radiotracer for PET imaging of folate receptor-positive tumors. Mol Pharm 14:4353–4361CrossRefGoogle Scholar
  19. 19.
    Chen Q, Meng X, Mcquade P et al (2016) Synthesis and preclinical evaluation of Folate-NOTA-Al18F for PET imaging of Folate-receptor-positive Tumors. Mol Pharm 13(5):1520–1527CrossRefGoogle Scholar
  20. 20.
    Bettio A, Honer M, Müller C et al (2006) Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. J Nucl Med 47(7):1153–1160PubMedGoogle Scholar
  21. 21.
    Al Jammaz I, Al-Otaibi B, Okarvi S et al (2010) Novel synthesis of [18F]-fluorobenzene and pyridinecarbohydrazide-folates as potential PET radiopharmaceuticals. J Label Compd Radiopharm 49(2):125–137CrossRefGoogle Scholar
  22. 22.
    Al Jammaz I, Al-Otaibi B, Okarvi S (2011) Rapid synthesis and in vitro and in vivo evaluation of folic acid derivatives labeled with fluorine-18 for PET imaging of folate receptor-positive tumors. Nucl Med Bio 38(7):1019–1028CrossRefGoogle Scholar
  23. 23.
    Al Jammaz I, Al-Otaibi B, Amer S et al (2012) Novel synthesis and preclinical evaluation of folic acid derivatives labeled with [18F]FDG for PET imaging of folate receptor-positive tumors. Nucl Med Biol 39(6):864–870CrossRefGoogle Scholar
  24. 24.
    Fischer CR, Müller C, Reber J et al (2012) [18F]fluoro-deoxy-glucose folate: a novel PET radiotracer with improved in vivo properties for folate receptor targeting. Bioconjug Chem 23(4):805–813CrossRefGoogle Scholar
  25. 25.
    Ross TL, Honer M, Lam PYH et al (2008) Fluorine-18 click Radiosynthesis and preclinical evaluation of a new 18F-Labeled folic acid derivative. Bioconjug Chem 19(12):2462–2470CrossRefGoogle Scholar
  26. 26.
    Aljammaz I, Al-Otaibi B, Al-Rumayan F et al (2014) Development and preclinical evaluation of new 124I-folate conjugates for PET imaging of folate receptor-positive tumors. Nucl Med Biol 41(6):457–463CrossRefGoogle Scholar
  27. 27.
    Ross TL, Honer M, Müller C et al (2010) A new 18F-labeled folic acid derivative with improved properties for the PET imaging of folate receptor-positive tumors. J Nucl Med 51(51):1756–1762CrossRefGoogle Scholar
  28. 28.
    Betzel T, Müller C, Groehn V et al (2013) Radiosynthesis and preclinical evaluation of 3′-Aza-2′-[18F]fluorofolic acid: a novel PET radiotracer for Folate receptor targeting. Bioconjug Chem 24(2):205–214CrossRefGoogle Scholar
  29. 29.
    Koch BD, Schonbrunn A (1984) The somatostatin receptor is directly coupled to adenylate cyclase in GH4C1 pituitary cell membranes. Endocrinology 114(5):1784–1790CrossRefGoogle Scholar
  30. 30.
    Vanetti M et al (1992) Cloning and expression of a novel mouse somatostatin receptor (SSTR2B). FEBS Lett 311(3):290–294CrossRefGoogle Scholar
  31. 31.
    Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198CrossRefGoogle Scholar
  32. 32.
    Pawlikowski M (2007) Somatostatin analogs in diagnostics and therapy. Landes Bioscience, AustinCrossRefGoogle Scholar
  33. 33.
    Lamberts SWJ, Krenning EP, Reubi JC (1991) The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev 12:450–482CrossRefGoogle Scholar
  34. 34.
    Balon HR, Brown TL, Goldsmith SJ et al (2011) The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J Nucl Med Technol 39(4):317–324CrossRefGoogle Scholar
  35. 35.
    Krenning EP, Bakker WH, Kooij PPM et al (1992) Somatostatin receptor scintigraphy with Indium-111-DTPA-D-Phe-1-Oman: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med 33(5):652–658PubMedGoogle Scholar
  36. 36.
    Buchmann I, Henze M, Engelbrecht S et al (2007) Comparison of 68 Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 34(10):1617–1626CrossRefGoogle Scholar
  37. 37.
    Wild D, Bomanji JB, Benkert P et al (2013) Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med 54(3):364–372CrossRefGoogle Scholar
  38. 38.
    Ambrosini V, Campana D, Tomassetti P, Fanti S (2012) 68 Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging 39:s52–s60CrossRefGoogle Scholar
  39. 39.
    Valkema R, Pauwels S, Kvols LK et al (2006) Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 36(2):147–156CrossRefGoogle Scholar
  40. 40.
    Ezziddin S, Attassi M, Yong-Hing CJ et al (2014) Predictors of long-term outcome in patients with well-differentiated gastroenteropancreatic neuroendocrine tumors after peptide receptor radionuclide therapy with 177Lu-octreotate. J Nucl Med 55(2):183–190CrossRefGoogle Scholar
  41. 41.
    de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP (2005) Combination radionuclide therapy using 177 Lu and 90 Y-labeled somatostatin analogs. J Nucl Med 46:13S–17SPubMedGoogle Scholar
  42. 42.
    Romer A, Seiler D, Marincek N et al (2014) Somatostatin-based radiopeptide therapy with [177 Lu-DOTA]-TOC versus [ 90 Y-DOTA]-TOC in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 41(2):214–222CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Weidong Yang
    • 1
  • Cheng Wang
    • 2
  • Gang Huang
    • 3
  1. 1.Department of Nuclear MedicineXijing Hospital, The Fourth Military Medical UniversityXi’anP. R. China
  2. 2.Department of Nuclear MedicineRenJi Hospital, School of Medicine, Shanghai JiaoTong UniversityShanghaiP. R. China
  3. 3.Shanghai Key Laboratory of Molecular ImagingShanghai University of Medicine and Health SciencesShanghaiP. R. China

Personalised recommendations