Molecular Imaging

  • Hubing Wu
  • DeWei Tang
  • XiaoPing Zhao
  • Gengbiao Yuan
  • Xinhui Su


The most prominent metabolic alteration in cancer is a high rate of glycolysis. Liking glucose metabolism, lipid metabolism is also pivotal for tumor proliferation, energy storage, and the generation of signaling molecules. Metabolic imaging of fatty acid can visualize the lipid metabolism of the tumor in vivo by PET/CT, which now plays an important role in the diagnosing and staging for tumors.


  1. 1.
    Kuhajda FP (2006) Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 66(12):5977–5980PubMedGoogle Scholar
  2. 2.
    Mori N, Wildes F, Takagi T, Glunde K, Bhujwalla ZM (2016) The tumor microenvironment modulates choline and lipid metabolism. Front Oncol 6:262. Scholar
  3. 3.
    Kolthammer JA, Corn DJ, Tenley N, Wu C et al (2011) PET imaging of hepatocellular carcinoma with 18F-fluoroethylcholine and 11C-choline. Eur J Nucl Med Mol Imaging 38(7):1248–1256PubMedGoogle Scholar
  4. 4.
    Umbehr MH, Müntener M, Hany T, Sulser T, Bachmann LM (2013) The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol 64(1):106–117PubMedGoogle Scholar
  5. 5.
    Evangelista L, Guttilla A, Zattoni F, Muzzio PC, Zattoni F (2013) Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol 63(6):1040–1048PubMedGoogle Scholar
  6. 6.
    Graziani T, Ceci F, Castellucci P, Polverari G et al (2016) (11)C-Choline PET/CT for restaging prostate cancer. Results from 4,426 scans in a single-centre patient series. Eur J Nucl Med Mol Imaging 43(11):1971–1979PubMedGoogle Scholar
  7. 7.
    Yamamoto Y, Nishiyama Y, Kameyama R, Okano K et al (2008) Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET. J Nucl Med 49(8):1245–1248PubMedGoogle Scholar
  8. 8.
    Mena E, Turkbey B, Mani H, Adler S et al (2012) 11C-Acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation. J Nucl Med 53(4):538–545PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ho CL, Yu SC, Yeung DW (2003) 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44(2):213–221PubMedGoogle Scholar
  10. 10.
    Park JW, Kim JH, Kim SK, Kang KW et al (2008) A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med 49(12):1912–1921PubMedGoogle Scholar
  11. 11.
    Cheung TT, Ho CL, Lo CM, Chen S et al (2013) 11C-acetate and 18F-FDG PET/CT for clinical staging and selection of patients with hepatocellular carcinoma for liver transplantation on the basis of Milan criteria: surgeon’s perspective. J Nucl Med 54(2):192–200PubMedGoogle Scholar
  12. 12.
    Washburn LC, Sun TT, Anon JB, Hayes RL (1978) Effect of structure on tumor specificity of alicyclic alpha-amino acids. Cancer Res 38:2271–2273PubMedGoogle Scholar
  13. 13.
    De Vis K, Schelstraete K, Deman J, Vermeulen FL, Sambre J, Goethals P, Van Haver D, Slegers G, Vandecasteele C, De Schryver A (1987) Clinical comparison of 11C-ACPC (aminocyclopentane carboxylic acid) and 13N-ammonia as tumour tracers. Acta Oncol 26:105–111PubMedGoogle Scholar
  14. 14.
    Ho CL, Chen S, Yeung DW, Cheng TK (2007) Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med 48(6):902–909PubMedGoogle Scholar
  15. 15.
    Prenant C, Theobald A, Haberkorn U, Bellemann ME, Weber K, Oberdorfer F (1996) Feasibility of labeled alpha-acetamido-aminoisobutyric acid as new tracer compound for kinetic labeling of neutral amino acid transport: preparation of alpha-(N-[1-11C]acetyl)- and alpha-(N-[1-14C]acetyl)-aminoisobutyric acid. Nucl Med Biol 23:359–363PubMedGoogle Scholar
  16. 16.
    Nakagawa M, Kuwabara Y, Sasaki M, Koga H, Chen T, Kaneko O, Hayashi K, Morioka T, Masuda K (2002) 11C-methionine uptake in cerebrovascular disease: a comparison with 18F-fDG PET and 99mTc-HMPAO SPECT. Ann Nucl Med 16:207–211PubMedGoogle Scholar
  17. 17.
    Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Nishikawa M, Ohata K, Torii K, Morino M, Nishio A, Hara M (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery--in malignant glioma. Ann Nucl Med 18:291–296PubMedGoogle Scholar
  18. 18.
    Minamimoto R, Saginoya T, Kondo C, Tomura N, Ito K, Matsuo Y, Matsunaga S, Shuto T, Akabane A, Miyata Y, Sakai S, Kubota K (2015) Differentiation of brain tumor recurrence from post-radiotherapy necrosis with 11C-methionine PET: visual assessment versus quantitative assessment. PLoS One 10:e0132515PubMedPubMedCentralGoogle Scholar
  19. 19.
    Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, Coenen HH, Pauleit D (2006) O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294PubMedGoogle Scholar
  20. 20.
    Lau EW, Drummond KJ, Ware RE, Drummond E, Hogg A, Ryan G, Grigg A, Callahan J, Hicks RJ (2010) Comparative PET study using F-18 FET and F-18 FDG for the evaluation of patients with suspected brain tumour. J Clin Neurosci 17:43–49PubMedGoogle Scholar
  21. 21.
    Dunet V, Rossier C, Buck A, Stupp R, Prior JO (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J Nucl Med 53:207–214PubMedGoogle Scholar
  22. 22.
    Pafundi DH, Laack NN, Youland RS, Parney IF, Lowe VJ, Giannini C, Kemp BJ, Grams MP, Morris JM, Hoover JM, Hu LS, Sarkaria JN, Brinkmann DH (2013) Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol 15:1058–1067PubMedPubMedCentralGoogle Scholar
  23. 23.
    Juhasz C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S (2014) Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging 13Google Scholar
  24. 24.
    Zhu L, Ploessl K, Zhou R, Mankoff D, Kung HF (2017) Metabolic imaging of glutamine in cancer. J Nucl Med 58:533–537PubMedPubMedCentralGoogle Scholar
  25. 25.
    Koopmans KP, Glaudemans AW (2014) Other PET tracers for neuroendocrine tumors. PET Clin 9:57–62PubMedGoogle Scholar
  26. 26.
    Toumpanakis C, Kim MK, Rinke A, Bergestuen DS, Thirlwell C, Khan MS, Salazar R, Oberg K (2014) Combination of cross-sectional and molecular imaging studies in the localization of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology 99:63–74PubMedGoogle Scholar
  27. 27.
    Huang C, McConathy J (2013) Fluorine-18 labeled amino acids for oncologic imaging with positron emission tomography. Curr Top Med Chem 13:871–891PubMedGoogle Scholar
  28. 28.
    Baek S, Choi CM, Ahn SH, Lee JW, Gong G, Ryu JS, Oh SJ, Bacher-Stier C, Fels L, Koglin N, Hultsch C, Schatz CA, Dinkelborg LM, Mittra ES, Gambhir SS, Moon DH (2012) Exploratory clinical trial of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate for imaging xC- transporter using positron emission tomography in patients with non-small cell lung or breast cancer. Clin Cancer Res 18:5427–5437PubMedGoogle Scholar
  29. 29.
    Savir-Baruch B, Zanoni L, Schuster DM (2018) Imaging of prostate cancer using fluciclovine. Urol Clin North Am 45:489–502PubMedGoogle Scholar
  30. 30.
    Picchio M, Mapelli P, Panebianco V, Castellucci P, Incerti E, Briganti A, Gandaglia G, Kirienko M, Barchetti F, Nanni C, Montorsi F, Gianolli L, Fanti S (2015) Imaging biomarkers in prostate cancer: role of PET/CT and MRI. Eur J Nucl Med Mol Imaging 42:644–655PubMedGoogle Scholar
  31. 31.
    Morita M, Higuchi T, Achmad A, Tokue A, Arisaka Y, Tsushima Y (2013) Complementary roles of tumour specific PET tracer (1)(8)F-FAMT to (1)(8)F-FDG PET/CT for the assessment of bone metastasis. Eur J Nucl Med Mol Imaging 40:1672–1681PubMedGoogle Scholar
  32. 32.
    Burger IA, Zitzmann-Kolbe S, Pruim J, Friebe M, Graham K, Stephens A, Dinkelborg L, Kowal K, Schibli R, Luurtsema G, Maas B, Horn-Tutic M, Haerle SK, Wiegers J, Schaefer NG, Hany TF, von Schulthess GK (2014) First clinical results of (D)-18F-fluoromethyltyrosine (BAY 86-9596) PET/CT in patients with non-small cell lung cancer and head and neck squamous cell carcinoma. J Nucl Med 55:1778–1785PubMedGoogle Scholar
  33. 33.
    Voet D, Voet J, Pratt C (2008) Fundamentals of biochemistry: life at the molecular level, 3rd edn. Wiley, Hoboken, NJ. ISBN 9780470129302Google Scholar
  34. 34.
    “Nucleotide metabolism”. The medical biochemistry. Accessed 20 Oct 2014Google Scholar
  35. 35.
    Ammann AJ (1985) Purine nucleotide imbalance in immunodeficiency disorders. Basic Life Sci 31:487–502PubMedGoogle Scholar
  36. 36.
    Kimura T, Takeda S, Sagiya Y, Gotoh M, Nakamura Y, Arakawa H (2003) Impaired function of p53R2 in Rrm2b-null mice causes severe renal failure through attenuation of dNTP pools. Nat Genet 34:440–445PubMedGoogle Scholar
  37. 37.
    El-Hattab AW, Scaglia F (2013) Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 10:186–198PubMedPubMedCentralGoogle Scholar
  38. 38.
    Dang CV (2012) Links between metabolism and cancer. Genes Dev 26:877–890PubMedPubMedCentralGoogle Scholar
  39. 39.
    Hartman SC, Buchanan JM (1959) Nucleic acids, purines, pyrimidines (nucleotide synthesis). Annu Rev Biochem 28:365–410PubMedGoogle Scholar
  40. 40.
    Reichard P (1988) Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 57:349–374PubMedGoogle Scholar
  41. 41.
    Nordlund P, Reichard P (2006) Ribonucleotide reductases. Annu Rev Biochem 75:681–706PubMedGoogle Scholar
  42. 42.
    Anglana M, Apiou F, Bensimon A, Debatisse M (2003) Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114:385–394PubMedGoogle Scholar
  43. 43.
    Engstrom Y, Eriksson S, Jildevik I, Skog S, Thelander L, Tribukait B (1985) Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. J Biol Chem 260:9114–9116PubMedGoogle Scholar
  44. 44.
    Hakansson P, Hofer A, Thelander L (2006) Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. J Biol Chem 281:7834–7841PubMedGoogle Scholar
  45. 45.
    Weber WA, Czernin J, Phelps ME, Herschman HR (2008) Technology insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs. Nat Clin Pract 5:44–54Google Scholar
  46. 46.
    Gayed I et al (2004) The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med 45:17–21PubMedGoogle Scholar
  47. 47.
    Evilevitch V et al (2008) Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res 14:715–720PubMedGoogle Scholar
  48. 48.
    Dose Schwarz J et al (2005) Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 46:1144–1150PubMedGoogle Scholar
  49. 49.
    Weber WA et al (2003) Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 21:2651–2657PubMedGoogle Scholar
  50. 50.
    Lordick F et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8:797–805PubMedGoogle Scholar
  51. 51.
    Peterson LM et al (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 49:367–374PubMedGoogle Scholar
  52. 52.
    Cheng Z et al (2008) Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules. J Nucl Med 49:804–813PubMedPubMedCentralGoogle Scholar
  53. 53.
    Schelhaas S et al (2017) Preclinical applications of 3′-Deoxy-3′-[18F] fluorothymidine in oncology - a systematic review. Theranostics 7(1):40–50PubMedPubMedCentralGoogle Scholar
  54. 54.
    Lee JT et al (2012) Stratification of nucleoside analog chemotherapy using 1-(2′-Deoxy-2′-18F-fluoro-β-D-arabinofuranosyl)cytosine and 1-(2′-Deoxy-2′-18F-fluoro-β-L-arabinofuranosyl)-5-methylcytosine PET. J Nucl Med 53(2):275–280PubMedPubMedCentralGoogle Scholar
  55. 55.
    Nair-Gill E et al (2010) PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice. J Clin Invest 120(6):2005–2015PubMedPubMedCentralGoogle Scholar
  56. 56.
    Ishibashi K et al (2017) PET imaging of 18F-FDG, 11C-methionine, 11C-flumazenil, and 11C-4DST in progressive multifocal leukoencephalopathy. Intern Med 56(10):1219–1223PubMedPubMedCentralGoogle Scholar
  57. 57.
    Lopci E, Grassi I, Chiti A et al (2014) PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging 4(4):365–384PubMedPubMedCentralGoogle Scholar
  58. 58.
    Urtasun RC, Parliament MB, McEwan AJ et al (1996) Measurement of hypoxia in human tumours by non-invasive spect imaging of iodoazomycin arabinoside. Br J Cancer Suppl 27:S209–S212PubMedPubMedCentralGoogle Scholar
  59. 59.
    Mees G, Dierckx R, Vangestel C et al (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36:1674–1686PubMedPubMedCentralGoogle Scholar
  60. 60.
    Cook GJ, Houston S, Barrington SF et al (1998) Technetium-99m-labeled HL91 to identify tumor hypoxia: correlation with fluorine-18-FDG. J Nucl Med 39:99–103PubMedGoogle Scholar
  61. 61.
    Li L, Yu J, Xing L et al (2006) Serial hypoxia imaging with 99mTc-HL91 SPE- CT to predict radiotherapy response in non-small cell lung cancer. Am J Clin Oncol 29(6):628–633PubMedGoogle Scholar
  62. 62.
    Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med 37:451–461PubMedGoogle Scholar
  63. 63.
    Servagi-Vernat S, Differding S, Hanin FX et al (2014) A prospective clinical study of 18 F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur J Nucl Med Mol Imaging 41(8):1544–1552PubMedGoogle Scholar
  64. 64.
    Horsman MR, Overgaard J (2016) The impact of hypoxia and its modification of the outcome of radiotherapy. J Radiat Res 57(Suppl 1):i90–i98PubMedPubMedCentralGoogle Scholar
  65. 65.
    Tamaki N, Hirata K (2016) Tumor hypoxia: a new PET imaging biomarker in clinical oncology. Int J Clin Oncol 21(4):619–625PubMedGoogle Scholar
  66. 66.
    Hendrickson K, Phillips M, Smith W et al (2011) Hypoxia imaging with [F-18] FMISO-PET in head and neck cancer: potential for guidingintensity modulated radiation therapy in overcominghypoxia-induced treatment resistance. Radiother Oncol 101:369–375PubMedPubMedCentralGoogle Scholar
  67. 67.
    Lee CT, Boss MK, Dewhirst MW (2014) Imaging tumor hypoxia to advance radiation oncology. Antioxid Redox Signal 21(2):313–337PubMedPubMedCentralGoogle Scholar
  68. 68.
    Lee NY, Mechalakos JG, Nehmeh S et al (2008) Fluorine-18-labeled fluoromisonidazole positron emission andcomputed tomography-guided intensity-modulated radiotherapyfor head and neck cancer: a feasibility study. Int J Radiat Oncol Biol Phys 70:2–13PubMedGoogle Scholar
  69. 69.
    Nehmeh SA, Lee NY, Schroder H et al (2008) Reproducibility of intratumordistribution of (18)F-fluoromisonidazole in head and neckcancer. Int J Radiat Oncol Biol Phys 70:235–242PubMedPubMedCentralGoogle Scholar
  70. 70.
    Lin Z, Mechalakos J, Nehmeh S et al (2008) The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys 70:1219–1228PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Hubing Wu
    • 1
  • DeWei Tang
    • 2
  • XiaoPing Zhao
    • 2
  • Gengbiao Yuan
    • 3
  • Xinhui Su
    • 4
  1. 1.Nanfang PET centerNanfang Hospital, Southern Medical UniversityGuangzhouP. R. China
  2. 2.Department of Nuclear MedicineRenJi Hospital, School of Medicine, Shanghai JiaoTong UniversityShanghaiP. R. China
  3. 3.Department of Nuclear MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingP. R. China
  4. 4.Department of Nuclear MedicineZhongshan Hospital Xiamen UniversityXiamenP. R. China

Personalised recommendations