Role of 18F-FDG PET/CT in Pediatric Oncology

  • Hongliang Fu
  • Suyun Chen
  • Hui Wang


PET has been recognized as a powerful imaging modality for a variety of diseases in adults, mainly cancer. PET is also emerging as an increasingly important tool in diagnosis, staging, treatment assessment, and surveillance in children and adolescents with cancer. This chapter reviews the clinical role of 18F-FDG PET/CT in pediatric oncology and its radiation safety.


  1. 1.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30PubMedGoogle Scholar
  2. 2.
    Pingping B, Chunxiao W, Kai G et al (2016) Incidence trend of malignant tumors in children in Shanghai. Chin J Epidemiol 37:106–110Google Scholar
  3. 3.
    Shammas A, Lim R, Charron M (2009) Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics 29:1467–1486PubMedGoogle Scholar
  4. 4.
    Cory DA, Cohen MD, Smith JA (1987) Thymus in the superior mediastinum simulating adenopathy: appearance on CT. Radiology 162:457–459PubMedGoogle Scholar
  5. 5.
    Goethals I, Hoste P, De Vriendt C, Smeets P, Verlooy J, Ham H (2010) Time-dependent changes in 18F-FDG activity in the thymus and bone marrow following combination chemotherapy in paediatric patients with lymphoma. Eur J Nucl Med Mol Imaging 37:462–467PubMedGoogle Scholar
  6. 6.
    Taralli S, Leccisotti L, Mattoli MV et al (2015) Physiological activity of spinal cord in children: an 18F-FDG PET-CT study. Spine (Phila Pa 1976) 40:E647–E652Google Scholar
  7. 7.
    Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30PubMedGoogle Scholar
  8. 8.
    London K, Cross S, Onikul E, Dalla-Pozza L, Howman-Giles R (2011) 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging 38:274–284PubMedGoogle Scholar
  9. 9.
    Kabickova E, Sumerauer D, Cumlivska E et al (2006) Comparison of 18F-FDG-PET and standard procedures for the pretreatment staging of children and adolescents with Hodgkin’s disease. Eur J Nucl Med Mol Imaging 33:1025–1031PubMedGoogle Scholar
  10. 10.
    Purz S, Mauz-Korholz C, Korholz D et al (2011) [18F]Fluorodeoxyglucose positron emission tomography for detection of bone marrow involvement in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol 29:3523–3528PubMedGoogle Scholar
  11. 11.
    Chen S, Wang S, He K, Ma C, Fu H, Wang H (2018) PET/CT predicts bone marrow involvement in paediatric non-Hodgkin lymphoma and may preclude the need for bone marrow biopsy in selected patients. Eur Radiol 28:2942–2950PubMedGoogle Scholar
  12. 12.
    Rosolen A, Perkins SL, Pinkerton CR et al (2015) Revised International pediatric non-Hodgkin lymphoma staging system. J Clin Oncol 33:2112–2118PubMedPubMedCentralGoogle Scholar
  13. 13.
    Furth C, Steffen IG, Amthauer H et al (2009) Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol 27:4385–4391PubMedGoogle Scholar
  14. 14.
    Sandlund JT et al (2015) International pediatric non-Hodgkin lymphoma response criteria. J Clin Oncol 33(18):2106–2111PubMedPubMedCentralGoogle Scholar
  15. 15.
    Bhojwani D, McCarville MB, Choi JK et al (2015) The role of FDG-PET/CT in the evaluation of residual disease in paediatric non-Hodgkin lymphoma. Br J Haematol 168:845–853PubMedGoogle Scholar
  16. 16.
    Byun BH, Kong CB, Lim I et al (2013) Comparison of (18)F-FDG PET/CT and (99 m)Tc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. Skeletal Radiol 42:1673–1681PubMedGoogle Scholar
  17. 17.
    Hurley C, McCarville MB, Shulkin BL et al (2016) Comparison of (18) F-FDG-PET-CT and bone scintigraphy for evaluation of osseous metastases in newly diagnosed and recurrent osteosarcoma. Pediatr Blood Cancer 63:1381–1386PubMedPubMedCentralGoogle Scholar
  18. 18.
    Volker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441PubMedGoogle Scholar
  19. 19.
    Quartuccio N, Fox J, Kuk D et al (2015) Pediatric bone sarcoma: diagnostic performance of (1)(8)F-FDG PET/CT versus conventional imaging for initial staging and follow-up. Am J Roentgenol 204:153–160Google Scholar
  20. 20.
    Sharma P, Khangembam BC, Suman KC et al (2013) Diagnostic accuracy of 18F-FDG PET/CT for detecting recurrence in patients with primary skeletal Ewing sarcoma. Eur J Nucl Med Mol Imaging 40:1036–1043PubMedGoogle Scholar
  21. 21.
    Dharmarajan KV, Wexler LH, Gavane S et al (2012) Positron emission tomography (PET) evaluation after initial chemotherapy and radiation therapy predicts local control in rhabdomyosarcoma. Int J Radiat Oncol Biol Phys 84:996–1002PubMedGoogle Scholar
  22. 22.
    Baum SH, Fruhwald M, Rahbar K, Wessling J, Schober O, Weckesser M (2011) Contribution of PET/CT to prediction of outcome in children and young adults with rhabdomyosarcoma. J Nucl Med 52:1535–1540PubMedGoogle Scholar
  23. 23.
    Salem U et al (2017) 18F-FDG PET/CT as an indicator of survival in Ewing sarcoma of bone. J Cancer 8(15):2892–2898PubMedPubMedCentralGoogle Scholar
  24. 24.
    Dong Y, Zhang X, Wang S, Chen S, Ma C (2017) 18F-FDG PET/CT is useful in initial staging, restaging for pediatric rhabdomyosarcoma. Q J Nucl Med Mol Imaging 61:438–446PubMedGoogle Scholar
  25. 25.
    Kong CB et al (2013) (1)(8)F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. Eur J Nucl Med Mol Imaging 40(5):728–736PubMedGoogle Scholar
  26. 26.
    Denecke T, Hundsdorfer P, Misch D et al (2010) Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur J Nucl Med Mol Imaging 37:1842–1853PubMedGoogle Scholar
  27. 27.
    Hawkins DS, Conrad EU III, Butrynski JE, Schuetze SM, Eary JF (2009) [F-18]-fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer 115:3519–3525PubMedPubMedCentralGoogle Scholar
  28. 28.
    Casey DL, Wexler LH, Fox JJ et al (2014) Predicting outcome in patients with rhabdomyosarcoma: role of [(18)f]fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys 90:1136–1142PubMedGoogle Scholar
  29. 29.
    Hawkins DS, Schuetze SM, Butrynski JE et al (2005) [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23:8828–8834PubMedGoogle Scholar
  30. 30.
    Raciborska A et al (2016) Response to chemotherapy estimates by FDG PET is an important prognostic factor in patients with Ewing sarcoma. Clin Transl Oncol 18(2):189–195PubMedGoogle Scholar
  31. 31.
    Papathanasiou ND, Gaze MN, Sullivan K et al (2011) 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med 52:519–525PubMedGoogle Scholar
  32. 32.
    Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL (2009) 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 50:1237–1243PubMedGoogle Scholar
  33. 33.
    Taggart DR, Han MM, Quach A et al (2009) Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol 27:5343–5349PubMedPubMedCentralGoogle Scholar
  34. 34.
    Melzer HI, Coppenrath E, Schmid I et al (2011) (1)(2)(3)I-MIBG scintigraphy/SPECT versus (1)(8)F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging 38:1648–1658PubMedGoogle Scholar
  35. 35.
    Choi YJ et al (2014) (18)F-FDG PET as a single imaging modality in pediatric neuroblastoma: comparison with abdomen CT and bone scintigraphy. Ann Nucl Med 28(4):304–313PubMedGoogle Scholar
  36. 36.
    Dhull VS et al (2015) Diagnostic value of 18F-FDG PET/CT in paediatric neuroblastoma: comparison with 131I-MIBG scintigraphy. Nucl Med Commun 36(10):1007–1013PubMedGoogle Scholar
  37. 37.
    Lee JW, Cho A, Yun M, Lee JD, Lyu CJ, Kang WJ (2015) Prognostic value of pretreatment FDG PET in pediatric neuroblastoma. Eur J Radiol 84:2633–2639PubMedGoogle Scholar
  38. 38.
    Li C, Zhang J, Chen S et al (2017) Prognostic value of metabolic indices and bone marrow uptake pattern on preoperative 18F–FDG PET/CT in pediatric patients with neuroblastoma. Eur J Nucl Med Mol Imaging 45:306–315PubMedGoogle Scholar
  39. 39.
    Smith MA, Seibel NL, Altekruse SF et al (2010) Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 28:2625–2634PubMedPubMedCentralGoogle Scholar
  40. 40.
    Shulkin BL, Mitchell DS, Ungar DR et al (1995) Neoplasms in a pediatric population: 2-[F-18]-fluoro-2-deoxy-D-glucose PET studies. Radiology 194:495–500PubMedGoogle Scholar
  41. 41.
    Moinul Hossain AK et al (2010) FDG positron emission tomography/computed tomography studies of Wilms’ tumor. Eur J Nucl Med Mol Imaging 37(7):1300–1308PubMedPubMedCentralGoogle Scholar
  42. 42.
    Begent J, Sebire NJ, Levitt G et al (2011) Pilot study of F(18)-Fluorodeoxyglucose positron emission tomography/computerised tomography in Wilms’ tumour: correlation with conventional imaging, pathology and immunohistochemistry. Eur J Cancer 47:389–396PubMedGoogle Scholar
  43. 43.
    Misch D, Steffen IG, Schonberger S et al (2008) Use of positron emission tomography for staging, preoperative response assessment and posttherapeutic evaluation in children with Wilms tumour. Eur J Nucl Med Mol Imaging 35:1642–1650PubMedGoogle Scholar
  44. 44.
    Borgwardt L, Hojgaard L, Carstensen H et al (2005) Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 23:3030–3037PubMedGoogle Scholar
  45. 45.
    Zukotynski K, Fahey F, Kocak M et al (2014) 18F-FDG PET and MR imaging associations across a spectrum of pediatric brain tumors: a report from the pediatric brain tumor consortium. J Nucl Med 55:1473–1480PubMedPubMedCentralGoogle Scholar
  46. 46.
    Kruer MC, Kaplan AM, Etzl MM Jr et al (2009) The value of positron emission tomography and proliferation index in predicting progression in low-grade astrocytomas of childhood. J Neurooncol 95:239–245PubMedGoogle Scholar
  47. 47.
    Pirotte BJ, Lubansu A, Massager N, Wikler D, Goldman S, Levivier M (2007) Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg 107:392–399PubMedGoogle Scholar
  48. 48.
    Zukotynski KA et al (2011) Evaluation of 18F-FDG PET and MRI associations in pediatric diffuse intrinsic brain stem glioma: a report from the Pediatric Brain Tumor Consortium. J Nucl Med 52(2):188–195PubMedPubMedCentralGoogle Scholar
  49. 49.
    Fulham MJ, Melisi JW, Nishimiya J, Dwyer AJ, Di Chiro G (1993) Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 189:221–225PubMedGoogle Scholar
  50. 50.
    Sunada I, Tsuyuguchi N, Hara M, Ochi H (2002) 18F-FDG and 11C-methionine PET in choroid plexus papilloma--report of three cases. Radiat Med 20:97–100PubMedGoogle Scholar
  51. 51.
    Tsuyuguchi N, Matsuoka Y, Sunada I, Matsusaka Y, Haque M (2001) Evaluation of pleomorphic xanthoastrocytoma by use of positron emission tomography with. AJNR Am J Neuroradiol 22:311–313PubMedGoogle Scholar
  52. 52.
    Preston DL, Ron E, Tokuoka S et al (2007) Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res 168:1–64PubMedGoogle Scholar
  53. 53.
    Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707PubMedPubMedCentralGoogle Scholar
  54. 54.
    Fahey FH, Treves ST, Adelstein SJ (2012) Minimizing and communicating radiation risk in pediatric nuclear medicine. J Nucl Med Technol 40(1):13–24PubMedGoogle Scholar
  55. 55.
    Chawla SC, Federman N, Zhang D et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40:681–686PubMedGoogle Scholar
  56. 56.
    Stauss J, Franzius C, Pfluger T et al (2008) Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 35:1581–1588PubMedGoogle Scholar
  57. 57.
    Alessio AM et al (2009) Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med 50(10):1570–1577PubMedGoogle Scholar
  58. 58.
    Accorsi R, Karp JS, Surti S (2010) Improved dose regimen in pediatric PET. J Nucl Med 51:293–300PubMedGoogle Scholar
  59. 59.
    Alessio AM, Sammer M, Phillips GS, Manchanda V, Mohr BC, Parisi MT (2011) Evaluation of optimal acquisition duration or injected activity for pediatric 18F-FDG PET/CT. J Nucl Med 52:1028–1034PubMedGoogle Scholar
  60. 60.
    Fahey FH, Palmer MR, Strauss KJ, Zimmerman RE, Badawi RD, Treves ST (2007) Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study. Radiology 243:96–104PubMedGoogle Scholar
  61. 61.
    Pichler BJ et al (2010) PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 51(3):333–336PubMedGoogle Scholar
  62. 62.
    Hirsch FW, Sattler B, Sorge I et al (2013) PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 43:860–875PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press 2019

Authors and Affiliations

  • Hongliang Fu
    • 1
  • Suyun Chen
    • 1
  • Hui Wang
    • 1
  1. 1.Department of Nuclear MedicineXinhua Hospital Shanghai Jiao Tong University, School of MedicineShanghaiP. R. China

Personalised recommendations