Skip to main content

ADF (Actin Depolymerizing Factor): The Breaker of the Polymer in Homeostasis

  • Chapter
  • First Online:
Actin Polymerization in Apicomplexan
  • 187 Accesses

Abstract

This chapter talks about the various isoforms of ADF that exist in different higher eukaryotes and its variation from apicomplexan ADF. We have discussed the structure, the function and the stability of the protein and the way it is regulated in different actin-mediated cellular processes to control the machinery of actin polymerization. ADF, an actin depolymerizing factor which exist in two isoforms in Plasmodium, has been well-studied in the current chapter. The structural difference of ADF from apicomplexan to its higher eukaryotic counterparts has been elucidated in this chapter. We have deduced a unique motif present in the apicomplexan ADF and have discussed about its plausible role in the regulation of actin depolymerization process. Finally, we also have briefed about the various regulators of ADF known in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Chhabra D, Nosworthy NJ, dos Remedios CG (2000) The role of ATP, ADP and divalent cations in the formation of binary and ternary complexes of actin, cofilin and DNase I. Electrophoresis 21(17):3863–3869. https://doi.org/10.1002/1522-2683(200011)21:17<3863::AID-ELPS3863>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  2. Funk JD, Bamburg JR (2007) Proteins of the actin depolymerizing factor/Cofilin family. In: Actin-monomer-binding proteins. Molecular biology intelligence unit. Springer, New York

    Google Scholar 

  3. Hayden SM, Miller PS, Brauweiler A et al (2011) NIH Public Access. J Mol Biol 9(1):649–667. https://doi.org/10.1016/j.ejcb.2008.04.001

    Article  CAS  Google Scholar 

  4. Kusano K, Abe H, Obinata T (1999) Detection of a sequence involved in actin-binding and phosphoinositide-binding in the N-terminal side of cofilin. Mol Cell Biochem 190(1–2):133–141

    Article  CAS  Google Scholar 

  5. Galkin VE, Orlova A, Kudryashov DS et al (2011) Remodeling of actin filaments by ADF /cofilin proteins. PNAS 108(51):20568–20572. https://doi.org/10.1073/pnas.1110109108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1110109108

    Article  CAS  PubMed  Google Scholar 

  6. Bowman GD, Nodelman IM, Hong Y, Chua NH, Lindberg U, Schutt CE (2000) A comparative structural analysis of the ADF/cofilin family. Proteins Struct Funct Genet 41(3):374–384. https://doi.org/10.1002/1097-0134(20001115)41:3<374::AID-PROT90>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  7. Olshina MA, Wong W, Baum J (2012) Holding back the microfilament – structural insights into actin and the actin-monomer-binding proteins of apicomplexan parasites. IUBMB Life 64(5):370–377. https://doi.org/10.1002/iub.1014

    Article  CAS  PubMed  Google Scholar 

  8. Nakano K, Kuwayama H, Kawasaki M, Numata O, Takaine M (2010) GMF is an evolutionarily developed ADF/cofilin-super family protein involved in the Arp2/3 complex-mediated organization of the actin cytoskeleton. Cytoskeleton 67(6):373–382. https://doi.org/10.1002/cm.20451

    Article  CAS  PubMed  Google Scholar 

  9. Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C (2008) Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 87(8–9):649–667. https://doi.org/10.1016/j.ejcb.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  10. Kanellos G, Zhou J, Patel H et al (2015) ADF and cofilin1 control actin stress fibers, nuclear integrity, and cell survival. Cell Rep 13(9):1949–1964. https://doi.org/10.1016/j.celrep.2015.10.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ono S, Abe H, Nagaoka R, Obinata T (1993) Colocalization of ADF and cofilin in intranuclear actin rods of cultured muscle cells. J Muscle Res Cell Motil 14(2):195–204. https://doi.org/10.1007/BF00115454

    Article  CAS  PubMed  Google Scholar 

  12. Singh BK, Sattler JM, Chatterjee M, Huttu J, Schüler H, Kursula I (2011) Crystal structures explain functional differences in the two actin depolymerization factors of the malaria parasite. J Biol Chem 286(32):28256–28264. https://doi.org/10.1074/jbc.M111.211730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Madden T (2002) The BLAST sequence analysis tool. NCBI Handb [Internet] 2002:1–18

    Google Scholar 

  14. Hayden SM, Miller PS, Brauweiler A, Bamburg JR (1993) Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry 32(38):9994–10004. https://doi.org/10.1021/bi00089a015

    Article  CAS  PubMed  Google Scholar 

  15. Iida K, Yahara I (1999) Cooperation of two actin-binding proteins, cofilin and Aip1, in Saccharomyces cerevisiae. Genes Cells 4(1):21–32

    Article  CAS  Google Scholar 

  16. Kardos R, Pozsonyi K, Nevalainen E, Lappalainen P, Nyitrai M, Hild G (2009) The effects of ADF/cofilin and profilin on the conformation of the ATP-binding cleft of monomeric actin. Biophys J 96(6):2335–2343. https://doi.org/10.1016/j.bpj.2008.12.3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kudryashov DS, Galkin VE, Orlova A, Phan M, Egelman EH, Reisler E (2006) Cofilin cross-bridges adjacent actin protomers and replaces part of the longitudinal F-actin interface. J Mol Biol 358(3):785–797. https://doi.org/10.1016/j.jmb.2006.02.029

    Article  CAS  PubMed  Google Scholar 

  18. Maciver SK, Hussey PJ (2002) Protein family review. The ADF/cofilin family: actin-remodeling proteins. Figure 1. Genome Biol 3:1–12

    Article  Google Scholar 

  19. Yehl J, Kudryashova E, Reisler E, Kudryashov D, Polenova T (2017) Structural analysis of human cofilin 2/filamentous actin assemblies: atomic-resolution insights from magic angle spinning NMR spectroscopy. Sci Rep 7(March):44506. https://doi.org/10.1038/srep44506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hatanaka H, Ogura K, Moriyama K, Ichikawa S, Yahara I, Inagaki F (1996) Tertiary structure of destrin and structural similarity between two actin-regulating protein families. Cell 85(7):1047–1055. https://doi.org/10.1016/S0092-8674(00)81305-7

    Article  CAS  PubMed  Google Scholar 

  21. Hosoda A, Sato N, Nagaoka R, Abe H, Obinata T (2007) Activity of cofilin can be regulated by a mechanism other than phosphorylation/dephosphorylation in muscle cells in culture. J Muscle Res Cell Motil 28(2–3):183–194. https://doi.org/10.1007/s10974-007-9117-6

    Article  CAS  PubMed  Google Scholar 

  22. Bonet C, Ternent D, Maciver SK, Mozo-villarias A (2000) Rapid formation and high diffusibility of actin ± cofilin cofilaments at low pH. Genes Dev 3384:3378–3384

    Google Scholar 

  23. Carlier MF, Pantaloni D (1997) Control of actin dynamics in cell motility. J Mol Biol 269(4):459–467. https://doi.org/10.1006/jmbi.1997.1062

    Article  CAS  PubMed  Google Scholar 

  24. Dai S, Sarmiere PD, Wiggan O, Bamburg JR, Zhou D (2004) Efficient Salmonella entry requires activity cycles of host ADF and cofilin. Cell Microbiol 6(5):459–471. https://doi.org/10.1111/j.1462-5822.2004.00375.x

    Article  CAS  PubMed  Google Scholar 

  25. Pope BJ, Gonsior SM, Yeoh S, McGough A, Weeds AG (2000) Uncoupling actin filament fragmentation by cofilin from increased subunit turnover. J Mol Biol 298(4):649–661. https://doi.org/10.1006/jmbi.2000.3688

    Article  CAS  PubMed  Google Scholar 

  26. Yeoh S, Pope B, Mannherz HG, Weeds A (2002) Determining the differences in actin binding by human ADF and cofilin. J Mol Biol 315(4):911–925. https://doi.org/10.1006/jmbi.2001.5280

    Article  CAS  PubMed  Google Scholar 

  27. Bamburg JR, Mcgough A (1999) Putting a new twist on actin : ADF/cofilins modulate actin dynamics. Cell 9(September):364–370

    CAS  Google Scholar 

  28. Moriyama K (1999) Two activities of cofilin, severing and accelerating directional depolymerization of actin filaments, are affected differentially by mutations around the actin-binding helix. EMBO J 18(23):6752–6761. https://doi.org/10.1093/emboj/18.23.6752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De La Cruz EM, Sept D (2010) The kinetics of cooperative cofilin binding reveals two states of the cofilin-actin filament. Biophys J 98(9):1893–1901. https://doi.org/10.1016/j.bpj.2010.01.023

    Article  CAS  Google Scholar 

  30. De La Cruz EM (2005) Cofilin binding to muscle and non-muscle actin filaments: isoform-dependent cooperative interactions. J Mol Biol 346(2):557–564. https://doi.org/10.1016/j.jmb.2004.11.065

    Article  CAS  Google Scholar 

  31. De La Cruz EM (2009) How cofilin severs an actin filament. Biophys Rev 1(2):51–59. https://doi.org/10.1007/s12551-009-0008-5

    Article  CAS  Google Scholar 

  32. Cao W, Goodarzi JP, De La Cruz EM (2006) Energetics and kinetics of cooperative cofilin-actin filament interactions. J Mol Biol 361(2):257–267. https://doi.org/10.1016/j.jmb.2006.06.019

    Article  CAS  PubMed  Google Scholar 

  33. Shishkin S, Eremina L, Pashintseva N, Kovalev L, Kovaleva M (2017) Cofilin-1 and other ADF/cofilin superfamily members in human malignant cells. Int J Mol Sci 18(1):1–27. https://doi.org/10.3390/ijms18010010

    Article  CAS  Google Scholar 

  34. Blondin L, Sapountzi V, Maciver SK, Renoult C, Benyamin Y, Roustan C (2001) The second adf/cofilin actin-binding site exists in f-actin, the cofilin-g-actin complex, but not in g-actin. Eur J Biochem 268(24):6426–6434. https://doi.org/10.1046/j.0014-2956.2001.02592.x

    Article  CAS  PubMed  Google Scholar 

  35. Bobkov AA, Muhlrad A, Pavlov DA, Kokabi K, Yilmaz A, Reisler E (2006) Cooperative effects of cofilin (ADF) on actin structure suggest allosteric mechanism of cofilin function. J Mol Biol 356(2):325–334. https://doi.org/10.1016/j.jmb.2005.11.072

    Article  CAS  PubMed  Google Scholar 

  36. Grintsevich EE, Benchaar SA, Warshaviak D et al (2008) Mapping the cofilin binding site on yeast G-actin by chemical cross-linking. J Mol Biol 377(2):395–409. https://doi.org/10.1016/j.jmb.2007.12.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Galkin VE (2003) ADF/cofilin use an intrinsic mode of F-actin instability to disrupt actin filaments. J Cell Biol 163(5):1057–1066. https://doi.org/10.1083/jcb.200308144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muhlrad A, Pavlov D, Peyser YM, Reisler E (2006) Inorganic phosphate regulates the binding of cofilin to actin filaments. FEBS J 273(7):1488–1496. https://doi.org/10.1111/j.1742-4658.2006.05169.x

    Article  CAS  PubMed  Google Scholar 

  39. McGough A, Pope B, Chiu W, Weeds A (1997) Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol 138(4):771–781. https://doi.org/10.1083/jcb.138.4.771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Galkin VE, Orlova A, Lukoyanova N, Wriggers W, Egelman EH (2001) Actin depolymerizing factor stabilizes an existing state of F-actin and can change the tilt of F-actin subunits. J Cell Biol 153(1):75–86

    Article  CAS  Google Scholar 

  41. Bobkov AA, Muhlrad A, Shvetsov A et al (2004) Cofilin (ADF) affects lateral contacts in F-actin. J Mol Biol 337(1):93–104. https://doi.org/10.1016/j.jmb.2004.01.014

    Article  CAS  PubMed  Google Scholar 

  42. Prochniewicz E, Janson N, Thomas DD, De La Cruz EM (2005) Cofilin increases the torsional flexibility and dynamics of actin filaments. J Mol Biol 353(5):990–1000. https://doi.org/10.1016/j.jmb.2005.09.021

    Article  CAS  PubMed  Google Scholar 

  43. McCullough BR, Grintsevich EE, Chen CK et al (2011) Cofilin-linked changes in actin filament flexibility promote severing. Biophys J 101(1):151–159. https://doi.org/10.1016/j.bpj.2011.05.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McGough A, Chiu W (1999) ADF/cofilin weakens lateral contacts in the actin filament. J Mol Biol 291(3):513–519. https://doi.org/10.1006/jmbi.1999.2968

    Article  CAS  PubMed  Google Scholar 

  45. Muhlrad A, Kudryashov D, Michael Peyser Y, Bobkov AA, Almo SC, Reisler E (2004) Cofilin induced conformational changes in F-actin expose subdomain 2 to proteolysis. J Mol Biol 342(5):1559–1567. https://doi.org/10.1016/j.jmb.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  46. Wioland H, Guichard B, Senju Y et al (2017) ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends. Curr Biol:1956–1967. https://doi.org/10.1016/j.cub.2017.05.048

  47. Allen ML, Dobrowolski JM, Muller H, Sibley LD, Mansour TE (1997) Cloning and characterization of actin depolymerizing factor from Toxoplasma gondii1Note: the nucleic acid sequence in this paper has been submitted to GenBank™ under Accession Number U62146.1. Mol Biochem Parasitol 88(1–2):43–52. https://doi.org/10.1016/S0166-6851(97)00069-8

    Article  CAS  PubMed  Google Scholar 

  48. Fedorov AA, Lappalainen P, Fedorov EV, Drubin DG, Almo SC (1997) Structure determination of yeast cofilin. Nat Struct Biol 4(5):366–369. https://doi.org/10.1038/nsb0597-366

    Article  CAS  PubMed  Google Scholar 

  49. Paavilainen VO, Merckel MC, Falck S et al (2002) Structural conservation between the actin monomer-binding sites of twinfilin and actin-depolymerizing factor (ADF)/cofilin. J Biol Chem 277(45):43089–43095. https://doi.org/10.1074/jbc.M208225200

    Article  CAS  PubMed  Google Scholar 

  50. Yadav R, Pathak PP, Shukla VK et al (2011) Solution structure and dynamics of ADF from Toxoplasma gondii. J Struct Biol 176(1):97–111. https://doi.org/10.1016/j.jsb.2011.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mannherz HG, Ballweber E, Galla M et al (2007) Mapping the ADF/cofilin binding site on monomeric actin by competitive cross-linking and peptide array: evidence for a second binding site on monomeric actin. J Mol Biol 366(3):745–755. https://doi.org/10.1016/j.jmb.2006.11.100

    Article  CAS  PubMed  Google Scholar 

  52. Dominguez R (2006) A common binding site for actin-binding proteins on the actin surface. In: Madame Curie Bioscience Database [Internet]. Landes Bioscience, Austin, pp 2000–2013

    Google Scholar 

  53. Pathak PP, Pulavarti SVSRK, Jain A, Sahasrabuddhe AA, Gupta CM, Arora A (2010) Solution structure and dynamics of ADF/cofilin from Leishmania donovani. J Struct Biol 172(3):219–224. https://doi.org/10.1016/j.jsb.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  54. Kamal JKA, Benchaar SA, Takamoto K, Reisler E, Chance MR (2007) Three-dimensional structure of cofilin bound to monomeric actin derived by structural mass spectrometry data. Proc Natl Acad Sci U S A 104(19):7910–7915. https://doi.org/10.1073/pnas.0611283104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sigrist CJA, De Castro E, Langendijk-Genevaux PS, Le Saux V, Bairoch A, Hulo N (2005) ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics 21(21):4060–4066. https://doi.org/10.1093/bioinformatics/bti614

    Article  CAS  Google Scholar 

  56. Lappalainen P, Fedorov EV, Fedorov AA, Almo SC, Drubin DG (1997) Essential functions and actin-binding surfaces of yeast cofilin revealed by systematic mutagenesis. EMBO J 16(18):5520–5530. https://doi.org/10.1093/emboj/16.18.5520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wong DY, Sept D (2011) The interaction of cofilin with the actin filament. J Mol Biol 413(1):97–105. https://doi.org/10.1016/j.jmb.2011.08.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mehta S, Sibley LD (2010) Toxoplasma gondii actin depolymerizing factor acts primarily to sequester G-actin. J Biol Chem 285(9):6835–6847. https://doi.org/10.1074/jbc.M109.068155

    Article  CAS  PubMed  Google Scholar 

  59. McCullough BR, Blanchoin L, Martiel JL, De La Cruz EM (2008) Cofilin increases the bending flexibility of actin filaments: implications for severing and cell mechanics. J Mol Biol 381(3):550–558. https://doi.org/10.1016/j.jmb.2008.05.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wong W, Skau CT, Marapana DS et al (2011) Minimal requirements for actin filament disassembly revealed by structural analysis of malaria parasite actin-depolymerizing factor 1. Proc Natl Acad Sci U S A 108(24):9869–9874. https://doi.org/10.1073/pnas.1018927108

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bamburg JR (2011) Listeria monocytogenes cell invasion: a new role for cofilin in co-ordinating actin dynamics and membrane lipids. Mol Microbiol 81(4):851–854. https://doi.org/10.1111/j.1365-2958.2011.07759.x

    Article  CAS  PubMed  Google Scholar 

  62. Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304(5671):743–746. https://doi.org/10.1126/science.1094561

    Article  CAS  PubMed  Google Scholar 

  63. Blanchoin L, Robinson RC, Choe S, Pollard TD (2000) Phosphorylation of Acanthamoeba actophorin (ADF/cofilin) blocks interaction with actin without a change in atomic structure. J Mol Biol 295(2):203–211. https://doi.org/10.1006/jmbi.1999.3336

    Article  CAS  PubMed  Google Scholar 

  64. Delorme V, Machacek M, DerMardirossian C et al (2007) Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing Lamellipodium and lamella actin networks. Dev Cell 13(5):646–662. https://doi.org/10.1016/j.devcel.2007.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ambach A, Saunus J, Konstandin M, Wesselborg S, Meuer SC, Samstag Y (2000) The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol 30(12):3422–3431. https://doi.org/10.1002/1521-4141(2000012)30:12<3422::AID-IMMU3422>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  66. Gorbatyuk VY, Nosworthy NJ, Robson SA et al (2006) Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction. Mol Cell 24(4):511–522. https://doi.org/10.1016/j.molcel.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  67. Hawkins M, Pope B, Maciver SK, Weeds AG (1993) Human actin depolymerizing factor mediates a pH-sensitive destruction of actin filaments. Biochemistry 32(38):9985–9993. https://doi.org/10.1021/bi00089a014

    Article  CAS  PubMed  Google Scholar 

  68. Yonezawa N, Nishida E, Sakai H (1985) pH control of actin polymerization by cofilin. J Biol Chem 260(27):14410–14412

    CAS  PubMed  Google Scholar 

  69. Carlier MF, Laurent V, Santolini J et al (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136(6):1307–1322. https://doi.org/10.1083/jcb.136.6.1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gungabissoon RA, Jiang C-J, Drøbak BK, Maciver SK, Hussey PJ (1998) Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J 16(6):689–696. https://doi.org/10.1046/j.1365-313x.1998.00339.x

    Article  CAS  Google Scholar 

  71. Kazuko I, Kenji M, Seiji M, Hiroshi K, Eisuke N, Ichiro Y (1993) Isolation of a yeast essential gene, COF1, that encodes a homologue of mammalian cofilin, a low-Mr actin-binding and depolymerizing protein. Gene 124(1):115–120. https://doi.org/10.1016/0378-1119(93)90770-4

    Article  Google Scholar 

  72. Mun JH, Yu HJ, Lee HS et al (2000) Two closely related cDNAs encoding actin-depolymerizing factors of petunia are mainly expressed in vegetative tissues. Gene 257(2):167–176. https://doi.org/10.1016/S0378-1119(00)00412-1

    Article  CAS  PubMed  Google Scholar 

  73. Danyluk J, Carpentier E, Sarhan F (1996) Identification and characterization of a low temperature regulated gene encoding an actin-binding protein from wheat. FEBS Lett 389(3):324–327

    Article  CAS  Google Scholar 

  74. Bamburg JR, Bernstein BW (2010) Roles of ADF/cofilin in actin polymerization and beyond. F1000 Biol Rep 2(August):62. https://doi.org/10.3410/B2-62

    Article  PubMed  PubMed Central  Google Scholar 

  75. Andrianantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 24(1):13–23. https://doi.org/10.1016/j.molcel.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  76. Arora A, Pathak PP, Pulavarti SVSRK, Jain A, Sahasrabuddhe AA, Gupta CM (2009) NMR assignment of actin depolymerizing and dynamics regulatory protein from Leishmania donovani. Biomol NMR Assign 3(2):265–267. https://doi.org/10.1007/s12104-009-9190-4

    Article  CAS  PubMed  Google Scholar 

  77. Pope BJ, Zierler-Gould KM, Kühne R, Weeds AG, Ball LJ (2004) Solution structure of human cofilin. Actin binding, pH sensitivity, and relationship to actin-depolymerizing factor. J Biol Chem 279(6):4840–4848. https://doi.org/10.1074/jbc.M310148200

    Article  CAS  PubMed  Google Scholar 

  78. Zimmerle CT, Frieden C (1988) Effect of pH on the mechanism of actin polymerization. Biochemistry 27(20):7766–7772

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Kale .

Editor information

Editors and Affiliations

5.1 Supplementary Electronic Material (S)

SF_ADF-1

The detailed alignment of all ADF1 and ADF2 from Plasmodium family with human cofilin (PDF 35 kb)

ST_ADF-1

Sequence comparison identity matrix for ADF proteins used in the current study (XLSX 63 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, S., Gauba, R., Dantu, S.C., Kale, A. (2019). ADF (Actin Depolymerizing Factor): The Breaker of the Polymer in Homeostasis. In: Kale, A. (eds) Actin Polymerization in Apicomplexan. Springer, Singapore. https://doi.org/10.1007/978-981-13-7450-0_5

Download citation

Publish with us

Policies and ethics