Advertisement

Salient Biotechnological Interventions in Saffron (Crocus sativus L.): A Major Source of Bio-active Apocarotenoids

  • Maryam VahediEmail author
  • Roghaye Karimi
  • Jitendriya Panigrahi
  • Saikat Gantait
Chapter

Abstract

Crocus sativus (L.) is considered to be one of the high-value spices cultivated around the globe, and hence is under scanner of the genomic approaches that have been used to study the identification, expression, and regulation of the key genes involved in its flower development and apocarotenoid biosynthesis. C. sativus flower contains in excess of 150 compounds of aromatic and vaporescent. It produces remarkable amounts of apocarotenoids, such as crocin, picrocrocin, and safranal, that exhibit a wide range of anticancer, neuroprotective, anti-inflammatory, and cardioprotective activities. These apocarotenoids displaying such a wide range of pharmacological activities are of huge interest to culinary and pharmaceutical industries. Advances in biotechnological interventions, like genomic technologies, functional genomics, and transcriptomics studies, have revealed the expression of genes and/or structure, function, evolution, mapping, and editing of genes encoding apocarotenoid biosynthesis and enabled C. sativus genetic improvements in an efficient way through molecular breeding programs. The application of genomic tools and techniques has encouraged C. sativus breeders to adopt precision breeding approaches. The present chapter attempts to traverse across the recent developments in genetics and genomics-based researches conducted in C. sativus to perceive the biosynthetic pathways of its major secondary metabolites.

Keywords

Crocetin Genetic transformation Picrocrocin Safranal Transcriptomics 

Notes

Acknowledgments

The authors are thankful to the anonymous reviewers and the editor of this chapter for their critical comments and suggestions on the manuscript.

References

  1. Abe K, Saito H (2000) Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res 14:149–152PubMedCrossRefGoogle Scholar
  2. Ahmad AS, Ansari MA, Ahmad M, Saleem S, Yousuf S, Hoda MN, Islam F (2005) Neuroprotection by crocetin in a hemi-Parkinsonian rat model. Pharmacol Biochem Behav 81:805–813PubMedCrossRefGoogle Scholar
  3. Ahrazem O, Trapero A, Gómez MD, Rubio-Moraga A, Gómez-Gómez L (2010) Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies. Genomics 96:239–250PubMedCrossRefGoogle Scholar
  4. Ahrazem O, Rubio-Moraga A, Trapero A, Gómez-Gómez L (2011) Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. J Exp Bot 63:681–694PubMedCrossRefGoogle Scholar
  5. Ahrazem O, Rubio-Moraga A, Jimeno ML, Gómez-Gómez L (2015) Structural characterization of highly glucosylated crocins and regulation of their biosynthesis during flower development in Crocus. Front Plant Sci 6:971PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ahrazem O, Argandoña J, Castillo R, Rubio-Moraga A, Gómez-Gómez L (2016) Identification and cloning of differentially expressed SOUL and ELIP genes in saffron stigmas using a subtractive hybridization approach. PLoS One 11:e0168736PubMedPubMedCentralCrossRefGoogle Scholar
  7. Álvarez-Ortí M, Gómez-Gómez L, Rubio A, Escribano J, Pardo J, Jiménez F, Fernández JA (2004a) Development and gene expression in saffron corms. Acta Hortic 650:141–154CrossRefGoogle Scholar
  8. Álvarez-Ortí M, Schwarzacher T, Rubio A, Blazquez S, Piqueras A, Fernandez JA, Heslop-Harrison P (2004b) Studies on expression of genes involved in somatic embryogenesis and storage protein accumulation in saffron crocus (Crocus sativus L.). Acta Hortic 650:155–163CrossRefGoogle Scholar
  9. Ashraf N, Jain D, Vishwakarma RA (2015) Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis. BMC Plant Biol 15:25PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baba SA, Malik AH, Wani ZA, Mohiuddin T, Shah Z, Abbas N, Ashraf N (2015a) Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. S Afr J Bot 99:80–87CrossRefGoogle Scholar
  11. Baba SA, Jain D, Abbas N, Ashraf N (2015b) Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery. J Plant Physiol 189:114–125PubMedCrossRefGoogle Scholar
  12. Baba SA, Mohiuddin T, Basu S, Swarnkar MK, Malik AH, Wani ZA, Abbas N, Singh AK, Ashraf N (2015c) Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genomics 16:698PubMedPubMedCentralCrossRefGoogle Scholar
  13. Baba SA, Vishwakarma RA, Ashraf N (2017) Functional characterization of CsBGlu12, a β-glucosidase from Crocus sativus, provides insights into its role in abiotic stress through accumulation of antioxidant flavonols. J Biol Chem 292:4700–4713PubMedPubMedCentralCrossRefGoogle Scholar
  14. Babaei S, Talebi M, Bahar M (2014a) Developing an SCAR and ITS reliable multiplex PCR-based assay for safflower adulterant detection in saffron samples. Food Control 35:323–328CrossRefGoogle Scholar
  15. Babaei S, Talebi M, Bahar M, Zeinali H (2014b) Analysis of genetic diversity among saffron (Crocus sativus) accessions from different regions of Iran as revealed by SRAP markers. Sci Hortic 171:27–31CrossRefGoogle Scholar
  16. Bathaie SZ, Mousavi SZ (2010) New applications and mechanisms of action of saffron and its important ingredients. Crit Rev Food Sci Nutr 50:761–786PubMedCrossRefGoogle Scholar
  17. Bhandari P (2015) Crocus sativus L. (saffron) for cancer chemoprevention: a mini review. J Tradit Compl Med 5:81–87CrossRefGoogle Scholar
  18. Bolhassani A, Khavari A, Bathaie SZ (2014) Saffron and natural carotenoids: biochemical activities and anti-tumour effects. Biochim Biophys Acta 1845:20–30PubMedGoogle Scholar
  19. Bouvier F, Suire C, Mutterer J, Camara B (2003) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell 15:47–62PubMedPubMedCentralCrossRefGoogle Scholar
  20. Busconi M, Colli L, Sánchez RA, Santaella M, Pascual MDLM, Santana O, Roldán M, Fernández JA (2015) AFLP and MS-AFLP analysis of the variation within saffron crocus (Crocus sativus L.) germplasm. PLoS One 10:e0123434PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carmona M, Zalacain A, Sánchez AM, Novella JL, Alonso GL (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem 54:973–979PubMedCrossRefGoogle Scholar
  22. Castillo R, Fernández JA, Gómez-Gómez L (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol 139:674–689PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chakraborty S (2016) Transcriptome from saffron (Crocus sativus) plants in Jammu and Kashmir reveals abundant soybean mosaic virus transcripts and several putative pathogen bacterial and fungal genera. bioRxiv. preprint.  https://doi.org/10.1101/079186
  24. Côté F, Cormier F, Dufresne C, Willemot C (2000) Properties of a glucosyltransferase involved in crocin synthesis. Plant Sci 153:55–63CrossRefGoogle Scholar
  25. D’Agostino N, Pizzichini D, Chiusano ML, Giuliano G (2007) An EST database from saffron stigmas. BMC Plant Biol 7:53PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dufresne C, Cormier F, Dorion S, Niggli UA, Pfister S, Pfander H (1999) Glycosylation of encapsulated crocetin by a Crocus sativus L. cell culture. Enzym Microb Technol 24:453–462CrossRefGoogle Scholar
  27. Escribano J, Alonso GL, Coca-Prados M, Fernandez JA (1996) Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett 100:23–30PubMedCrossRefGoogle Scholar
  28. Fernández JA (2004) Biology, biotechnology and biomedicine of saffron. Recent Res Dev Plant Sci 2:127–159Google Scholar
  29. Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S, Giuliano G (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci 111:12246–12251PubMedCrossRefGoogle Scholar
  30. Ganie SH, Upadhyay P, Das S, Sharma MP (2015) Authentication of medicinal plants by DNA markers. Plant Gene 4:83–99CrossRefGoogle Scholar
  31. Gantait S, Vahedi M (2015) In vitro regeneration of high value spice Crocus sativus L.: a concise appraisal. J Appl Res Med Aromat Plants 2:124–133Google Scholar
  32. Gantait S, Debnath S, Ali MN (2014) Genomic profile of the plants with medicinal importance. 3Biotech 4:563–578Google Scholar
  33. Georgiadou G, Tarantilis PA, Pitsikas N (2012) Effects of the active constituents of Crocus sativus L., crocins, in an animal model of obsessive–compulsive disorder. Neurosci Lett 528:27–30PubMedCrossRefGoogle Scholar
  34. Geromichalos GD, Papadopoulos T, Sahpazidou D, Sinakos Z (2014) Safranal, a Crocus sativus L. constituent suppresses the growth of K-562 cells of chronic myelogenous leukemia. In silico and in vitro study. Food Chem Toxicol 74:45–50PubMedCrossRefGoogle Scholar
  35. Gómez-Gómez L, Moraga-Rubio A, Ahrazem O (2010) Understanding carotenoid metabolism in saffron stigmas: unravelling aroma and color formation. Func Plant Sci Biotech 4:56–63Google Scholar
  36. Gómez-Gómez L, Trapero-Mozos A, Gómez MD, Rubio-Moraga A, Ahrazem O (2012) Identification and possible role of a MYB transcription factor from saffron (Crocus sativus). J Plant Physiol 169:509–515PubMedCrossRefGoogle Scholar
  37. Goyal SN, Arora S, Sharma AK, Joshi S, Ray R, Bhatia J, Kumari S, Arya DS (2010) Preventive effect of crocin of Crocus sativus on hemodynamic, biochemical, histopathological and ultrastructural alterations in isoproterenol-induced cardiotoxicity in rats. Phytomedicine 17:227–232PubMedCrossRefGoogle Scholar
  38. Guleria P, Goswami D, Yadav KS (2012) Computational identification of miRNAs and their targets from Crocus sativus L. Arch Biol Sci 64:65–70CrossRefGoogle Scholar
  39. Hariri AT, Moallem SA, Mahmoudi M, Memar B (2010) Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: protective effects of crocin and safranal. Food Chem Toxicol 48:2803–2808PubMedCrossRefGoogle Scholar
  40. Harpke D, Meng S, Rutten T, Kerndorff H, Blattner FR (2013) Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: ancient hybridization and chromosome number evolution. Mol Phylogenet Evol 66:617–627PubMedCrossRefGoogle Scholar
  41. Himeno H, Sano K (1987) Synthesis of crocin, picrocin and safranal by saffron stigma-like structures proliferated in vitro. Agric Biol Chem 51:2395–2400Google Scholar
  42. Hosseinzadeh H (2009) Saffron and its constituents: new pharmacological findings. Planta Med 75:SL58Google Scholar
  43. Hosseinzadeh H, Younesi HM (2002) Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2:7PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hosseinzadeh H, Karimi G, Niapoor M (2004) Antidepressant effect of Crocus sativus L. stigma extracts and their constituents, crocin and safranal, in mice. Acta Hortic 650:435–445CrossRefGoogle Scholar
  45. Huang W, Li F, Liu Y, Long C (2015) Identification of Crocus sativus and its adulterants from Chinese markets by using DNA barcoding technique. Iran J Biotechnol 13:36–42PubMedPubMedCentralCrossRefGoogle Scholar
  46. Husaini AM, Wani SA, Sofi P, Rather AG, Parray GA, Shikari AB, Mir JI (2009) Bioinformatics for saffron (Crocus sativus L.) improvement. Commun Biometry Crop Sci 4:3–8Google Scholar
  47. Iqbal MZRJ, Ahmed N, Mokhdomi TA, Wafai AH, Wani SH, Bukhari S, Amin A, Qadri RA (2013) Relative expression of apocarotenoid biosynthetic genes in developing stigmas of Crocus sativus L. J Crop Sci Biotechnol 16:183–188CrossRefGoogle Scholar
  48. Jain M, Srivastava PL, Verma M, Ghangal R, Garg R (2016) De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Sci Rep 6:22456PubMedPubMedCentralCrossRefGoogle Scholar
  49. Javandoost A, Afshari A, Nikbakht-Jam I, Khademi M, Eslami S, Nosrati M, Ferns G (2017) Effect of crocin, a carotenoid from saffron, on plasma cholesteryl ester transfer protein and lipid profile in subjects with metabolic syndrome: a double blind randomized clinical trial. ARYA Atheroscler 13:245–252PubMedPubMedCentralGoogle Scholar
  50. Jiang C, Cao L, Yuan Y, Chen M, Jin Y, Huang L (2014) Barcoding melting curve analysis for rapid, sensitive, and discriminating authentication of saffron (Crocus sativus L.) from its adulterants. Biomed Res Int 2014:809037PubMedPubMedCentralGoogle Scholar
  51. Joukar S, Najafipour H, Khaksari M, Sepehri G, Shahrokhi N, Dabiri S, Gholamhosenian A, Hasanzadeh S (2010) The effect of saffron consumption on biochemical and histopathological heart indices of rats with myocardial infarction. Cardiovasc Toxicol 10:66–71PubMedCrossRefGoogle Scholar
  52. Kalivas A, Pasentsis K, Polidoros AN, Tsaftaris AS (2007) Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation. DNA Seq 18:120–130PubMedCrossRefGoogle Scholar
  53. Lozano P, Delgado D, Gomez D, Rubio M, Iborra JL (2000) A non-destructive method to determine the safranal content of saffron (Crocus sativus L.) by supercritical carbon dioxide extraction combined with high-performance liquid chromatography and gas chromatography. J Biochem Biophys Methods 43:367–378PubMedCrossRefGoogle Scholar
  54. Magesh V, Singh JPV, Selvendiran K, Ekambaram G, Sakthisekaran D (2006) Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Mol Cell Biochem 287:127–135PubMedCrossRefGoogle Scholar
  55. Malik AH, Ashraf N (2017) Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L. Mol Gen Genomics 292:619–633CrossRefGoogle Scholar
  56. Marieschi M, Torelli A, Bruni R (2012) Quality control of saffron (Crocus sativus L.): development of SCAR markers for the detection of plant adulterants used as bulking agents. J Agric Food Chem 60:10998–11004PubMedCrossRefGoogle Scholar
  57. Melnyk JP, Wang S, Marcone MF (2010) Chemical and biological properties of the world’s most expensive spice: saffron. Food Res Int 43:1981–1989CrossRefGoogle Scholar
  58. Mir JI, Ahmed N, Wafai AH, Qadri RA (2012) Relative expression of CsZCD gene and apocarotenoid biosynthesis during stigma development in Crocus sativus L. Physiol Mol Biol Plant 18:371–375CrossRefGoogle Scholar
  59. Mir JI, Ahmed N, Khan MH, Mokhdomi TA (2015a) Apocarotenoid gene expression in saffron (Crocus sativus L.). Sci Res Essays 10:482–488CrossRefGoogle Scholar
  60. Mir JI, Ahmed N, Singh DB, Khan MH, Zaffer S, Shafi W (2015b) Breeding and biotechnological opportunities in saffron crop improvement. Afr J Agric Res 10:970–974CrossRefGoogle Scholar
  61. Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, Sundaresan V (2016) DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol J 14:8–21PubMedCrossRefGoogle Scholar
  62. Modaghegh M, Shahabian M, Esmaeili H, Rajbai O, Hosseinzadeh H (2008) Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers. Phytomedicine 15:1032–1037PubMedCrossRefGoogle Scholar
  63. Mohamadpour AH, Ayati Z, Parizadeh MR, Rajbai O, Hosseinzadeh H (2013) Safety evaluation of crocin (a constituent of saffron) tablets in healthy volunteers. Iran J Basic Med Sci 16:39–46PubMedPubMedCentralGoogle Scholar
  64. Molina RV, Valero M, Navarro Y, Guardiola JL, Garcia-Luis A (2005) Temperature effects on flower formation in saffron (Crocus sativus L.). Sci Hortic 103:361–379CrossRefGoogle Scholar
  65. Moradzadeh M, Sadeghnia HR, Tabarraei A, Sahebkar A (2018) Anti-tumor effects of crocetin and related molecular targets. J Cell Physiol 233:2170–2182PubMedCrossRefGoogle Scholar
  66. Moshiri M, Vahabzadeh M, Hosseinzadeh H (2014) Clinical applications of saffron (Crocus sativus) and its constituents: a review. Drug Res 64:1–9CrossRefGoogle Scholar
  67. Namin MH, Ebrahimzadeh H, Ghareyazie B, Radjabian T, Gharavi S, Tafreshi N (2009) In vitro expression of apocarotenoid genes in Crocus sativus L. Afr J Biotechnol 8:5378–5382Google Scholar
  68. Petersen G, Seberg O, Thorsøe S, Jørgensen T, Mathew B (2008) A phylogeny of the genus Crocus (Iridaceae) based on sequence data from five plastid regions. Taxon 57:487–499Google Scholar
  69. Pitsikas N (2015) The effect of Crocus sativus L. and its constituents on memory: basic studies and clinical applications. Evid Based Compl Altern Med 2015:926284.  https://doi.org/10.1155/2015/926284 CrossRefGoogle Scholar
  70. Premkumar K, Abraham SK, Santhiya ST, Ramesh A (2003) Protective effects of saffron (Crocus sativus Linn.) on genotoxins-induced oxidative stress in Swiss albino mice. Phytother Res 17:614–617PubMedCrossRefGoogle Scholar
  71. Rajaei Z, Hadjzadeh MAR, Nemati H, Hosseini M, Ahmadi M, Shafiee S (2013) Antihyperglycemic and antioxidant activity of crocin in streptozotocin-induced diabetic rats. J Med Food 16:206–210PubMedCrossRefGoogle Scholar
  72. Renau-Morata B, Nebauer SG, Sánchez M, Molina RV (2012) Effect of corm size, water stress and cultivation conditions on photosynthesis and biomass partitioning during the vegetative growth of saffron (Crocus sativus L.). Ind Crop Prod 39:40–46CrossRefGoogle Scholar
  73. Rios JL, Recio MC, Giner RM, Manez S (1996) An updated review of saffron and its active constituents. Phytother Res 10:189–193CrossRefGoogle Scholar
  74. Rosati C, Diretto G, Giuliano G (2009) Biosynthesis and engineering of carotenoids and apocarotenoids in plants: state of the art and future prospects. Biotechnol Gen Eng Rev 26:139–162CrossRefGoogle Scholar
  75. Rubio-Moraga A, Rambla JL, Santaella M, Gomez MD, Orzaez D, Granell A, Gómez-Gómez L (2008) Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J Biol Chem 283:24816–24825CrossRefGoogle Scholar
  76. Rubio-Moraga A, Mozos AT, Ahrazem O, Gómez-Gómez L (2009) Cloning and characterization of a glucosyltransferase from Crocus sativus stigmas involved in flavonoid glucosylation. BMC Plant Biol 9:109CrossRefGoogle Scholar
  77. Rubio-Moraga A, Trapero-Mozos A, Gómez-Gómez L, Ahrazem O (2010) Intersimple sequence repeat markers for molecular characterization of Crocus cartwrightianus cv. albus. Indust Crops Prod 32:147–151CrossRefGoogle Scholar
  78. Rubio-Moraga A, Ahrazem O, Pérez-Clemente RM, Gómez-Cadenas A, Yoneyama K, López-Ráez JA, Gómez-Gómez L (2014a) Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting. BMC Plant Biol 14:171PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rubio-Moraga A, Rambla JL, Fernández de Carmen A, Trapero-Mozos A, Ahrazem O, Orzáez D, Granell A, Gómez-Gómez L (2014b) New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant Mol Biol 86:555–569PubMedCrossRefGoogle Scholar
  80. Sharma V, Sarkar IN (2012) Bioinformatics opportunities for identification and study of medicinal plants. Brief Bioinform 14:238–250PubMedPubMedCentralCrossRefGoogle Scholar
  81. Shen XC, Qian ZY (2006) Effects of crocetin on antioxidant enzymatic activities in cardiac hypertrophy induced by norepinephrine in rats. Pharmazie 61:348–352PubMedGoogle Scholar
  82. Soffritti G, Busconi M, Sánchez RA, Thiercelin JM, Polissiou M, Roldán M, Fernández JA (2016) Genetic and epigenetic approaches for the possible detection of adulteration and auto-adulteration in saffron (Crocus sativus L.) spice. Molecules 21:343PubMedPubMedCentralCrossRefGoogle Scholar
  83. Tarantilis PA, Tsoupras G, Polissiou M (1995) Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. J Chromatogr 699:107–118CrossRefGoogle Scholar
  84. Timberlake CF, Henry BS (1986) Plant pigments as natural food colours. Endeavour 10:31–36PubMedCrossRefGoogle Scholar
  85. Torelli A, Marieschi M, Bruni R (2014) Authentication of saffron (Crocus sativus L.) in different processed, retail products by means of SCAR markers. Food Control 36:126–131CrossRefGoogle Scholar
  86. Tsaftaris AS, Pasentsis K, Iliopoulos I, Polidoros AN (2004) Isolation of three homologous AP1-like MADS-box genes in crocus (Crocus sativus L.) and characterization of their expression. Plant Sci 166:1235–1243CrossRefGoogle Scholar
  87. Tsaftaris AS, Polidoros AN, Pasentsis K, Kalivas A (2007) Cloning, structural characterization, and phylogenetic analysis of flower MADS-box genes from crocus (Crocus sativus L.). Sci World J 7:1047–1062CrossRefGoogle Scholar
  88. Tsaftaris A, Pasentzis K, Argiriou A (2010) Rolling circle amplification of genomic templates for inverse PCR (RCA–GIP): a method for 5′-and 3′-genome walking without anchoring. Biotech Lett 32:157CrossRefGoogle Scholar
  89. Tsaftaris A, Pasentsis K, Makris A, Darzentas N, Polidoros A, Kalivas A, Argiriou A (2011) The study of the E-class SEPALLATA3-like MADS-box genes in wild-type and mutant flowers of cultivated saffron crocus (Crocus sativus L.) and its putative progenitors. J Plant Physiol 168:1675–1684PubMedCrossRefGoogle Scholar
  90. Wafai AH, Bukhari S, Mokhdomi TA, Amin A, Wani Z, Hussaini A, Mir JI, Qadri RA (2015) Comparative expression analysis of senescence gene CsNAP and B-class floral development gene CsAP3 during different stages of flower development in saffron (Crocus sativus L.). Physiol Mol Biol Plants 21:459–463PubMedPubMedCentralCrossRefGoogle Scholar
  91. Xiang M, Qian ZY, Zhou CH, Liu J, Li WN (2006) Crocetin inhibits leukocyte adherence to vascular endothelial cells induced by AGEs. J Ethnopharmacol 107:25–31PubMedCrossRefGoogle Scholar
  92. Zhao M, Shi Y, Wu L, Guo L, Liu W, Xiong C, Yan S, Sun W, Chen S (2016) Rapid authentication of the precious herb saffron by loop-mediated isothermal amplification (LAMP) based on internal transcribed spacer 2 (ITS2) sequence. Sci Rep 6:25370PubMedPubMedCentralCrossRefGoogle Scholar
  93. Zinati Z, Shamloo-Dashtpagerd R, Behpouri A (2016) In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma. Mol Biol Res Commun 5:233PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Maryam Vahedi
    • 1
    Email author
  • Roghaye Karimi
    • 1
  • Jitendriya Panigrahi
    • 2
  • Saikat Gantait
    • 3
    • 4
  1. 1.Department of Horticultural Science, Faculty of Agricultural Sciences and Engineering, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
  2. 2.Department of BiotechnologyShri A. N. Patel P. G. Institute of Science and ResearchAnandIndia
  3. 3.Crop Research Unit, Directorate of ResearchBidhan Chandra Krishi ViswavidyalayaNadiaIndia
  4. 4.Department of Genetics and Plant Breeding, Faculty of AgricultureBidhan Chandra Krishi ViswavidyalayaNadiaIndia

Personalised recommendations