Advertisement

Introduction

  • Shuang YiEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Human activities, climate change and environmental change are three mutually influential elements. Factors such as the accumulation of greenhouse gases from human activities have led to global warming and more frequent extreme weather phenomena; intensive human activities and rising global temperatures have brought irreversible effects on the environment, of which the most significant and manifest is the mass transports in the water cycle system; the deterioration of the environment will further weaken the stability of the climate, which will ultimately threaten the sustainable development of human production and living environment. In recent years, people have become more and more aware of the significance of these three elements.

References

  1. Aeschbach-Hertig, W., & Gleeson, T. (2012). Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5(12), 853–861.CrossRefGoogle Scholar
  2. Arendt, A. A., Luthcke, S. B., Larsen, C. F., Abdalati, W., Krabill, W. B., & Beedle, M. J. (2008). Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry. Journal of Glaciology, 54(188), 778–787.CrossRefGoogle Scholar
  3. Bai, D., Unsworth, M. J., Meju, M. A., Ma, X., Teng, J., Kong, X., et al. (2010). Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5), 358–362.CrossRefGoogle Scholar
  4. Bolch, T., Sandberg Sørensen, L., Simonsen, S. B., Mölg, N., Machguth, H., Rastner, P., et al. (2013). Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat data. Geophysical Reseach Letters, 40, 875–881.  https://doi.org/10.1002/grl.50270.CrossRefGoogle Scholar
  5. Bolch, T., et al. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314.  https://doi.org/10.1126/science.1215828.CrossRefGoogle Scholar
  6. Braitenberg, C., Zadro, M., Fang, J., Wang, Y., & Hsu, H. (2000). The gravity and isostatic Moho undulations in Qinghai-Tibet plateau. Journal of Geodynamics, 30(5), 489–505.CrossRefGoogle Scholar
  7. Broerse, D. B. T., Vermeersen, L. L. A., Riva, R. E. M., & van der Wal, W. (2011). Ocean contribution to co-seismic crustal deformation and geoid anomalies: Application to the 2004 December 26 Sumatra-Andaman earthquake. Earth and Planetary Science Letters, 305, 341–349.CrossRefGoogle Scholar
  8. Cazenave, A., & Chen, J. (2010). Time-variable gravity from space and present-day mass redistribution in theEarth system. Earth and Planetary Science Letters, 298(3–4), 263–274.  https://doi.org/10.1016/j.epsl.2010.07.035.CrossRefGoogle Scholar
  9. Cazenave, A., & Cozannet, G. L. (2014). Sea level rise and its coastal impacts. Earth’s Future, 2(2), 15–34.CrossRefGoogle Scholar
  10. Cazenave, A., Dieng, H.-B., Meyssignac, B., von Schuckmann, K., Decharme, B., & Berthier, E. (2014). The rate of sea-level rise. Nature Climate Change, 4(5), 358–361.CrossRefGoogle Scholar
  11. Cazenave, A., Dominh, K., Guinehut, S., Berthier, E., Llovel, W., Ramillien, G., et al. (2009). Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global and Planetary Change, 65(1), 83–88.CrossRefGoogle Scholar
  12. Cazenave, A., & Llovel, W. (2010). Contemporary sea level rise. Annual review of Marine Science, 2, 145–173.CrossRefGoogle Scholar
  13. Cazenave, A., & Remy, F. (2011). Sea level and climate: Measurements and causes of changes. Wiley Interdisciplinary Reviews-Climate Change, 2(5), 647–662.  https://doi.org/10.1002/wcc.139.CrossRefGoogle Scholar
  14. Changming, L., Jingjie, Y., & Kendy, E. (2001). Groundwater exploitation and its impact on the environment in the North China Plain. Water International, 26(2), 265–272.CrossRefGoogle Scholar
  15. Chao, B. F., Wu, Y., & Li, Y. (2008). Impact of artificial reservoir water impoundment on global sea level. Science, 320(5873), 212–214.CrossRefGoogle Scholar
  16. Chen, J., Wilson, C., Blankenship, D., & Tapley, B. (2009). Accelerated Antarctic ice loss from satellite gravity measurements. Nature Geoscience, 2(12), 859–862.CrossRefGoogle Scholar
  17. Chen, J., Wilson, C., & Tapley, B. (2006). Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313(5795), 1958–1960.CrossRefGoogle Scholar
  18. Chen, J. L., Wilson, C. R., & Tapley, B. D. (2010). The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resources Research, 46(12).Google Scholar
  19. Chen, J., Wilson, C., & Tapley, B. (2013). Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geoscience, 6(7), 549–552.CrossRefGoogle Scholar
  20. Chen, J., Wilson, C., Tapley, D., Blankenship, D., & Ivins, E. (2007). Patagonia icefield melting observed by gravity recovery and climate experiment (GRACE). Geophysical Research Letters, 34(22).Google Scholar
  21. Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., et al. (2013a), Sea level change. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press.Google Scholar
  22. Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4–5), 585–602.CrossRefGoogle Scholar
  23. Church, J. A., White, N. J., Konikow, L. F., Domingues, C. M., Cogley, J. G., Rignot, E., et al. (2013b). Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008 (Vol. 38, L18601, 2011). Geophysical Research Letters, 40(15), 4066–4066.  https://doi.org/10.1002/grl.50752.CrossRefGoogle Scholar
  24. Clark, M. K., & Royden, L. H. (2000). Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8), 703–706.CrossRefGoogle Scholar
  25. Cogley, G. (2012). GLACIOLOGY No ice lost in the Karakoram. Nature Geoscience, 5(5), 305–306.  https://doi.org/10.1038/ngeo1456.CrossRefGoogle Scholar
  26. Crowley, J. W., Mitrovica, J. X., Bailey, R. C., Tamisiea, M. E., & Davis, J. L. (2006). Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophysical Research Letters, 33(19).Google Scholar
  27. De Linage, C., Rivera, L., Hinderer, J., Boy, J. P., Rogister, Y., Lambotte, S., et al. (2009). Separation of coseismic and postseismic gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation. Geophysical Journal International, 176(3), 695–714.CrossRefGoogle Scholar
  28. Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., & van den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophysical Reseach Letters, 41, 866–872.  https://doi.org/10.1002/2013GL059010.CrossRefGoogle Scholar
  29. England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., et al. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4(3), 222–227.CrossRefGoogle Scholar
  30. Famiglietti, J., Lo, M., Ho, S., Bethune, J., Anderson, K., Syed, T., et al. (2011), Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophysical Research Letters, 38(3).CrossRefGoogle Scholar
  31. Farinotti, D., Longuevergne, L., Moholdt, G., Duethmann, D., Mölg, T., Bolch, T., et al. (2015) A. Substantial glacier mass loss in the tien shan over the past 50 years. National Geoscience.  https://doi.org/10.1038/ngeo2513.CrossRefGoogle Scholar
  32. Feng, W., Zhong, M., Lemoine, J. M., Biancale, R., Hsu, H. T., & Xia, J. (2013). Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resources Research, 49(4), 2110–2118.CrossRefGoogle Scholar
  33. Fielding, E. J. (1996). Tibet uplift and erosion. Tectonophysics, 260(1–3), 55–84.  https://doi.org/10.1016/0040-1951(96)00076-5.CrossRefGoogle Scholar
  34. Fu, G., Gao, S., Freymueller, J. T., Zhang, G., Zhu, Y., & Yang, G. (2014). Bouguer gravity anomaly and isostasy at western Sichuan Basin revealed by new gravity surveys. Journal of Geophysical Research: Solid Earth, 119, 3925–3938.  https://doi.org/10.1002/2014JB011033.CrossRefGoogle Scholar
  35. Gardelle, J., Berthier, E., & Arnaud, Y. (2012). Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience, 5(5), 322–325.  https://doi.org/10.1038/ngeo1450.CrossRefGoogle Scholar
  36. Gardner, A. S., et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852–857.CrossRefGoogle Scholar
  37. Gleeson, T., Wada, Y., Bierkens, M. F., & van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197–200.CrossRefGoogle Scholar
  38. Gregory, J. M., & Lowe, J. A. (2000). Predictions of global and regional sea-level rise using AOGCMs with and without flux adjustment. Geophysical Reseach Letters, 27, 3069–3072.CrossRefGoogle Scholar
  39. Han, S. C., Sauber, J., & Luthcke, S. (2010). Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution. Geophysical Research Letters, 37(23).Google Scholar
  40. Han, S. C., Sauber, J., & Pollitz, F. (2015). Coseismic compression/dilatation and viscoelastic uplift/subsidence following the 2012 Indian Ocean earthquakes quantified from satellite gravity observations. Geophysical Research Letters, 42(10), 3764–3772.CrossRefGoogle Scholar
  41. Han, S. C., Sauber, J., & Pollitz, F. (2016). Postseismic gravity change after the 2006–2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Islands. Geophysical Research Letters.Google Scholar
  42. Han, S. C., Shum, C. K., Bevis, M., Ji, C., & Kuo, C. Y. (2006). Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science, 313(5787), 658–662.CrossRefGoogle Scholar
  43. Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., et al. (2013). Ice-sheet mass balance and climate change. Nature, 498(7452), 51–59.CrossRefGoogle Scholar
  44. Hay, C. C., Morrow, E., Kopp, R. E., & Mitrovica, J. X. (2015). Probabilistic reanalysis of twentieth-century sea-level rise. Nature, 517, 481–484.CrossRefGoogle Scholar
  45. Heki, K., & Matsuo, K. (2010). Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry. Geophysical Research Letters, 37(24).Google Scholar
  46. Intergovernmental Panel on Climate Change (IPCC). (2014). Climate change 2013: The physical science basis. Cambridge, UK, and New York: Cambridge University Press.Google Scholar
  47. Jacob, T., Wahr, J., Pfeffer, W. T., & Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514–518.  https://doi.org/10.1038/nature10847.CrossRefGoogle Scholar
  48. Joodaki, G., Wahr, J., & Swenson, S. (2014). Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resources Research, 50(3), 2679–2692.CrossRefGoogle Scholar
  49. Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495–498.CrossRefGoogle Scholar
  50. Kang, S., Xu, Y., You, Q., Flügel, W.-A., Pepin, N., & Yao, T. (2010). Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5(1), 015101.CrossRefGoogle Scholar
  51. Kendy, E., Gérard-Marchant, P., Walter, M. T., Zhang, Y., Liu, C., & Steenhuis, T. S. (2003). A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrological Processes, 17(10), 2011–2031.CrossRefGoogle Scholar
  52. Konikow, L. F. (2011), Contribution of global groundwater depletion since 1900 to sea-level rise. Geophysical Research Letters, 38(17).CrossRefGoogle Scholar
  53. Leuliette, E. W., & Miller, L. (2009). Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophysical Research Letters, 36(4).Google Scholar
  54. Leuliette, E. W., & Willis, J. K. (2011). Balancing the sea level budget. Oceanography, 24.Google Scholar
  55. Liang, S., Gan, W., Shen, C., Xiao, G., Liu, J., Chen, W., et al. (2013). Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. Journal of Geophysical Research: Solid Earth, 118(10), 2013JB010503.  https://doi.org/10.1002/2013jb010503.Google Scholar
  56. Liu, Q. Y., van der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., et al. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience, 7(5), 361–365.CrossRefGoogle Scholar
  57. Llovel, W., Willis, J. K., Landerer, F. W., & Fukumori, I. (2014). Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nature Climate Change, 4(11), 1031–1035.CrossRefGoogle Scholar
  58. Luthcke, S. B., Arendt, A. A., Rowlands, D. D., McCarthy, J. J., & Larsen, C. F. (2008). Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. Journal of Glaciology, 54(188), 767–777.CrossRefGoogle Scholar
  59. Luthcke, S. B., Sabaka, T., Loomis, B., Arendt, A., McCarthy, J., & Camp, J. (2013). Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology, 59(216), 613–631.CrossRefGoogle Scholar
  60. Luthcke, S. B., Zwally, H., Abdalati, W., Rowlands, D., Ray, R., Nerem, R., et al. (2006). Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314(5803), 1286–1289.CrossRefGoogle Scholar
  61. Ma, R., Duan, H., Hu, C., Feng, X., Li, A., Ju, W., et al. (2010). A half-century of changes in China’s lakes: Global warming or human influence? Geophysical Research Letters, 37(24).CrossRefGoogle Scholar
  62. Matsuo, K., Chao, B. F., Otsubo, T., & Heki, K. (2013). Accelerated ice mass depletion revealed by low-degree gravity field from satellite laser ranging: Greenland, 1991–2011. Geophysical Research Letters, 40(17), 4662–4667.CrossRefGoogle Scholar
  63. Matsuo, K., & Heki, K. (2010). Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth and Planetary Science Letters, 290(1–2), 30–36.  https://doi.org/10.1016/j.epsl.2009.11.053.CrossRefGoogle Scholar
  64. Matsuo, K., & Heki, K. (2011). Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry. Geophysical Research Letters, 38(7).Google Scholar
  65. Marotta, A. M., Fernàndez, M., & Sabadini, R. (1998). Mantle unrooting in collisional settings. Tectonophysics, 296, 31–46.Google Scholar
  66. Marotta, A. M., Fernàndez, M., & Sabadini, R. (1999). The onset of extension during lithospheric shortening: A two-dimensional thermomechanical model for lithospheric unrooting. Geophysical Journal International, 139, 98–114.Google Scholar
  67. Meier, M. F., Dyurgerov, M. B., Rick, U. K., O’Neel, S., Pfeffer, W. T., Anderson, R. S., et al. (2007). Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 1064–1067.CrossRefGoogle Scholar
  68. Molnar, P., England, P., & Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4), 357–396.CrossRefGoogle Scholar
  69. Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. B., Quere, S., Simmons, N. A., et al. (2008). Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform. Earth and Planetary Science Letters, 271, 101–108.CrossRefGoogle Scholar
  70. Neckel, N., Kropáček, J., Bolch, T. & Hochschild, V. (2014). Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environmental Research Letters, 9, 014009.Google Scholar
  71. Peltier, W. R. (2001). Global glacial isostatic adjustment and modern instrumental records of relative sea level history. In B. C. Douglas, M. S. Kearney, & S. P. Leatherman (Eds.), Sea level rise: History and consequences (Vol. 75, pp. 65–95). San Diego, CA: Academic Press.Google Scholar
  72. Peltier, W. R. (2004). Global glacial isostasy and the surface of the Ice-Age Earth: the ICE-5G(VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 32, 111–149.CrossRefGoogle Scholar
  73. Peltier, W. R. (2009). Closure of the budget of global sea level rise over the GRACE era: The importance and magnitudes of the required corrections for global glacial isostatic adjustment. Quaternary Science Reviews, 28, 1658–1674.  https://doi.org/10.1016/j.quascirev.2009.04.004.CrossRefGoogle Scholar
  74. Purkey, S. G., & Johnson, G. C. (2010). Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. Journal of Climate, 23(23), 6336–6351.CrossRefGoogle Scholar
  75. Ramillien, G., Lombard, A., Cazenave, A., Ivins, E. R., Llubes, M., Remy, F., et al. (2006). Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global and Planetary Change, 53(3), 198–208.  https://doi.org/10.1016/j.gloplacha.2006.06.003.CrossRefGoogle Scholar
  76. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., & Lenaerts, J. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38.  https://doi.org/10.1029/2011gl046583.CrossRefGoogle Scholar
  77. Rodell, M., et al. (2004). The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3), 381–.  https://doi.org/10.1175/bams-85-3-381.CrossRefGoogle Scholar
  78. Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999–U980.  https://doi.org/10.1038/nature08238.CrossRefGoogle Scholar
  79. Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., et al. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313), 788–790.CrossRefGoogle Scholar
  80. Royden, L. H., Burchfiel, B. C., & van der Hilst, R. D. (2008). The geological evolution of the Tibetan Plateau. Science, 321(5892), 1054–1058.Google Scholar
  81. Shen, Z.-K., Sun, J., Zhang, P., Wan, Y., Wang, M., Bürgmann, R., et al. (2009). Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience, 2(10), 718–724.CrossRefGoogle Scholar
  82. Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., et al. (2012). A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 1183–1189.CrossRefGoogle Scholar
  83. Shin, Y. H., Shum, C. K., Braitenberg, C., Lee, S. M., Xu, H., Choi, K. S., et al. (2009). Three-dimensional fold structure of the Tibetan Moho from GRACE gravity data. Geophysical Research Letters, 36(1).Google Scholar
  84. Shin, Y. H., et al. (2015). Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data. Scientific reports, 5,.Google Scholar
  85. Steffen, K., Thomas, R. H., Rignot, E., Cogley, J. G., Dyurgerov, M. B., Raper, S. C., et al. (2010). Cryospheric contributions to sea-level rise and variability. In Understanding sea-level rise and variability (pp. 177–225).CrossRefGoogle Scholar
  86. Sun, W. K., Wang, Q., Li, H., Wang, Y., Okubo, S. H., Shao, D. S., et al. (2009). Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: Geodetic evidence of increasing crustal thickness. Geophysical Research Letters, 36,  https://doi.org/10.1029/2008gl036512.CrossRefGoogle Scholar
  87. Swenson, S., & Wahr, J. (2007). Multi-sensor analysis of water storage variations of the Caspian Sea. Geophysical Research Letters, 34(16).Google Scholar
  88. Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., & Wilson, C. R. (2008). Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resources Research, 44(2).Google Scholar
  89. Syvitski, J. P. M., & Kettner, A. (2011). Sediment flux and the Anthropocene. Philosophical Transactions of the Royal Society London A, 369, 957–975.CrossRefGoogle Scholar
  90. Tamisiea, M. E. (2011). Ongoing glacial isostatic contributions to observations of sea level change. Geophysical Journal International, 186(3), 1036–1044.CrossRefGoogle Scholar
  91. Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., & Watkins, M. M. (2004). GRACE measurements of mass variability in the Earth system. Science, 305(5683), 503–505.CrossRefGoogle Scholar
  92. Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., et al. (2013a). Ground water and climate change. Nature Climate Change, 3(4), 322–329.CrossRefGoogle Scholar
  93. Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., et al. (2013b). Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nature Climate Change, 3(4), 374–378.  https://doi.org/10.1038/nclimate1731.CrossRefGoogle Scholar
  94. Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36.  https://doi.org/10.1029/2009gl039401.
  95. United Nations World Water Assessment Programme. (2015). The UN world water development report 2015: Water for a sustainable world. Paris: UNESCO.Google Scholar
  96. Velicogna, I. (2009). Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters, 36.  https://doi.org/10.1029/2009gl040222.
  97. Velicogna, I., & Wahr, J. (2006a). Acceleration of Greenland ice mass loss in spring 2004. Nature, 443(7109), 329–331.CrossRefGoogle Scholar
  98. Velicogna, I., & Wahr, J. (2006b). Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768), 1754–1756.CrossRefGoogle Scholar
  99. Voss, K. A., Famiglietti, J. S., Lo, M., Linage, C., Rodell, M., & Swenson, S. C. (2013). Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resources Research, 49(2), 904–914.CrossRefGoogle Scholar
  100. Wada, Y., Beek, L. P. H., & Bierkens, M. F. P. (2012a). Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resources Research, 48(6), 335–344.Google Scholar
  101. Wada, Y., Beek, L. P., Sperna Weiland, F. C., Chao, B. F., Wu, Y. H., & Bierkens, M. F. (2012b). Past and future contribution of global groundwater depletion to sea-level rise. Geophysical Research Letters, 39(9).Google Scholar
  102. Wada, Y., van Beek, L. P., van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical Research Letters, 37(20).Google Scholar
  103. Wang, B., Bao, Q., Hoskins, B., Wu, G., & Liu, Y. (2008a). Tibetan plateau warming and precipitation changes in East Asia. Geophysical Research Letters, 35(14).  https://doi.org/10.1029/2008gl034330.
  104. Wang, X., de Linage, C., Famiglietti, J., & Zender, C. S. (2011a). Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements. Water Resources Research, 47(12).Google Scholar
  105. Wang, C. Y., Han, W. B., Wu, J. P., Lou, H., & Chan, W. W. (2007). Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B7).Google Scholar
  106. Wang, E., Kirby, E., Furlong, K. P., Van Soest, M., Xu, G., Shi, X., et al. (2012a). Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9), 640–645.CrossRefGoogle Scholar
  107. Wang, C. -Y., Lou, H., Lü, Z., Wu, J., Chang, L., Dai, S., et al. (2008b). S-wave crustal and upper mantle’s velocity structure in the eastern Tibetan Plateau—Deep environment of lower crustal flow. Science in China Series D: Earth Sciences, 51(2), 263–274.CrossRefGoogle Scholar
  108. Wang, Q., Qiao, X., Lan, Q., Jeffrey, F., Yang, S., Xu, C., et al. (2011b). Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan. Nature Geoscience, 4(9), 634–640.CrossRefGoogle Scholar
  109. Wang, M., Shen, Z., Niu, Z., Zhang, Z., Sun, H., Gan, W., et al. (2003). Contemporary crustal deformation of the Chinese continent and tectonic block model. Science in China, Series D: Earth Sciences, 46(2), 25–40.Google Scholar
  110. Wang, L., Shum, C. K., Simons, F. J., Tapley, B., & Dai, C. (2012b). Coseismic and postseismic deformation of the 2011 Tohoku–Oki earthquake constrained by GRACE gravimetry. Geophysical Research Letters, 39(7).Google Scholar
  111. Wang, Q., Zhang, P. -Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X. A. et al. (2001). Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542), 574–577.CrossRefGoogle Scholar
  112. Willis, J., Chambers, D. P., & Nerem, R. S. (2008). Assessing the globally-averaged sea level budget on seasonal to interannual timescales. Journal Geophysical Research, 113, C06015.  https://doi.org/10.1029/2007JC004517.CrossRefGoogle Scholar
  113. Wouters, B., Chambers, D., & Schrama, E. J. O. (2008). GRACE observes small-scale mass loss in Greenland. Geophysical Research Letters, 35(20).  https://doi.org/10.1029/2008gl034816.
  114. Xinhua Net. (2015). In Zheng L. (Ed.), The three Gorge is in a new round of experimentally increasing its water level to 175 m (in Chinese). http://www.china.com.cn/newphoto/news/2015-10/08/content_36763591.htm.
  115. Xu, L., Rondenay, S., & van der Hilst, R. D. (2007). Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Physics of the Earth and Planetary Interiors, 165(3), 176–193.CrossRefGoogle Scholar
  116. Yao, T., et al. (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663–667.  https://doi.org/10.1038/nclimate1580.CrossRefGoogle Scholar
  117. Yi, S., & Sun, W. (2014). Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. Journal of Geophysical Research: Solid Earth, 119(3), 2504–2517.Google Scholar
  118. Yi, S., Sun, W., Heki, K., & Qian, A. (2015). An increase in the rate of global mean sea level rise since 2010. Geophysical Research Letters.Google Scholar
  119. Zhang, P.-Z. (2013). A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584, 7–22.  https://doi.org/10.1016/j.tecto.2012.02.021.CrossRefGoogle Scholar
  120. Zhang, P.-Z., Shen, Z., Wang, M., Gan, W., Bürgmann, R., Molnar, P., et al. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812.CrossRefGoogle Scholar
  121. Zhang, G., Yao, T., Xie, H., Kang, S., & Lei, Y. (2013). Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophysical Research Letters, 40(10), 2125–2130.  https://doi.org/10.1002/grl.50462.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of GeodesyUniversity of StuttgartStuttgartGermany

Personalised recommendations