Advertisement

Nematode Chitin and Application

  • Qi Chen
  • Deliang PengEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1142)

Abstract

Plant-parasitic nematode infection is a global problem for agriculture and forestry. There is clearly a need for novel nematicides, because of the pitifully small repertoire of nematicides available and the effectiveness of losing or environmental prohibition of these nematicides. Chitin is the essential component of nematode eggshell and pharynx. The disturbance of chitin synthesis or hydrolysis led to nematode embryonic lethal, laying defective eggs or moulting failure. Thus, the key components in the chitin metabolic process are promising targets for anti-nematode agent’s development. In this chapter, we focus on chitin and chitin synthase of nematodes, chitinases and their roles in nematode survival and application of chitin in nematode control.

Keywords

Plant-parasitic nematode Chitin Chitinase Chitin synthase 

References

  1. Abad P et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotech 26:909–915CrossRefGoogle Scholar
  2. Adam R, Kaltmann B, Rudin W, Friedrich T, Marti T, Lucius R (1996) Identification of chitinase as the immunodominant filarial antigen recognized by sera of vaccinated rodents. J Biol Chem 271(3):1441–1447CrossRefGoogle Scholar
  3. Atkinson HJ, Taylor JD, Fowler M (1987) Changes in the 2nd stage juveniles of Globodera rostochiensis prior to hatching in response to potato root diffusate. Ann Appl Biol. 110:105–114CrossRefGoogle Scholar
  4. Bird AF, Mcclure MA (1976) The tylenchid (Nematoda) egg shell: structure, composition and permeability. Parasitology 72:19–28CrossRefGoogle Scholar
  5. Burgwyn B, Nagel B, Ryerse J, Bolla RI (2003) Heterodera glycines: eggshell ultrastructure and histochemical localization of chitinous components. Exp Parasitol 104:47–53CrossRefGoogle Scholar
  6. Bird AF, Bird J (1991) The egg. The Structure of Nematodes (2nd edn). Academic Press Inc., New York, pp 7–43CrossRefGoogle Scholar
  7. Bird AF, Self PG (1995) Chitin in Meloidogyne javanica. Fundam Appl Nematol. 18:235–239Google Scholar
  8. Castro L, Flores L, Uribe L (2011) Efecto del vermicompost y quitina sobre el control de Meloidogyne incognita en tomate a nível de invernadero. Agronomía Costarricense 35:21–32Google Scholar
  9. Chen C, Cui L, Chen Y, Zhang H, Liu P, Wu P, Qiu D, Zou J, Yang D, Yang L, Liu H, Zhou Y, Li H (2017) Transcriptional responses of wheat and the cereal cyst nematode Heterodera avenae during their early contact stage. Sci Rep. 7(1):14471CrossRefGoogle Scholar
  10. Clarke AJ, Cox PM, Shepherd AM (1967) Chemical composition of egg shells of potato cyst nematode Heterodera rostochiensis woll. Biochem J 104:1056–1060CrossRefGoogle Scholar
  11. Curtis RHC, Jones JT, Davies KG, Sharon E, Spiegel Y (2011) Chapter 5, Plant nematode surfaces. pp 115–144. In: Davies K, Spiegel Y (eds.), Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Prog Biol Control 11.  https://doi.org/10.1007/978-1-4020-9648-8_5,
  12. Dubinský P, Rybos M, Turceková L (1986) Properties and localization of chitin synthase in Ascaris suum eggs. Parasitology 92(Pt 1):219–225CrossRefGoogle Scholar
  13. Dusenbery DB (1997) Prospects for exploring sensory stimuli in nematode control. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists, Hyattsville, MD, pp 131–135Google Scholar
  14. Fanelli E, Di Vito M, Jones JT, De Giorgi C (2005) Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi. Gene 349:87–95CrossRefGoogle Scholar
  15. Foster JM, Zhang Y, Kumar S, Carlow CK (2005) Parasitic nematodes have two distinct chitin synthases. Mol Biochem Parasitol 142(1):126–132CrossRefGoogle Scholar
  16. Fuhrman JA, Lane WS, Smith RF, Piessens WF, Perler FB (1992) Transmission-blocking antibodies recognize microfilarial chitinase in brugian lymphatic filariasis. Proc Natl Acad Sci USA. 89(5):1548–1552CrossRefGoogle Scholar
  17. Gao B, Allen R, Maier T, McDermott JP, Davis EL, Baum TJ, Hussey RS (2002) Characterisation and developmental expression of a chitinase gene in Heterodera glycines. Int J Parasitol 32(10):1293–1300CrossRefGoogle Scholar
  18. Garner AL, Gloeckner C, Tricoche N, Zakhari JS, Samje M, Cho-Ngwa F, Lustigman S, Janda KD (2011) Design, synthesis, and biological activities of closantel analogues: structural promiscuity and its impact on Onchocerca volvulus. J Med Chem 54(11):3963–3972CrossRefGoogle Scholar
  19. Geng JM, Plenefisch J, Komuniecki PR et al (2002) Secretion of a novel developmentally regulated chitinase (family 19 glycosyl hydrolase) into the perivitelline fluid of the parasitic nematode, Ascaris suum. Mol Biochem Parasitol 124:11–21CrossRefGoogle Scholar
  20. Gloeckner C, Garner AL, Mersha F, Oksov Y, Tricoche N, Eubanks LM, Lustigman S, Kaufmann GF, Janda KD (2010) Repositioning of an existing drug for the neglected tropical disease Onchocerciasis. Proc Natl Acad Sci USA. 107(8):3424–3429CrossRefGoogle Scholar
  21. Gooyit M, Harris TL, Tricoche N, Javor S, Lustigman S, Janda KD (2015) Onchocerca volvulus Molting Inhibitors Identified through Scaffold Hopping. ACS Infect Dis. 1(5):198–202CrossRefGoogle Scholar
  22. Hanazawa M, Mochii M, Ueno N, Kohara Y, Iino Y (2001) Use of cDNA subtraction and RNA interference screens in combination reveals genes required for germ-line development in Caenorhabditis elegans. Proc Natl Acad Sci USA. 98(15):8686–8691CrossRefGoogle Scholar
  23. Harris MT, Lai K, Arnold K, Martinez HF, Specht CA, Fuhrman JA (2000) Chitin synthase in the filarial parasite Brugia malayi. Mol Biochem Parasitol. 111(2):351–362CrossRefGoogle Scholar
  24. Harris MT, Fuhrman JA (2002) Structure and expression of chitin synthase in the parasitic nematode Dirofilaria immitis. Mol Biochem Parasitol 122(2):231–234CrossRefGoogle Scholar
  25. Johnston WL, Krizus A, Dennis JW (2010) Eggshell chitin and chitin-interacting proteins prevent polyspermy in C. elegans. Curr Biol 20(21):1932–1937CrossRefGoogle Scholar
  26. Ju Y, Wang X, Guan T, Peng D, Li H (2016). Versatile glycoside hydrolase family 18 chitinases for fungi ingestion and reproduction in the pinewood nematode Bursaphelenchus xylophilus. Int J Parasitol. 46(12):819–828Google Scholar
  27. Jung WJ, Jung SJ, An KN, Jin YL, Park RD, Kim KY, Shon BK, Kim TH (2002) Effect of chitinase-producing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J Microbiol Biotechnol 12:865–871Google Scholar
  28. Maeda I, Kohara Y, Yamamoto M, Sugimoto A (2001) Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 11(3):171–176CrossRefGoogle Scholar
  29. Melo TA, Serra IMRS, Silva GSS, Sousa RMS (2012) Produtos naturais aplicados para manejo de Meloidogyne incognita em tomateiros. Summa Phytopathol 3:223–227CrossRefGoogle Scholar
  30. Mota L, dos Santos MA (2016) Chitin and chitosan on Meloidogyne javanica management and on chitinase activity in tomato plants. Trop Plant Pathol. 2:84–90CrossRefGoogle Scholar
  31. Neuhaus B, Bresciani J, Peters W (1997) Ultrastructure of the pharyngeal cuticle and lectin labelling with wheat germ agglutinin-gold conjugate indicating chitin in the pharyngeal cuticle of Oesophagostomum dentatum (Strongylida Nematoda). Acta Zool. 78:205–213CrossRefGoogle Scholar
  32. Nicol JM, Turner SJ, Coyne DL, Nijs Ld, Hockland S, Maafi ZT. (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C(Eds.) Genomics and Molecular Genetics of Plant-Nematode Interactions, Netherlands: Springer, pp 21–43Google Scholar
  33. Perry RN, Clarke AJ (1981) Hatching mechanisms of nematodes. Parasitology 83:435–449CrossRefGoogle Scholar
  34. Premachandran D, Von Mende N, Hussey RS, McClure MA (1988) A method for staining nematode secretions and structures. J Nematol. 20:70–78PubMedPubMedCentralGoogle Scholar
  35. Sharon E, Chet I, Bar-Eyal M, Spiegel Y (2009) Biocontrol of root-knot nematodes by Trichoderma-modes of action. In: Steinberg C, Edel-Hermann V, Friberg H, Alabouvette C, Tronsmo A (eds) Multitrophic interactions in soil. IOBC/WPRS Bull, vol 42, pp 159–163Google Scholar
  36. Siddique S, Grundler FM (2018) Parasitic nematodes manipulate plant development to establish feeding sites. Curr Opin Microbiol 46:102–108CrossRefGoogle Scholar
  37. Spiegel Y, Chet I (1985) Chitin synthetase inhibitors and their potential to control the root-knot nematode, Meloidogyne javanica. Nematologica. 31:480–482CrossRefGoogle Scholar
  38. Spiegel Y, Cohn E (1985) Chitin is present in gelatinous matrix of Meloidogyne. Revue Nematol. 8:184–186Google Scholar
  39. Tachu B, Pillai S, Lucius R, Pogonka T (2008) Essential role of chitinase in the development of the filarial nematode Acanthocheilonema viteae. Infect Immun 76(1):221–228CrossRefGoogle Scholar
  40. Twomey U, Warrior P, Kerry BR, Perry RN (2000) Effects of the biological nematicide, DiTera®, on hatching of Globodera rostochiensis and G. pallida. Nematology. 2:355–362CrossRefGoogle Scholar
  41. van Megen H, van den Elsen S, Holterman M, Karssen G, Mooyman P, Bongers T, Holovachov O, Bakker J, Helder J (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology. 11:927–950CrossRefGoogle Scholar
  42. van Nguyen N, Kim Oh KT, Jung W et al (2007) The role of chitinase from Lecanicillium antillanum B-3 in parasitism to root-knot nematode Meloidogyne incognita eggs. Biocontrol Sci Technol 17:1047–1058CrossRefGoogle Scholar
  43. Veronico P, Gray LJ, Jones JT, Bazzicalupo P, Arbucci S, Cortese MR, Di Vito M, De Giorgi C (2001) Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol Genet Genom 266:28–34CrossRefGoogle Scholar
  44. Wu Y, Egerton G, Underwood AP, Sakuda S, Bianco AE (2001) Expression and secretion of a larval-specific chitinase (Family 18 glycosyl hydrolase) by the infective stages of the parasitic nematode. Onchocerca volvulus. J Biol Chem. 276(45):42557–42564CrossRefGoogle Scholar
  45. Zhang Y, Foster JM, Nelson LS, Ma D, Carlow CK (2005) The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Dev Biol 285(2):330–339CrossRefGoogle Scholar
  46. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Rev 2(3):204–226Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations