Advertisement

Lactic Acid Bacteria Starter

  • Wei ChenEmail author
  • Feng Hang
Chapter

Abstract

A starter culture can be defined as a microbiological preparation containing numerous cells of at least one microorganism, which is added to a raw material to produce fermented food and can accelerate and control the fermentation process (Leroy and Vuyst 2004).

References

  1. Aghababaie M, Khanahmadi M, Beheshti M (2015) Developing a kinetic model for co-culture of yogurt starter bacteria growth in pH controlled batch fermentation. J Food Eng 166:72–79CrossRefGoogle Scholar
  2. Aguilera J, Karel M (1997) Preservation of biological materials under desiccation. Crit Rev Food Sci Nutr 37(3):287–309PubMedCrossRefGoogle Scholar
  3. Aguirre-Ezkauriatza E, Aguilar-Yáñez J, Ramírez-Medrano A et al (2010) Production of probiotic biomass (Lactobacillus casei) in goat milk whey: comparison of batch, continuous and fed-batch cultures. Bioresour Technol 101(8):2837–2844PubMedCrossRefGoogle Scholar
  4. Amin T, Thakur M, Jain S (2013) Microencapsulation-the future of probiotic cultures. J Microbiol Biotechnol Food Sci 3(1):35Google Scholar
  5. Ananta E, Volkert M, Knorr D (2005) Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int Dairy J 15(4):399–409CrossRefGoogle Scholar
  6. Basholli-Salihu M, Mueller M, Salar-Behzadi S et al (2014) Effect of lyoprotectants on β-glucosidase activity and viability of Bifidobacterium infantis after freeze-drying and storage in milk and low pH juices. LWT-Food Sc Technol 57(1):276–282CrossRefGoogle Scholar
  7. Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Saf 3(1):1–20CrossRefGoogle Scholar
  8. Bergenholtz ÅS, Wessman P, Wuttke A et al (2012) A case study on stress preconditioning of a Lactobacillus strain prior to freeze-drying. Cryobiology 64(3):152–159PubMedCrossRefGoogle Scholar
  9. Carminati D, Giraffa G, Zago M, et al. (2015) Lactic acid bacteria for dairy fermentations: specialized starter cultures to improve dairy products. In: Biotechnol lactic acid bacteria: Nov appl: 191CrossRefGoogle Scholar
  10. Chang HN, Kim NJ, Kang J et al (2011) Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess Biosyst Eng 34(4):419–431PubMedCrossRefGoogle Scholar
  11. Chang HN, Jung K, Lee JC et al (2014) Multi-stage continuous high cell density culture systems: a review. Biotechnol Adv 32(2):514–525PubMedCrossRefGoogle Scholar
  12. Chávez B, Ledeboer A (2007) Drying of probiotics: optimization of formulation and process to enhance storage survival. Dry Technol 25(7–8):1193–1201CrossRefGoogle Scholar
  13. Chitprasert P, Sudsai P, Rodklongtan A (2012) Aluminum carboxymethyl cellulose–rice bran microcapsules: enhancing survival of Lactobacillus reuteri KUB-AC5. Carbohydr Polym 90(1):78–86PubMedCrossRefGoogle Scholar
  14. Chun L, Li-bo L, Di S et al (2012) Response of osmotic adjustment of Lactobacillus bulgaricus to NaCl stress. J Northeast Agric Univ (Engl Ed) 19(4):66–74Google Scholar
  15. Cook MT, Tzortzis G, Charalampopoulos D et al (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162(1):56–67PubMedCrossRefGoogle Scholar
  16. de Lara Pedroso D, Thomazini M, Heinemann RJB et al (2012) Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int Dairy J 26(2):127–132CrossRefGoogle Scholar
  17. de Souza Oliveira RP, Torres BR, Perego P et al (2012) Co-metabolic models of Streptococcus thermophilus in co-culture with Lactobacillus bulgaricus or Lactobacillus acidophilus. Biochem Eng J 62:62–69CrossRefGoogle Scholar
  18. Deb R, Ahmed AB (2013) Pellets and pelletization techniques: a critical review. Int Res J Pharm 4(4):90–95CrossRefGoogle Scholar
  19. Dianawati D, Mishra V, Shah NP (2013) Stability of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris during storage at room temperature at low aw. Food Res Int 50(1):259–265CrossRefGoogle Scholar
  20. Dolly P, Anishaparvin A, Joseph G et al (2011) Microencapsulation of Lactobacillus plantarum (mtcc 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions. J Microencapsul 28(6):568–574PubMedGoogle Scholar
  21. Foerst P, Kulozik U, Schmitt M et al (2012) Storage stability of vacuum-dried probiotic bacterium Lactobacillus paracasei F19. Food Bioprod Process 90(2):295–300CrossRefGoogle Scholar
  22. França M, Panek A, Eleutherio E (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol 146(4):621–631PubMedCrossRefGoogle Scholar
  23. Fu N, Chen XD (2011) Towards a maximal cell survival in convective thermal drying processes. Food Res Int 44(5):1127–1149CrossRefGoogle Scholar
  24. Gautier J, Passot S, Pénicaud C et al (2013) A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1. J Dairy Sci 96(9):5591–5602PubMedCrossRefGoogle Scholar
  25. Ghandi A, Powell I, Chen XD et al (2012) Drying kinetics and survival studies of dairy fermentation bacteria in convective air drying environment using single droplet drying. J Food Eng 110(3):405–417CrossRefGoogle Scholar
  26. Golowczyc M, Silva J, Abraham A et al (2010) Preservation of probiotic strains isolated from kefir by spray drying. Lett Appl Microbiol 50(1):7–12PubMedCrossRefGoogle Scholar
  27. Gong P, Zhang L, Han X et al (2014) Injury mechanisms of lactic acid bacteria starter cultures during spray drying: a review. Dry Technol 32(7):793–800CrossRefGoogle Scholar
  28. Jiménez M, Flores-Andrade E, Pascual-Pineda LA et al (2015) Effect of water activity on the stability of Lactobacillus paracasei capsules. LWT-Food Sci Technol 60(1):346–351CrossRefGoogle Scholar
  29. Jung I, Lovitt RW (2010) A comparative study of the growth of lactic acid bacteria in a pilot scale membrane bioreactor. J Chem Technol Biotechnol 85(9):1250–1259CrossRefGoogle Scholar
  30. Khan NH, Korber DR, Low NH et al (2013) Development of extrusion-based legume protein isolate–alginate capsules for the protection and delivery of the acid sensitive probiotic, Bifidobacterium adolescentis. Food Res Int 54(1):730–737CrossRefGoogle Scholar
  31. Kitamura Y, Itoh H, Echizen H et al (2009) Experimental vacuum spray drying of probiotic foods included with lactic acid bacteria. J Food Process Preserv 33(6):714–726CrossRefGoogle Scholar
  32. Klemmer KJ, Korber DR, Low NH et al (2011) Pea protein-based capsules for probiotic and prebiotic delivery. Int J Food Sci Technol 46(11):2248–2256CrossRefGoogle Scholar
  33. Krzywonos M, Eberhard T (2011) High density process to cultivate Lactobacillus plantarum biomass using wheat stillage and sugar beet molasses. Electron J Biotechnol 14(2):6–6CrossRefGoogle Scholar
  34. Lapsiri W, Bhandari B, Wanchaitanawong P (2012) Viability of Lactobacillus plantarum TISTR 2075 in different protectants during spray drying and storage. Dry Technol 30(13):1407–1412CrossRefGoogle Scholar
  35. Lee JC, Kim DY, Oh DJ et al (2008) Long-term operation of depth filter perfusion systems (DFPS) for monoclonal antibody production using recombinant CHO cells: effect of temperature, pH, and dissolved oxygen. Biotechnol Bioprocess Eng 13(4):401–409CrossRefGoogle Scholar
  36. Leroy F, Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78CrossRefGoogle Scholar
  37. Ma C, Ma A, Gong G et al (2015) Cracking Streptococcus thermophilus to stimulate the growth of the probiotic Lactobacillus casei in co-culture. Int J Food Microbiol 210:42–46PubMedCrossRefGoogle Scholar
  38. Martín MJ, Lara-Villoslada F, Ruiz MA et al (2015) Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol 27:15–25CrossRefGoogle Scholar
  39. Miao S, Mills S, Stanton C et al (2008) Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Sci Technol 88(1):19–30CrossRefGoogle Scholar
  40. Nag A, Das S (2013) Improving ambient temperature stability of probiotics with stress adaptation and fluidized bed drying. J Funct Foods 5(1):170–177CrossRefGoogle Scholar
  41. Poddar D, Das S, Jones G et al (2014) Stability of probiotic Lactobacillus paracasei during storage as affected by the drying method. Int Dairy J 39(1):1–7CrossRefGoogle Scholar
  42. Rajam R, Anandharamakrishnan C (2015) Spray freeze drying method for microencapsulation of Lactobacillus plantarum. J Food Eng 166:95–103CrossRefGoogle Scholar
  43. Ramchandran L, Sanciolo P, Vasiljevic T et al (2012) Improving cell yield and lactic acid production of Lactococcus lactis ssp. cremoris by a novel submerged membrane fermentation process. J Membr Sci 403:179–187CrossRefGoogle Scholar
  44. Reddy KBPK, Awasthi SP, Madhu AN et al (2009a) Role of cryoprotectants on the viability and functional properties of probiotic lactic acid bacteria during freeze drying. Food Biotechnol 23(3):243–265CrossRefGoogle Scholar
  45. Reddy KBPK, Madhu AN, Prapulla SG (2009b) Comparative survival and evaluation of functional probiotic properties of spray-dried lactic acid bacteria. Int J Dairy Technol 62(2):240–248CrossRefGoogle Scholar
  46. Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51(4):422–430PubMedCrossRefGoogle Scholar
  47. Santivarangkna C, Wenning M, Foerst P et al (2007) Damage of cell envelope of Lactobacillus helveticus during vacuum drying. J Appl Microbiol 102(3):748–756PubMedCrossRefGoogle Scholar
  48. Savini M, Cecchini C, Verdenelli NC et al (2010) Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents. Nutrients 2(3):330–339PubMedPubMedCentralCrossRefGoogle Scholar
  49. Schell D, Beermann C (2014) Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food Res Int 62:308–314CrossRefGoogle Scholar
  50. Semyonov D, Ramon O, Kaplun Z et al (2010) Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res Int 43(1):193–202CrossRefGoogle Scholar
  51. Semyonov D, Ramon O, Shimoni E (2011) Using ultrasonic vacuum spray dryer to produce highly viable dry probiotics. LWT-Food Sci Technol 44(9):1844–1852CrossRefGoogle Scholar
  52. Serrazanetti DI, Guerzoni ME, Corsetti A et al (2009) Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol 26(7):700–711PubMedCrossRefGoogle Scholar
  53. Shao Y, Gao S, Guo H et al (2014) Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization. J Dairy Sci 97(3):1270–1280PubMedCrossRefGoogle Scholar
  54. Shi LE, Li ZH, Li DT et al (2013a) Encapsulation of probiotic Lactobacillus bulgaricus in alginate–milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J Food Eng 117(1):99–104CrossRefGoogle Scholar
  55. Shi LE, Li ZH, Zhang ZL et al (2013b) Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure. LWT-Food Sci Technol 54(1):147–151CrossRefGoogle Scholar
  56. Smid EJ, Lacroix C (2013) Microbe–microbe interactions in mixed culture food fermentations. Curr Opin Biotechnol 24(2):148–154PubMedCrossRefGoogle Scholar
  57. Sohail A, Turner MS, Coombes A et al (2011) Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int J Food Microbiol 145(1):162–168PubMedCrossRefGoogle Scholar
  58. Song H, Yu W, Liu X et al (2014) Improved probiotic viability in stress environments with post-culture of alginate–chitosan microencapsulated low density cells. Carbohydr Polym 108:10–16PubMedCrossRefGoogle Scholar
  59. Strasser S, Neureiter M, Geppl M et al (2009) Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J Appl Microbiol 107(1):167–177PubMedCrossRefGoogle Scholar
  60. Sung IK, Han NS, Kim BS (2012) Co-production of biomass and metabolites by cell retention culture of Leuconostoc citreum. Bioprocess Biosyst Eng 35(5):715–720PubMedCrossRefGoogle Scholar
  61. Sunny-Roberts E, Knorr D (2009) The protective effect of monosodium glutamate on survival of Lactobacillus rhamnosus GG and Lactobacillus rhamnosus E-97800 (E800) strains during spray-drying and storage in trehalose-containing powders. Int Dairy J 19(4):209–214CrossRefGoogle Scholar
  62. Teixeira P, Castro H, Kirby R (1996) Evidence of membrane lipid oxidation of spray-dried Lactobacillus bulgaricus during storage. Lett Appl Microbiol 22(1):34–38CrossRefGoogle Scholar
  63. To B, Etzel MR (1997) Spray drying, freeze drying, or freezing of three different lactic acid bacteria species. J Food Sci 62(3):576–578CrossRefGoogle Scholar
  64. Tsakalidou E, Papadimitriou K (2011) Stress responses of lactic acid bacteria, Food Microbiology and Food Safety. Springer, New York, pp 23–53CrossRefGoogle Scholar
  65. Velly H, Fonseca F, Passot S et al (2014) Cell growth and resistance of Lactococcus lactis subsp. lactis TOMSC161 following freezing, drying and freeze-dried storage are differentially affected by fermentation conditions. J Appl Microbiol 117(3):729–740PubMedCrossRefGoogle Scholar
  66. Velly H, Bouix M, Passot S et al (2015) Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of Lactococcus lactis subsp. lactis TOMSC161. Appl Microbiol Biotechnol 99(2):907–918PubMedCrossRefGoogle Scholar
  67. Wang J, Korber DR, Low NH et al (2014) Entrapment, survival and release of Bifidobacterium adolescentis within chickpea protein-based microcapsules. Food Res Int 55:20–27CrossRefGoogle Scholar
  68. Xu M, Gagné-Bourque F, Dumont MJ et al (2016) Encapsulation of Lactobacillus casei ATCC 393 cells and evaluation of their survival after freeze-drying, storage and under gastrointestinal conditions. J Food Eng 168:52–59CrossRefGoogle Scholar
  69. Zacharof MP, Lovitt RW (2013) Partially chemically defined liquid medium development for intensive propagation of industrial fermentation lactobacilli strains. Ann Microbiol 63(4):1235–1245CrossRefGoogle Scholar
  70. Zhang Y, Kumar A, Hardwidge P, Tanaka T et al (2016) D-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum. Biotechnol Prog 32(2):271–278PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2019

Authors and Affiliations

  1. 1.Jiangnan UniversityWuxiChina

Personalised recommendations