Advertisement

Lactic Acid Bacteria and Conjugated Fatty Acids

  • Wei ChenEmail author
  • Bo Yang
  • Jianxin Zhao
Chapter

Abstract

Conjugated fatty acid (CFA) refers to a group of positional and geometric isomers of polyunsaturated fatty acid possessing conjugated double bonds. Conjugated double bonds, conjugated triple bonds, and conjugated quadruple bonds are the typical conjugated fatty acid forms, in which conjugated octadecadienoic acid and conjugated octadecatrienoic acid are most common isomers, such as conjugated linoleic acid (CLA), conjugated linolenic acid (CLNA), and conjugated steariconic acid CSA (Yang et al. 2015).

References

  1. Alonso L, Cuesta EP, Gilliland SE (2003) Production of free conjugated linoleic acid by Lactobacillus acidophilus and Lactobacillus casei of human intestinal origin. J Dairy Sci 86(6):1941–1946PubMedCrossRefGoogle Scholar
  2. Ando A, Ogawa J, Kishino S, Shimizu S (2003) CLA production from ricinoleic acid by lactic acid bacteria. J Am Oil Chem Soc 80(9):889–894CrossRefGoogle Scholar
  3. Andrade JC, Ascenção K, Gullón P, Henriques SMS, Pinto JMS, Rocha-Santos TAP, Gomes AM (2012) Production of conjugated linoleic acid by food-grade bacteria: a review. Int J Dairy Technol 65(4):467–481CrossRefGoogle Scholar
  4. Barrett E, Ross RP, Fitzgerald GF, Stanton C (2007) Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Appl Environ Microbiol 73(7):2333–2337PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bauman DE, Corl BA, Baumgard LH (2001) Conjugated linoleic acid (CLA) and the dairy cow. In: Garnsworthy PC, Wiseman J (eds) Recent advances in animal Nutrition. Nottingham University Press, Nottingham, pp 221–250Google Scholar
  6. Choi NJ, Park HG, Kim YJ, Kim IH, Kang HS, Yoon CS, Yoon HG, Park SI, Lee JW, Chung SH (2008) Utilization of monolinolein as a substrate for conjugated linoleic acid production by Bifidobacterium breve LMC 520 of human neonatal origin. J Agric Food Chem 56:10908–10912PubMedCrossRefGoogle Scholar
  7. Chung SH, Kim IH, Park HG, Kang HS, Yoon CS, Jeong HY, Choi NJ, Kwon EG, Kim YJ (2008) Synthesis of conjugated linoleic acid by human-derived Bifidobacterium breve LMC 017: utilization as a functional starter culture for milk fermentation. J Agric Food Chem 56(9):3311–3316PubMedCrossRefGoogle Scholar
  8. Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145PubMedCrossRefGoogle Scholar
  9. Coakley M, Banni S, Johnson MC, Mills S, Devery R, Fitzgerald G, Stanton C (2009) Inhibitory effect of conjugated α-linolenic acid from bifidobacteria of intestinal origin on SW480 cancer cells. Lipids 44(3):249–256PubMedCrossRefGoogle Scholar
  10. Corl BA, Baumgard LH, Dwyer DA, Griinari JM, Phillips BS, Bauman DE (2001) The role of delta(9)-desaturase in the production of cis-9, trans-11 CLA. J Nutr Biochem 12(11):622–630PubMedCrossRefGoogle Scholar
  11. Destaillats F, Trottier JP, Galvez JMG, Angers P (2005) Analysis of α-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. J Dairy Sci 88(9):3231–3239PubMedCrossRefGoogle Scholar
  12. Ewaschuk JB, Walker JW, Diaz H, Madsen KL (2006) Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr 136(6):1483PubMedCrossRefGoogle Scholar
  13. Florence ACR, Béal C, Silva RC, Bogsan CSB, Pilleggi ALOS, Gioielli LA, Oliveiraa MN (2012) Fatty acid profile, trans-octadecenoic, α-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks. Food Chem 135(4):2207–2214PubMedCrossRefGoogle Scholar
  14. Gorissen L, Weckx S, Vlaeminck B, Raes K, De VL, De SS, Leroy F (2011) Linoleate isomerase activity occurs in lactic acid bacteria strains and is affected by pH and temperature. J Appl Microbiol 111(3):593–606PubMedCrossRefGoogle Scholar
  15. Gorrisen L, Raes K, Weckx S, Dannenberger D, Leroy F, De Vuyst L, De Smet S (2010) Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species. Appl Microbiol Biotechnol 87(6):2257–2266CrossRefGoogle Scholar
  16. Gu ST, Chen HQ, Ye Q, Tian FW, Chen W, Zhang H (2008) Study on location of linoleate isomerase from Lactobacillus plantarum ZS2058. Sci Technol Food Ind 29(12):57–60Google Scholar
  17. Hennessy AA, Ross RP, Devery R, Stanton C (2010) Optimization of a reconstituted skim milk based medium for enhanced CLA production by bifidobacteria. J Appl Microbiol 106(4):1315–1327CrossRefGoogle Scholar
  18. Hennessy AA, Barrett E, Ross RP, Fitzgerald GF, Devery R, Stanton C (2012) The production of conjugated α-linolenic, γ-linolenic and stearidonic acids by strains of bifidobacteria and propionibacteria. Lipids 47(3):313PubMedCrossRefGoogle Scholar
  19. Hernandezmendoza A, Lopezhernandez A, Hill CG, Garcia HS (2010) Bioconversion of linoleic acid to conjugated linoleic acid by Lactobacillus reuteri under different growth conditions. J Chem Technol Biotechnol Biotechnol 84(2):180–185CrossRefGoogle Scholar
  20. Jensen RG (2002) The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 85(2):295–350PubMedCrossRefGoogle Scholar
  21. Kepler CR, Tove SB (1967) Biohydrogenation of unsaturated fatty acids. III. Purification and properties of a linoleate delta-12-cis, delta-11-trans-isomerase from Butyrivibrio fibrisolvens. J Biol Chem 246(16):5686–5692Google Scholar
  22. Kepler CR, Hirons KP, Mcneill JJ, Tove SB (1966) Intermediates and products of the biohydrogenation of linoleic acid by Butyrinvibrio fibrisolvens. J Biol Chem 241(6):1350–1354PubMedGoogle Scholar
  23. Kepler CR, Tucker WP, Tove SB (1970) Biohydrogenation of unsaturated fatty acids. IV. Substrate specificity and inhibition of linoleate delta-12-cis, delta-11-trans-isomerase from Butyrivibrio fibrisolvens. J Biol Chem 245(14):3612–3620PubMedGoogle Scholar
  24. Kepler CR, Tucker WP, Tove SB (1971) Biohydrogenation of unsaturated fatty acids. V. Stereospecificity of proton addition and mechanism of action of linoleic acid delta 12-cis, delta 11-trans-isomerase from Butyrivibrio fibrisolvens. J Biol Chem 246(9):2765–2771PubMedGoogle Scholar
  25. Khosravi A, Safari M, Khodaiyan F, Gharibzahedi SM (2015) Bioconversion enhancement of conjugated linoleic acid by Lactobacillus plantarum using the culture media manipulation and numerical optimization. J Food Sci Technol 52(9):5781–5789PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kil KS, Cunningham MW, Barnett LA (1994) Cloning and sequence analysis of a gene encoding a 67-kilodalton myosin-cross-reactive antigen of Streptococcus pyogenes reveals its similarity with class II major histocompatibility antigens. Infect Immun 62(6):2440–2449PubMedPubMedCentralGoogle Scholar
  27. Kim YJ, Liu RH (2010) Increase of conjugated linoleic acid content in milk by fermentation with lactic acid bacteria. J Food Sci 67(5):1731–1737CrossRefGoogle Scholar
  28. Kishino S, Ogawa J, Omura Y, Matsumura K, Shimizu S (2002) Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. J Am Oil Chem Soc 79(2):159–163CrossRefGoogle Scholar
  29. Kishino S, Ogawa J, Ando A, Yokozeki K, Shimizu S (2010) Microbial production of conjugated γ-linolenic acid from γ-linolenic acid by Lactobacillus plantarum AKU 1009a. J Appl Microbiol 108(6):2012–2018PubMedCrossRefGoogle Scholar
  30. Kishino S, Park SB, Takeuchi M, Yokozeki K, Shimizu S, Ogawa J (2011) Novel multi-component enzyme machinery in lactic acid bacteria catalyzing C=C double bond migration useful for conjugated fatty acid synthesis. Biochem Biophys Res Commun 416(1):188–193PubMedCrossRefGoogle Scholar
  31. Kishino S, Takeuchi M, Park S-B, Hirata A, Kitamura N, Kunisawa J, Ogawa J (2013) Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc Natl Acad Sci U S A 110(44):17808–17813PubMedPubMedCentralCrossRefGoogle Scholar
  32. Lee K, Lee Y (2009) Production of c9,t11- and t10,c12-conjugated linoleic acids in humans by Lactobacillus rhamnosus PL60. J Microbiol Biotechnol 19(12):1617PubMedCrossRefGoogle Scholar
  33. Li H, Liu Y, Bao Y, Liu X, Zhang H (2012) Conjugated linoleic acid conversion by six Lactobacillus plantarum strains cultured in MRS broth supplemented with sunflower oil and soymilk. J Food Sci 77(6):M330–M336PubMedCrossRefGoogle Scholar
  34. Lin TY, Lin CW, Lee CH (1999) Conjugated linoleic acid concentration as affected by lactic cultures and added linoleic acid. Food Chem 69(1):27–31CrossRefGoogle Scholar
  35. Maia MRG, Chaudhary LC, Figueres L, Wallace RJ (2007) Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 91(4):303–314PubMedCrossRefGoogle Scholar
  36. Maia MR, Chaudhary LC, Bestwick CS, Richardson AJ, Mckain N, Larson TR, Wallace RJ (2010) Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol 10(1):52PubMedPubMedCentralCrossRefGoogle Scholar
  37. Nieuwenhove CPV, Oliszewski R, González SN, Chaia ABP (2010) Conjugated linoleic acid conversion by dairy bacteria cultured in MRS broth and buffalo milk. Lett Appl Microbiol 44(5):467–474CrossRefGoogle Scholar
  38. Nugteren DH, Christ E (1987) Naturally occurring conjugated octadecatrienoic acids are strong inhibitors of prostaglandin biosynthesis. Prostaglandins 33(3):403–417PubMedCrossRefGoogle Scholar
  39. O’Connell KJ, Motherway MO, Hennessey AA, Brodhun F, Ross RP, Feussner I, Stanton C, Fitzferald GF, van Sinderen D (2013) Identification and characterization of an oleate hydratase-encoding gene from Bifidobacterium breve. Bioengineered 4(5):313–321PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ogawa J, Matsumura K, Kishino S, Omura Y, Shimizu S (2001) Conjugated linoleic acid accumulation via 10-hydroxy-12 octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl Environ Microbiol 67(3):1246–1252PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ogawa J, Kishino S, Ando A, Sugimoto S, Mihara K, Shimizu S (2005) Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 100(4):355–364PubMedCrossRefGoogle Scholar
  42. Oh DK, Hong GH, Lee Y, Min S, Sin HS, Cho SK (2003) Production of conjugated linoleic acid by isolated Bifidobacterium strains. World J Microbiol Biotechnol 19(9):907–912CrossRefGoogle Scholar
  43. Park HG, Heo W, Kim SB, Kim HS, Bae GS, Chung SH, Kim YJ (2011) Production of conjugated linoleic acid (CLA) by Bifidobacterium breve LMC520 and its compatibility with CLA-producing rumen bacteria. J Agric Food Chem 59(3):984–988PubMedCrossRefGoogle Scholar
  44. Polan CE, Mcneill JJ, Tove SB (1964) Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol 88(4):1056–1064PubMedPubMedCentralGoogle Scholar
  45. Rodríguez-Alcalá LM, Braga T, Malcata FX, Gomes A, Fontecha J (2011) Quantitative and qualitative determination of CLA produced by Bifidobacterium and lactic acid bacteria by combining spectrophotometric and Ag+ HPLC techniques. Food Chem 125(4):1373–1378CrossRefGoogle Scholar
  46. Romero-Pérez GA, Inoue R, Ushida K, Yajima T (2013) A rapid method of screening lactic acid bacterial strains for conjugated linoleic acid production. Biosci Biotechnol Biochem 77(3):648–650PubMedCrossRefGoogle Scholar
  47. Rosberg-Cody E, Ross RP, Hussey S, Ryan CA, Murphy BP, Fitzgerald GF, Devery R, Stanton C (2004) Mining the microbiota of the neonatal gastrointestinal tract for conjugated linoleic acid-producing bifidobacteria. Appl Environ Microbiol 70(8):4635–4641PubMedPubMedCentralCrossRefGoogle Scholar
  48. Rosberg-Cody E, Liavonchanka A, Gobel C, Ross RP, O’Sullivan O, Fitzgerald GF, Stanton C (2011) Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection. BMC Biochem 12:9PubMedPubMedCentralCrossRefGoogle Scholar
  49. Rosenfeld IS, Tove SB (1971) Biohydrogenation of unsaturated fatty acids. VI. Source of hydrogen and stereospecificity of reduction. J Biol Chem 246(16):5025PubMedGoogle Scholar
  50. Rosson RA, Grund AD, Deng MD, Sanchez-Riera F (1999) Linoleate isomerase. World Patent, WO-99/32604 A1Google Scholar
  51. Smith CR Jr (1971) Occurrence of unusual fatty acids in plants. Prog Chem Fats Other Lipids 11:137,139–137,177CrossRefGoogle Scholar
  52. Sun OL, Chang SK, Cho SK, Choi HJ, Ji GE, Oh DK (2003) Bioconversion of linoleic acid into conjugated linoleic acid during fermentation and by washed cells of Lactobacillus reuteri. Biotechnol Lett 25(12):935–938CrossRefGoogle Scholar
  53. Volkov A, Liavonchanka A, Kamneva O, Fiedler T, Goebel C, Kreikemeyer B, Feussner I (2010) Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J Biol Chem 285(14):10353–10361PubMedPubMedCentralCrossRefGoogle Scholar
  54. Xu S, Boylston TD, Glatz BA (2004) Effect of lipid source on probiotic bacteria and conjugated linoleic acid formation in milk model systems. J Am Oil Chem Soc 81(6):589–595CrossRefGoogle Scholar
  55. Xu QY, Chen HQ, Tian FW, Zhao JX, Zhang H, Chen W (2008) Analysis of conjugated linoleic acid in the bioconversion process of Lactobacillus plantarum ZS2058. Food Ferment Ind 1:110–115Google Scholar
  56. Yang B, Chen H, Song Y, Chen YQ, Zhang H, Chen W (2013) Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases. Biotechnol Lett 35(1):75–81PubMedCrossRefGoogle Scholar
  57. Yang B, Chen H, Gu Z, Tian F, Ross RP, Stanton C, Zhang H (2014) Synthesis of conjugated linoleic acid by the linoleate isomerase complex in food-derived lactobacilli. J Appl Microbiol 117(2):430–439PubMedPubMedCentralCrossRefGoogle Scholar
  58. Yang B, Chen H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen W (2015) Review of the roles of conjugated linoleic acid in health and disease. J Funct Foods 15:314–325CrossRefGoogle Scholar
  59. Yang B, Gao H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen W (2017) Bacterial conjugated linoleic acid production and their applications. Prog Lipid Res 68:26–36PubMedCrossRefGoogle Scholar
  60. Zhou LH, Zhang H, Chen W, Tian FW (2004) Screening and identification of lactic acid bacteria for biosynthesis of conjugated linoleic acid. J Wuxi Univ Light Ind 23(5):53–57Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2019

Authors and Affiliations

  1. 1.Jiangnan UniversityWuxiChina

Personalised recommendations