A Modified Long Memory Model for Modeling Interminable Long Memory Process

  • Rosmanjawati Abdul Rahman
  • Sanusi A. JibrinEmail author
Conference paper


In this paper, Autoregressive Fractionally Integrated Moving Average (ARFIMA) model was modified and was used for modeling the daily Malaysia Stock Price Index (MSPI). The long and slow decline in autocorrelation function of the data showed the presence of Long Memory (LM) structure. Therefore, the Mandelbrot and Lo rescaled-range tests were used to test the presence of LM. The ARFIMA model then is further extend to the Autoregressive Fractionally Unit Root Integrated Moving Average (ARFURIMA) model. The Geweke and Porter-Hudak (GPH), Local Whittle Estimator (LWE), and Hurst Exponent (HE) were used as the estimation methods to obtain the LM parameters d of both ARFIMA and ARFURIMA models. The best model was identified for each of ARFIMA and ARFURIMA models respectively based on the minimum Akaike Information Criteria (AIC) values. The best fitted model were specified as ARFIMA (2,0.989,0) and ARFURIMA (1,1.069,0). Having compared the residuals analysis of the two models, we conclude that the ARFURIMA model was better in estimating series that exhibit Interminable LM (ILM).


LWE Long memory Financial data ARFIMA model ARFURIMA model 


  1. 1.
    Box, G.C., Jenkins, G.E.P., Reinsel, G.M.: Time Series Analysis: Forecasting and Control, 4th edn. Wiley, Hoboken, NJ (2008)CrossRefGoogle Scholar
  2. 2.
    Charfeddine, L., Guégan, D.: Breaks or long memory behaviour: an empirical investigation. Phys. A 391(22), 5712–5726 (2012). Scholar
  3. 3.
     Qu, Z.: A test against spurious long memory a test against spurious long memory. J. Bus. Econ. Stat. 29(3), 423–438 (2011).
  4. 4.
    Hurst, E.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–799 (1951)Google Scholar
  5. 5.
    Whittle, B.Y.P.: On the variation of yield variance with plot size. Biometrika 43(3), 337–343 (1956). Scholar
  6. 6.
    Mandelbrot, B.B.: Statistical methodology for non-periodic cycles: from the covariance to R/S analysis, vol. 1, pp. 259–290 (1972).
  7. 7.
    Mcleaod, A.I., Hipel, K.W.: Preservation of the rescaled adjusted range I: a reassessment of the Hurst phenomenon. Water Resour. Res. 14, 491–508 (1978).
  8. 8.
    Lo, A.W.: Long-term memory in stock market prices. Econometrica 59, 1279–1313 (1991).
  9. 9.
    Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4(4), 221–238 (1983).
  10. 10.
    Shimotsu, K., Phillips, P.C.B.: Local Whittle estimation of fractional integration. Ann. Stat. 33, 1890–1933 (2005).
  11. 11.
    Nezhad, M.Z., Raoofi, A., Akbarzdeh, M.H.: The existence of long memory property in OPEC oil prices. Asian J. Econ. Model. 4(3), 142–152 (2016).
  12. 12.
    Jibrin, S.A., Musa, Y., Zubair, U.A., Saidu, A.S.: ARFIMA modelling and investigation of structural break(s) in West Texas Inter-mediate and Brent series. CBN J. Appl. Stat. 6(2), 59–79 (2015).
  13. 13.
    Charfeddine, L., Ajmi, A.N.: The Tunisian stock market index volatility: long memory vs. switching regime. Emerg. Mark. Rev. 16, 170–182 (2013).
  14. 14.
    Arouri, M.E.H., Hammoudeh, S., Lahiani, A., Nguyen, D.K.: Long memory and structural breaks in modeling the return and volatility dynamics of precious metals. The Qur. Rev. Econ. Financ. 52(2), 207–218 (2012).
  15. 15.
    Jibrin, S.A.: Data Mining and Modeling of Crude Oil Prices. M.Sc Diss. (2015).
  16. 16.
    Baillie, R.T., Kapetanios, G., Papailias, F.: Bandwidth selection by cross-validation for forecasting long memory financial time series. J. Empir. Financ. 29, 129–143 (2014).
  17. 17.
    Dalla, V.: Power transformations of absolute returns and long memory estimation. J. Empir. Financ. 33, 1–18 (2015). Scholar
  18. 18.
    Granger, C., Joyeux, R.: An introduction to long memory time series models and fractional differencing. J. Time Ser. Anal. 1(1), 15–29 (1980)Google Scholar
  19. 19.
    Box, G., Jenkins, G.: Time series analysis: forecasting and control, revised edn. Holden-Day (1976)Google Scholar
  20. 20.
    Hosking, J.R.M.: Fractional differencing. Biometrika Trust. 68(1), 165–176 (1981).
  21. 21.
    Laurent, S., Doornik, J.A.: G@RCH 7.0: OxMetrics Package for testing LM, Estimating and Forecasting ARFIMA models (2012)Google Scholar
  22. 22.
    Cottrell, A., Lucchetti, R.: Gretl Function Package Guide, gretl documentation (2016).
  23. 23.
    Francq, C., Zakoian, J.M.: Bartlett’s formula for a general class of nonlinear processes. J. Time Ser. Anal. 30, 449–465 (2009)Google Scholar
  24. 24.
    Jarque, C.M., Bera, A.K.: A test for normality of observations and regression residuals. Int. Stat. Rev. 55(2), 163–172 (1987)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4), 987–1007 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rosmanjawati Abdul Rahman
    • 1
  • Sanusi A. Jibrin
    • 1
    • 2
    Email author
  1. 1.School of Mathematical SciencesUniversiti Sains MalaysiaGelugorMalaysia
  2. 2.Department of StatisticsKano University of Science and TechnologyWudilNigeria

Personalised recommendations