Advertisement

Two-Phase Mixed Convection Flow of Dusty Williamson Fluid with Aligned Magnetic Field over a Vertical Stretching Sheet

  • Nur Syamilah ArifinEmail author
  • Syazwani Mohd Zokri
  • Abdul Rahman Mohd Kasim
  • Mohd Zuki Salleh
  • Nurul Farahain Mohammad
Conference paper

Abstract

The mixed convection flow of dusty Williamson fluid over a vertical stretching sheet with the influence of aligned magnetic field is investigated. The mathematical model on two-phase flows of dust particles embedded in Wil-liamson fluid has been considered under Newtonian heating boundary condition by initially applying the similarity transformation to its governing equations. The transformed ordinary differential equations are solved numerically using Runge-Kutta Fehlberg (RKF45) method. Several pertinent parameters such as aligned magnetic field, Williamson parameter, mixed convection parameter, fluid particle interaction parameter, Prandtl number and conjugate parameter on the flow and heat transfer are visualized in graphical form. The results revealed that the fluid particle interaction parameter influencing the fluid velocity which resulted to decrease the fluid motion. The two-phase fluid flow model presented herein can be transformed into classical problem of single phase fluid flow under the condition of the fluid particle interaction parameter is neglected. Therefore, the present mathematical model can be offered as the generalized model of complex fluid with suspended particles

Keywords

Mixed convection Dusty Williamson fluid Stretching sheet Aligned magnetic field Newtonian heating 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support received from Universiti Malaysia Pahang for (PGRS170397, RDU 160330, & RDU 170328).

References

  1. 1.
    Williamson, R.V.: The flow of pseudoplastic materials. Ind. Eng. Chem. 21(11), 1108–1111 (1929).  https://doi.org/10.1021/ie50239a035CrossRefGoogle Scholar
  2. 2.
    Nadeem, S., Hussain, S.T., Lee, C.: Flow of a Williamson fluid over a stretching sheet. Braz J. Chem. Eng. 30(3), 619–625 (2013).  https://doi.org/10.1590/S0104-66322013000300019CrossRefGoogle Scholar
  3. 3.
    Hayat, T., Shafiq, A., Farooq, M.A., Alsulami, H.H., Shehzad, S.A.: Newtonian and Joule Heating effects in two-dimensional flow of Williamson fluid. J. Appl. Fluid Mech. 9(4) (2016).  https://doi.org/10.18869/acadpub.jafm.68.235.24646
  4. 4.
    Nadeem, S., Hussain, S.T.: Flow and heat transfer analysis of Williamson nanofluid. Appl. Nanosci. 4(8), 1005–1012 (2014).  https://doi.org/10.1007/s13204-013-0282-1CrossRefGoogle Scholar
  5. 5.
    Aurangzaib, Kasim, A.R.M., Mohammad, N.F., Shafie, S.: Effect of thermal stratification on MHD free convection with heat and mass transfer over an unsteady stretching surface with heat source, Hall current and chemical reaction. Int. J. Adv. Eng. Sci. Appl. Math. 4(3), 217–225 (2012).  https://doi.org/10.1007/s12572-012-0066-y
  6. 6.
    Aurangzaib, Kasim, A.R.M., Mohammad, N.F., Sharidan, S.: Unsteady MHD mixed convection flow with heat and mass transfer over a vertical plate in a micropolar fluid-saturated porous medium. J. Appl. Sci. Eng. 16(2), 141–150 (2013).  https://doi.org/10.6180/jase.2013.16.2.05
  7. 7.
    Naramgari, S., Sulochana, C.: MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles. Ain. Shams Eng. J. 7(2), 709–716 (2016).  https://doi.org/10.1016/j.asej.2015.05.015CrossRefGoogle Scholar
  8. 8.
    Bhatti, M.M., Zeeshan, A.: Analytic study of heat transfer with variable viscosity on solid particle motion in dusty Jeffery fluid. Mod. Phys. Lett. B 30(16), 1650196 (2016).  https://doi.org/10.1142/S0217984916501967MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kumar, K.G., Gireesha, B.J., Rudraswamy, N.G., Manjunatha, S.: Non linear thermal radiation effect on williamson fluid with particle-Liquid suspension past a stretching surface. Results Phys. (2017).  https://doi.org/10.1016/j.rinp.2017.08.027
  10. 10.
    Siddiqa, S., Hossain, M.A., Saha, S.C.: Two-phase natural convection flow of a dusty fluid. Int. J. Numer. Methods Heat Fluid Flow 25(7), 1542–1556 (2015).  https://doi.org/10.1108/HFF-09-2014-0278MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Arifin, N.S., Zokri, S.M., Kasim, A.R.M., Salleh, M.Z., Mohammad, N.F., Yusoff, W.N.S.W.: Aligned magnetic field on dusty Casson fluid over a stretching sheet with Newtonian heating. Mal. J. Fund. Appl. 13(3), 244–247 (2017).  https://doi.org/10.11113/mjfas.v13n3.592CrossRefGoogle Scholar
  12. 12.
    Salleh, M.Z., Nazar, R., Pop, I.: Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. J. Taiwan Inst. Chem. Eng. 41(6), 651–655 (2010).  https://doi.org/10.1016/j.jtice.2010.01.013CrossRefGoogle Scholar
  13. 13.
    Turkyilmazoglu, M.: Flow of a micropolar fluid due to a porous stretching sheet and heat transfer. Int. J. Non-Linear Mech. 83, 59–64 (2016).  https://doi.org/10.1016/j.ijnonlinmec.2016.04.004CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nur Syamilah Arifin
    • 1
    Email author
  • Syazwani Mohd Zokri
    • 1
  • Abdul Rahman Mohd Kasim
    • 1
  • Mohd Zuki Salleh
    • 1
  • Nurul Farahain Mohammad
    • 2
  1. 1.Applied & Industrial Mathematics Research Group, Faculty of Industrial Sciences & TechnologyUniversiti Malaysia PahangKuantanMalaysia
  2. 2.Department of Computational and Theoretical SciencesKulliyyah of Science, International Islamic University MalaysiaKuantanMalaysia

Personalised recommendations