Advertisement

Topological Properties of Flat Electroencephalography

  • Tan Lit KenEmail author
  • Tahir Ahmad
  • Nor Azwadi Che Sidik
  • Chuan Zun Liang
  • Lee Kee Quen
  • Gan Yee Siang
  • Goh Chien Yong
  • Tey Wah Yen
Conference paper

Abstract

Electroencephalograph is one of the useful and favored instruments in diagnosing various brain disorders especially in epilepsy due to its non-invasive characteristic and ability in providing wealthy information about brain functions. While epileptic foci localization is possible with the aid of EEG signals, it relies greatly on the ability to ex-tract hidden information or pattern within electroencephalography signals. Flat electroencephalography being an enhancement of electroencephalography carries affluent information about seizure process. In the perspective of topological dynamical systems, epileptic seizure and Flat EEG are two equivalent object, hence, findings attained from Flat EEG can be implied on epileptic seizure. In other words, Flat EEG serves as a great alternative platform to study epileptic seizure. Although there exists various researches on Flat EEG utilizing various mathematical models, topological study on its states connectivity has yet to exist. Since both events of epileptic seizure and Flat EEG are continuous processes, topological studies on its states connectivity can provides great in-sight into seizure process. In this paper, structures of the events will be modelled and explored topologically. In addition, the extracted topological properties will also be interpreted physically. Based on the theorems derived, Flat EEG is found to be well-behaved from topological viewpoint.

Keywords

Topology Flat Electroencephalograph Epilepsy 

Notes

Acknowledgement

The authors would like to thank their family members and friends, for their continuous support and assistance. The authors would also like to express his appreciation to Universiti Teknologi Malaysia. This research is supported by the university GUP Tier 1 grant Vot No. 15H42.

References

  1. 1.
    Panayiotopoulos, C.P.: Atlas of Epilepsies. Springer, London (1992)Google Scholar
  2. 2.
    Jahnecke, C.A.N., Schwarz, L., Sovierzoski, M.A., Azevedo, D.F.M., Argoud, F.I.M.: C++ Video-EEG processing system with sights to the epileptic seizure detection. In: World Congress on Medical Physics and Biomedical Engineering. IFMBE Proceedings, pp 1052–1055 (2007)Google Scholar
  3. 3.
    Sanei, S., Chambers, J.: EEG Signals Processing. Wiley, England (2007)CrossRefGoogle Scholar
  4. 4.
    Popp, A.J., Deshaies, E.M.: A Guide to the Primary Care of Neurological Disorders. American Associations of Neurosurgeons, Thieme (2007)Google Scholar
  5. 5.
    Yudofsky, S.C., Hales, R.E.: The American Psychiatric Publishing Textbook of Neuropsychiatry and Behavioral Neurosciences. American Psychiatric Publishing, USA (2008)Google Scholar
  6. 6.
    Gilhus, N.E., Barnes, M.R., Brainin, M.: European Handbook of Neurological Management. Wiley, England (2011)CrossRefGoogle Scholar
  7. 7.
    Miller, J.W., Cole, A.J.: Is it necessary to define the ictal onset zone with EEG prior to performing respective epilepsy surgery? Elsevier Epilepsy Behav. 20(2), 178–181 (2011)CrossRefGoogle Scholar
  8. 8.
    Desco, M., Pascau, J., Pozo, M.A., Santos, A., Reig, S., Gispert, J., Garcia, B.P.: Multimodality localization of epileptic foci. In: Proceedings of SPIE, Medical Imaging Physiology and Function from Multidimensional Images, pp 362–370 (2001)Google Scholar
  9. 9.
    Tiihonen, J., Hari, R., Kjola, M., Nousiainen, U., Vapalahti, M.: Localization of epileptic foci using large-area magnetometer and functional brain anatomy. Ann. Neurol. 27(3), 283–290 (2004)CrossRefGoogle Scholar
  10. 10.
    Evim, A., Canan, A.B., Haluk, B., Bulent, Y.: Computational analysis of epileptic focus localization. In: ACTA Press Anaheim, BioMed 2006 Proceedings of the 24th IASTED International Conference on Biomedical Engineering, pp 317–322 (2006)Google Scholar
  11. 11.
    Natasa, M., Malek, D., Ilker, Y., Prasanna, J.: 3-d source localization of epileptic foci integrating EEG and MRI data. Brain Topogr. 16(2), 111–119 (2003)CrossRefGoogle Scholar
  12. 12.
    Toni, A., Aopa, N., Matti, S.H., Liro, P.J., Jouko, L., Aki, V., Mikko, S.: Bayesian analysis of the neuromagnetic inverse problem with lp-norm priors. Neuroimage 26(3), 870–884 (2005)CrossRefGoogle Scholar
  13. 13.
    Jan, C.D.M., Fetsje, B., Pawel, G., Cezary, A.S., Maria, I.B., Heethaar, R.M.: A maximum-likelihood estimator for trial-to-trial variations in noisy MEG/EEG data sets. IEEE Trans. Biomed. Eng. 51(2), 2123–2138 (2004)Google Scholar
  14. 14.
    Fauziah, Z.: Dynamic profiling of electroencephalography data during seizure using fuzzy information space. Ph.D. Thesis, Universiti Teknologi Malaysia (2008)Google Scholar
  15. 15.
    Faisal, A.M.B., Tahir, A.: EEG signals during epileptic seizure as a semigroup of upper triangular matrices. Am. J. Appl. Sci. 7(4), 540–544 (2010)CrossRefGoogle Scholar
  16. 16.
    Tan, L.K., Tahir, A.: Structural stability of flat electroencephalography. Life Sci. J. 11(8), 165–170 (2014)Google Scholar
  17. 17.
    Tahir, A., Tan, L.K.: Topological Conjugacy between seizure and flat electroencephalography. Sci. Publ. Am. J. Appl. Sci. 7(3), 1470–1476 (2010)Google Scholar
  18. 18.
    Munkres, J.R.: Topology. Pearson Prentice Halls, USA (2000)zbMATHGoogle Scholar
  19. 19.
    Asano, E., Otto, M., Aashit, S., Csaba, J., Diane, C.C., Jean, G., Harry, T.C.: Qualitative visualization of ictal subdural EEG changes in children with neocortical focal seizures. Clin. Neurophysiol. 115(12), 2718–2727 (2004)CrossRefGoogle Scholar
  20. 20.
    Davis, S.W.: Topology. McGraw-Hill, Singapore (2005)zbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tan Lit Ken
    • 1
    Email author
  • Tahir Ahmad
    • 2
  • Nor Azwadi Che Sidik
    • 1
  • Chuan Zun Liang
    • 3
  • Lee Kee Quen
    • 1
  • Gan Yee Siang
    • 4
  • Goh Chien Yong
    • 4
  • Tey Wah Yen
    • 5
  1. 1.Department of Mechanical Precision EngineeringMalaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala LumpurKuala LumpurMalaysia
  2. 2.Department of Mathematical Sciences and Centre for Sustainable NanomaterialsUniversiti Teknologi MalaysiaSkudaiMalaysia
  3. 3.Science Programme, Faculty of Industrial Sciences & TechnologyUniversiti Malaysia PahangGambang, KuantanMalaysia
  4. 4.Department of MathematicsXiamen Universiti MalaysiaSepangMalaysia
  5. 5.Faculty of Engineering, Technology & Built EnvironmentUCSI UniversityCheras Kuala LumpurMalaysia

Personalised recommendations