Advertisement

Soil Microbial Ecology and Its Role in Soil Carbon Sequestration in Sustainable Agroecosystems Under Climate Change

  • Julio Alves Cardoso Filho
  • Gildemberg Amorim Leal Junior
Chapter

Abstract

To help the sustainable intensification of food production systems, and minimize the levels of the greenhouse gases anthropogenic emissions, the current agriculture needs to create and use methodologies (e.g., soil carbon sequestration) that minimize loss of terrestrial biodiversity on agroecosystems. The development of the soil microbial ecology in the last 30 years are related to the role of soil microorganisms in the maintenance of soil health. Therefore in this chapter, we have provided the current information on soil microbial ecology management of agro-ecosystems for carbon sequestration under global climate change.

Keywords

Soil microbial ecology·carbon sequestration Agro-ecosystems Climate change 

Abbreviations

AMF

Arbuscular Mycorrhizal Fungi

aw

Water activity

CCX

Chicago Climate Exchange

CEC

Cation Exchange Capacity

CMNs

Common Mycorrhizal Network

DOM

Derived Organic Matter

ESD

Education for Sustainable Development

FA

Fulvic Acid

FAO

Food and Agricultural Organization

FCPF

Forest Carbon Partnership Facility

GHGs

Greenhouse Gases

GPP

Gross Primary Production

GSOCS

Global Soil Organic Carbon Stocks

HA

Humic Acid

HANPP

Human Appropriation of Net Primary Production

HANPPharv

NPP consumed + unused NPP by humans

HANPPluc

loss of potential NPP due to land use change

IPCC

Intergovernmental Panel on Climate Change

MAMPs

Microbe-Associated Molecular Patterns

NEP

Net Ecosystem Production

NPP

Net Primary Production

NPPact

the actual NPP in anthropogenic-altered system

NPPpot

the potential NPP in undisturbed system

OM

Organic Matter

Pa

Pascals

Pg

1 Petagram (Pg) = 1015 g

po

pure water

PRRs

Pattern Recognition Receptors

Q10

Temperature Sensitivity

RA

Autotrophic Respiration

REDD

Deforestation and Forest Degradation

RH

Heterotrophic Respiration

Rm

Microbial Respiration

RMUs

Removal Units

ROM

Recalcitrant Organic Matter

RS

Soil Respiration

SOC

Soil Organic Carbon

SOM

Soil Organic Matter

UNEP

United Nations Environment Programme

UNFCCC

United Nations Framework Convention on Climate Change

VOCs

Volatile Organic Compounds

WMO

World Meteorological Organization

Ψ

Water potential

Ψg

Water gravitational potential

Ψm

Water matric potential

Ψo

Water osmotic potential

Notes

Acknowledgments

We thank the editors and anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

References

  1. A’Bear AD, Jones TH, Boddy L (2014) Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol 10:34–43.  https://doi.org/10.1016/j.funeco.2013.01.009 CrossRefGoogle Scholar
  2. Abbas F, Hammad HM, Fahad S, Cerdà A, Rizwan M, Farhad W, Ehsan S, Bakhat HF (2017) Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios-a review. Environ Sci Pollut Res Int 24:11177–11191.  https://doi.org/10.1007/s11356-017-8687-0 CrossRefGoogle Scholar
  3. Abdel Latef AAH, Miransari M (2014) The role of arbuscular mycorrhizal fungi in salt stress. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 2. Springer, New York, pp 23–39.  https://doi.org/10.1007/978-1-4939-0721-2_2 CrossRefGoogle Scholar
  4. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827CrossRefGoogle Scholar
  5. Alexander M (1961) Introduction to soil microbiology. Wiley, New YorkGoogle Scholar
  6. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA working paper no. 12–03. FAO, RomeGoogle Scholar
  7. Allison F (1961) Twenty-five years of soil microbiology and a look to the future. Soil Sci Soc Am Proc 26:432–439CrossRefGoogle Scholar
  8. Alvaro-Fuentes J, Plaza-Bonilla D, Arrue JL, Lampurlanes J, Cantero-Martinez C (2014) Soil organic carbon storage in a no-tillage chronosequence under Mediterranean conditions. Plant Soil 376:31–41.  https://doi.org/10.1007/s11104-012-1167-x CrossRefGoogle Scholar
  9. Ameloot N, Graber ER, Verheijen FGA, De Neve S (2013) Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci 64:379–390.  https://doi.org/10.1111/ejss.12064 CrossRefGoogle Scholar
  10. Andam CP, Doroghazi JR, Campbell AN, Kelly PJ, Choudoir MJ, Buckley DH (2016) A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces. MBio 7(2):e02200–e02215.  https://doi.org/10.1128/mBio.02200-15 CrossRefGoogle Scholar
  11. Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320.  https://doi.org/10.1016/j.pedobi.2011.07.005 CrossRefGoogle Scholar
  12. Andres C, Bhullar GS (2016) Sustainable intensification of tropical agro-ecosystems: need and potentials. Front Environ Sci 4:5.  https://doi.org/10.3389/fenvs.2016.00005 CrossRefGoogle Scholar
  13. Anon (1991) Soil physics. In: Landon JR (ed) Booker tropical soil manual. Longman, Harlow, pp 59–71Google Scholar
  14. Arnold RW (1983) Concepts and interactions. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy. Elsevier Science, Amsterdam, pp 1–21Google Scholar
  15. Assouline S (2013) Infiltration into soil: conceptual approaches and solutions. Water Resour Res 49:1755–1772.  https://doi.org/10.1002/wrcr.20155 CrossRefGoogle Scholar
  16. Assouline S, Selker J (2017) Introduction and evaluation of a Weibull hydraulic conductivity-pressure head relationship for unsaturated soils. Water Resour Res 53:4956–4964.  https://doi.org/10.1002/2017WR020796 CrossRefGoogle Scholar
  17. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18.  https://doi.org/10.1007/s11104-010-0464-5 CrossRefGoogle Scholar
  18. Atlas RM, Bartha R (1993) Microbial ecology: fundamentals and applications. The Benjamim/Cummings Publishing Company, California, pp 213–245Google Scholar
  19. Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545.  https://doi.org/10.1038/nature12901 CrossRefGoogle Scholar
  20. Azcón-Aguilar C, Barea JM (2015) Nutrient cycling in the mycorrhizosphere. J Soil Sci Plant Nutr 25:372–396.  https://doi.org/10.4067/S0718-95162015005000035
  21. Babauta JT, Nguyen HD, Harrington TD, Renslow R, Beyenal H (2012) pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer. Biotechnol Bioeng 109:2651–2662.  https://doi.org/10.1002/bit.24538 CrossRefGoogle Scholar
  22. Badorreck A, Gerk HH, Hüttl RF (2013) Morphology and physical soil crusts and infiltration patterns in an artificial catchment. Soil Till Res 129:1–8.  https://doi.org/10.1016/j.still.2013.01.001 CrossRefGoogle Scholar
  23. Bagheri I, Kalhori SB, Akef M, Khormali F (2012) Effect of compaction on physical and micromorphological properties of forest soils. Am J Plant Sci 3:159–163.  https://doi.org/10.4236/ajps.2012.31018 CrossRefGoogle Scholar
  24. Baldock JA (2007) Composition and cycling of organic carbon in soil. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Soil biology, vol 10. Springer, Berlin, Heidelberg, pp 1–35.  https://doi.org/10.1007/978-3-540-68027-7_1 Google Scholar
  25. Baldock JA, Broos K (2012) Soil organic matter. In: Huang PM, Li Y, Sumner M (eds) Handbook of soil sciences: resource management and environmental impacts, 2nd edn. CRC Press, Boca Raton, pp 11-1–11-37Google Scholar
  26. Balestrini R, Lumini E, Borriello R, Bianciotto V (2015) Plant-soil biota interactions. In: Paul EA (ed) Soil microbiology, ecology and biochemistry. Academic/Elsevier, London, pp 311–338CrossRefGoogle Scholar
  27. Ball BC (2013) Soil structure and greenhouse gas emissions: a synthesis of 20 years of experimentation. Eur J Soil Sci 64:357–373.  https://doi.org/10.1111/ejss.12013 CrossRefGoogle Scholar
  28. Balser TC, Liang C, Gutknecht MJL (2010) How will climate change impact soil microbial communities? In: Dixon GR, Tilston EL (eds) Soil microbiology and sustainable crop production. Springer, Dordrecht, pp 373–397.  https://doi.org/10.1007/978-90-481-9479-7_10 CrossRefGoogle Scholar
  29. Banwart S, Black H, Cai Z, Gicheru P, Joosten H, Victoria R, Milne E, Noellemeyer E, Pascual U, Nziguheba G, Vargas R, Bationo A, Buschiazzo D, Delphine de-Bogniez, Melillo J, Ritcher D, Termansen M, van Noordwijk M, Goverse T, Ballabio C, Bhattacharyya T,  Goldhaber M, Nikolaidis N, Zhao Y, Funk R, Duffy C, Pan G, la Scala N, Gottschalk P, Batjes N, Six J, van Wesemael B, Stocking M, Bampa F, Bernoux M, Feller C, Lemanceau P, Montanarella L (2014) Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop. Carbon Manag 5:185–192.  https://doi.org/10.1080/17583004.2014.913380 CrossRefGoogle Scholar
  30. Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351.  https://doi.org/10.1038/ismej.2011.119 CrossRefGoogle Scholar
  31. Barnes AD, Weigelt P, Jochum M, Ott D, Hodapp D, Haneda NF, Brose U (2016) Species richness, and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philos Trans R Soc B 371:20150279.  https://doi.org/10.1098/rstb.2015.0279 CrossRefGoogle Scholar
  32. Barto EK, Hilker M, Müller F, Mohney BK, Weidenhamer JD, Rillig MC (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS One.  https://doi.org/10.1371/journal.pone.0027195 CrossRefGoogle Scholar
  33. Bastida F, Moreno JL, Nicolas C, Hernandez T, Garcia C (2009) Soil metaproteomics: a review of an emerging environmental science. Significance, methodology, and perspectives. Eur J Soil Sci 60:845–859.  https://doi.org/10.1111/j.1365-2389.2009.01184.x CrossRefGoogle Scholar
  34. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2010) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917.  https://doi.org/10.1038/ismej.2010.171 CrossRefGoogle Scholar
  35. Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, Fierer N (2013) Global biogeography of highly diverse protistan communities in soil. ISME J 7:652–659.  https://doi.org/10.1038/ismej.2012.147 CrossRefGoogle Scholar
  36. Batjes NH (2011) Soil organic carbon stocks under native vegetation: revised estimates for use with the simple assessment option of the carbon benefits project system. Agric Ecosyst Environ 142:365–373.  https://doi.org/10.1016/j.agee.2011.06.007 CrossRefGoogle Scholar
  37. Battistuzzi FU, Hedges SB (2009) A major clade of prokaryotes with ancient adaptations to life on land. Mol Biol Evol 26:335–343.  https://doi.org/10.1093/molbev/msn247 CrossRefGoogle Scholar
  38. Bauska TK, Joos F, Mix AC, Roth R, Ahn J, Brook EJ (2015) Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium. Nat Geosci 8:383–387.  https://doi.org/10.1038/NGEO2422 CrossRefGoogle Scholar
  39. Becker K, Lawrence P (2014) Carbon farming: the best and safest way forward? Carbon Manag 5:31–33.  https://doi.org/10.4155/cmt.13.79 CrossRefGoogle Scholar
  40. Beem-Miller JP, Kong AYY, Ogle S, Wolfe D (2016) Sampling for soil carbon stock assessment in rocky agricultural soils. Soil Sci Soc Am J 80:1411–1423.  https://doi.org/10.2136/sssaj2015.11.0405 CrossRefGoogle Scholar
  41. Berg B, McClaugherty C (2014) Introduction In: Plant litter. Decomposition, humus formation, carbon sequestration, 3rd edn. Springer, Berlin/Heidelberg, pp 1–10.  https://doi.org/10.1007/978-3-642-38821-7_1 Google Scholar
  42. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13.  https://doi.org/10.1111/j.1574-6941.2009.00654.x CrossRefGoogle Scholar
  43. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559.  https://doi.org/10.3389/fmicb.2015.01559
  44. Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219.  https://doi.org/10.3389/fmicb.2014.00219
  45. Bevivino A, Paganin P, Bacci G, Florio A, Pellicer MS, Papaleo MC, Mengoni A, Ledda L, Fani R, Benedetti A, Dalmastri C (2014) Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region. PLoS One.  https://doi.org/10.1371/journal.pone.0105515 CrossRefGoogle Scholar
  46. Bhattacharya SS, Kim KH, Das S, Uchimiya M, Jeon BH, Kwon E, Szulejko JE (2016) A review on the role of organic inputs in maintaining the soil carbon pool of the terrestrial ecosystem. J Environ Manag 167:214–827.  https://doi.org/10.1016/j.jenvman.2015.09.042 CrossRefGoogle Scholar
  47. Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214.  https://doi.org/10.1111/gcbb.12037 CrossRefGoogle Scholar
  48. Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165:553–565.  https://doi.org/10.1007/s00442-011-1909-0 CrossRefGoogle Scholar
  49. Bohn HL, McNeal BL, O’Conner GA (1979) Soil chemistry. Wiley-Interscience, New YorkGoogle Scholar
  50. Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582.  https://doi.org/10.1038/nature08930 CrossRefGoogle Scholar
  51. Boron S, Murray KR, Thomson GB (2017) Sustainability education: towards total sustainability management teaching. In: Leal Filho W, Brandli L, Castro P, Newman J (eds) Handbook of theory and practice of sustainable development in higher education, World sustainability series. Springer, Cham, pp 37–51.  https://doi.org/10.1007/978-3-319-47868-5_3 Google Scholar
  52. Bouma J (1981) Comment on micro, meso, and macroporosity of soil. Soil Sci AM J 45:1244–1245Google Scholar
  53. Bradford MA, Fierer N (2012) The biogeography of microbial communities and ecosystem processes: implications for soil and ecosystem models. In: Wall DH (ed) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 189–198.  https://doi.org/10.1093/acprof:oso/9780199575923.003.0017 CrossRefGoogle Scholar
  54. Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327.  https://doi.org/10.1111/j.1461-0248.2008.01251.x CrossRefGoogle Scholar
  55. Brady NC (1984) The nature and properties of soil, 10th edn. Macmillan, New YorkGoogle Scholar
  56. Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  57. Brady NC, Weil RR (2010) Elements of the nature and properties of soils. Pearson Education International, HobokenGoogle Scholar
  58. Brassard P, Stephane G, Vijaya R (2016) Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. J Environ Manag 181:484–497.  https://doi.org/10.1016/j.jenvman.2016.06.063 CrossRefGoogle Scholar
  59. Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79.  https://doi.org/10.1016/j.soilbio.2011.11.019 CrossRefGoogle Scholar
  60. Busari AB, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. Int Soil Water Conserv Res 3:119–129.  https://doi.org/10.1016/j.iswcr.2015.05.002 CrossRefGoogle Scholar
  61. Bustamante M, Robledo-Abad C, Harper R, Mbow C, Ravindranat NH, Sperling F, Haberl H, Pinto Ade S, Smith P (2014) Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector. Glob Chang Biol 20:3270–3290.  https://doi.org/10.1111/gcb.12591 CrossRefGoogle Scholar
  62. Canadell JG, Schulze ED (2014) Global potential of biospheric carbon management for climate mitigation. Nat Commun 5:5282.  https://doi.org/10.1038/ncomms6282
  63. Canadell JG, Ciais P, Dhakal S, Dolman H, Friedlingstein P, Gurney KR, Held A, Jackson RB, Le Quéré C, Malone EL, Ojima DS, Patwardhan A, Peters GP, Raupach MR (2010) Interactions of the carbon cycle, human activity, and the climate system: a research portfolio. Curr Opin Environ Sustain 2:301–311.  https://doi.org/10.1016/j.cosust.2010.08.003 CrossRefGoogle Scholar
  64. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67.  https://doi.org/10.1038/nature11148 CrossRefGoogle Scholar
  65. Cardoso EJBN, Andreote FF (2016) Microbiologia do solo, 2nd edn. ESALQ, PiracicabaCrossRefGoogle Scholar
  66. Cardoso EJBN, Vasconcellos RLF, Bini D, Miyauchi MYH, Santos CA, Alves PRL, Paula AM, Nakatani AS, Pereira JM, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70:274–289.  https://doi.org/10.1590/S0103-90162013000400009 CrossRefGoogle Scholar
  67. Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16.  https://doi.org/10.1016/j.agee.2013.10.009 CrossRefGoogle Scholar
  68. Cerin P (2006) Bringing economic opportunity into line with environmental influence: a discussion on the Coase theorem and the porter and van der Linde hypothesis. Ecol Econ 56:209–225.  https://doi.org/10.1016/j.ecolecon.2005.01.016 CrossRefGoogle Scholar
  69. Chaffron S, Rehrauer H, Pernthaler J, von Mering C (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 20:947–959.  https://doi.org/10.1101/gr.104521.109 CrossRefGoogle Scholar
  70. Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242CrossRefGoogle Scholar
  71. Chapin III FS, Woodwell GM, Randerson JT,  Rastetter EB,  Lovett GM,  Baldocchi DD, Clark DA, M. E. Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD,  Cole JJ, Goulden ML,  Ryan MG, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML,  Running SW,  Sala OE, Schlesinger WH, Schulze E-D (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050.  https://doi.org/10.1007/s10021-005-0105-7 CrossRefGoogle Scholar
  72. Cheeke TC, Coleman DC, Wall DH (2013) Microbial ecology in sustainable agroecosystems. CRC Press, Boca RatonGoogle Scholar
  73. Chen S, Zou J, Hu Z, Chen H, Lu Y (2014) Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: summary of available data. Agric For Meteorol 198–199:335–346.  https://doi.org/10.1016/j.agrformet.2014.08.020 CrossRefGoogle Scholar
  74. Chen C, Hu K, Li H, Yun A, Li B (2015) Three-dimensional mapping of soil organic carbon by combining Kriging method with profile depth function. PLoS One.  https://doi.org/10.1371/journal.pone.0129038 CrossRefGoogle Scholar
  75. Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, Ren D, Yu L, Xu G, Qian Q (2017) OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Front Plant Sci 8:1885.  https://doi.org/10.3389/fpls.2017.01885
  76. Churchman GJ (2013) The key role of micromorphology in studies of the genesis of clay minerals and their associations in soils and its relevance to advances in the philosophy of soil science. Turkish J Earth Sci 22:376–390.  https://doi.org/10.3906/yer-1201-11
  77. Churchman GJ, Lowe DJ (2012) Alteration, formation, and occurrence of minerals in soils. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil sciences, properties and processes, vol 1, 2nd edn. CRC Press/Taylor and Francis, Boca Raton, pp 20.1–20.72Google Scholar
  78. Clark FE (1977) Soil microbiology – it’s a small world. Soil Sci Am J 41:238–241Google Scholar
  79. Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Patterson CM (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6:130.  https://doi.org/10.1890/ES15-00217.1 CrossRefGoogle Scholar
  80. Coats VC, Rumpho ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol 5:368.  https://doi.org/10.3389/fmicb.2014.00368
  81. Constancias F, Terrat S, Saby NP, Horrigue W, Villerd J, Guillemin JP, Biju-Duval L, Nowak V, Dequiedt S, Ranjard L, Chemidlin Prévost-Bouré N (2015) Mapping and determinism of soil microbial community distribution across an agricultural landscape. Microbiology 4:505–517.  https://doi.org/10.1002/mbo3.255 CrossRefGoogle Scholar
  82. Cooper M, Boschi RS, Silva VBS, Silva LFS (2016) Software for micromorphometric characterization of soil pores obtained from 2D image analysis. Sci Agric 73:388–393.  https://doi.org/10.1590/0103-9016-2015-0053 CrossRefGoogle Scholar
  83. Cordero OX, Datta MS (2016) Microbial interactions and community assembly at microscales. Curr Opin Microbiol 31:227–234.  https://doi.org/10.1016/j.mib.2016.03.015 CrossRefGoogle Scholar
  84. Creutzburg MK, Scheller RM, Lucash MS, LeDuc SD, Johnson MG (2017) Forest management scenarios in a changing climate: trade-offs between carbon, timber, and old forest. Ecol Appl 27:503–518.  https://doi.org/10.1002/eap.1460 CrossRefGoogle Scholar
  85. Crutzen P (2002) Geology of mankind. Nature 415:23.  https://doi.org/10.1038/415023a CrossRefGoogle Scholar
  86. Cuddington K, Byres JE, Wilson WG, Hastings A (2011) Ecosystem engineers: plants to protists. Academic Press, LondonGoogle Scholar
  87. Culley JLB (1993) Density and compressibility. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, pp 529–539Google Scholar
  88. Currie JA (1960) Gaseous diffusion in porous media. Part 1. A non-steady state method. Br J Appl Phys 11:314–317.  https://doi.org/10.1088/0508-3443/11/8/302 CrossRefGoogle Scholar
  89. Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41:376–378Google Scholar
  90. Datta R, Anand S, Moulick A, Baraniya D, Pathan SI, Rejsek K, Vranova V, Sharma M, Sharma D, Kelkar A (2017a) How enzymes are adsorbed on soil solid phase and factors limiting its activity: a review. Int Agrophys 31:287–302.​  https://doi.org/10.1515/intag-2016-0049 CrossRefGoogle Scholar
  91. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustainability 9:1163.​  https://doi.org/10.3390/su9071163 CrossRefGoogle Scholar
  92. Datta R, Baraniya D, Wang Y-F, Kelkar A, Meena RS, Yadav GS, Teresa Ceccherini M, Formanek P (2017c) Amino acid: its dual role as nutrient and scavenger of free radicals in soil. Sustainability 9:1402.  https://doi.org/10.3390/su9081402 CrossRefGoogle Scholar
  93. Davenport D (2008) The international dimension of climate policy. In: Compston H, Bailey I (eds) Turning down the heat: the politics of climate policy in affluent democracies. Palgrave Macmillan, London, pp 48–62CrossRefGoogle Scholar
  94. de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Jørgensen HB, Brady MV, Christensen S, de Ruiter PC, d’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Hol WHG, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD (2013) Soil food web properties explain ecosystem services across european land use systems. PNAS USA 110:14296–14301.  https://doi.org/10.1073/pnas.1305198110 CrossRefGoogle Scholar
  95. DeAngelis KM, Silver WL, Thompson AW, Firestone MK (2010) Microbial communities acclimate to recurring changes in soil redox potential status. Environ Microbiol 12:3137–3149.  https://doi.org/10.1111/j.1462-2920.2010.02286.x CrossRefGoogle Scholar
  96. DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, Melillo J, Frey SD (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6:104.  https://doi.org/10.3389/fmicb.2015.00104 CrossRefGoogle Scholar
  97. Decina SM, Hutyra LR, Gately CK, Getson JM, Reinmann AB, Short Gianotti AG, Templer PH (2016) Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area. Environ Pollut 212:433–439.  https://doi.org/10.1016/j.envpol.2016.01.012 CrossRefGoogle Scholar
  98. Delaux PM, Séjalon-Delmas N, Bécard G, Ané JM (2013) Evolution of the plant-microbe symbiotic ‘toolkit’. Trends Plant Sci 18:298–304.  https://doi.org/10.1016/j.tplants.2013.01.008 CrossRefGoogle Scholar
  99. Delgado-Baquerizo M, Giaramida L, Reich PB, Khachane AN, Hamonts K, Edwards C, Lawton LA, Singh BK (2016a) Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J Ecol 104:936–946.  https://doi.org/10.1111/1365-2745.12585 CrossRefGoogle Scholar
  100. Delgado-Baquerizo M, Grinyer J, Reich PB, Singh BK (2016b) Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Funct Ecol 30:1862–1873.​  https://doi.org/10.1111/1365-2435.12674 CrossRefGoogle Scholar
  101. Delgado-Baquerizo M, Trivedi P, Trivedi C, Aldridge DJ, Jeffries TC, Reich P, Singh BK (2017) Microbial richness and composition independently drive soil multifunctionality. Funct Ecol 31:2330–2343. ​ https://doi.org/10.1111/1365-2435.12924 CrossRefGoogle Scholar
  102. Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44:479–482CrossRefGoogle Scholar
  103. Diacono M, Montemurro F (2010) Long-term effects of organic amendments on soil fertility. A review. Agron Sustain Dev 30:401–422.  https://doi.org/10.1051/agro/2009040 CrossRefGoogle Scholar
  104. Diffenbaugh NS, Field CB (2013) Changes in ecologically critical terrestrial climate conditions. Science 341:486–492.  https://doi.org/10.1126/science.1237123 CrossRefGoogle Scholar
  105. Ding J, Zhang Y, Deng Y, Cong J, Lu H, Sun X, Yang C, Yuan T, Van Nostrand JD, Li D, Zhou J, Yang Y (2015) Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Sci Rep 5:7994.  https://doi.org/10.1038/srep07994 CrossRefGoogle Scholar
  106. Dopson M, Ni G, Sleutels TH (2016) Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol Rev 40:164–181.  https://doi.org/10.1093/femsre/fuv044 CrossRefGoogle Scholar
  107. Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 13–32Google Scholar
  108. Ducey TF, Novak JM, Johnson MG (2015) Effects of biochar blends on microbial community composition in two coastal plain soils. Agriculture 5:1060–1075.  https://doi.org/10.3390/agriculture5041060 CrossRefGoogle Scholar
  109. Duran-Pinedo AE, Paster B, Teles R, Frias-Lopez J (2011) Correlation network analysis applied to complex biofilm communities. PLoS One.  https://doi.org/10.1371/journal.pone.0028438 CrossRefGoogle Scholar
  110. Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6:330–342.  https://doi.org/10.1038/ismej.2011.113 CrossRefGoogle Scholar
  111. Ellis E (2011) Anthropogenic transformation of the terrestrial biosphere. Philos Trans R Soc A 369:1010–1035.  https://doi.org/10.1098/rsta.2010.0331 CrossRefGoogle Scholar
  112. Ellouze W, Esmaeili Taheri A, Bainard LD, Yang C, Bazghaleh N, Navarro-Borrell A, Hanson K, Hamel C (2014) Soil fungal resources in annual cropping systems and their potential for management. Biomed Res Int 531824.  https://doi.org/10.1155/2014/531824 CrossRefGoogle Scholar
  113. Embree M, Liu JK, Al-Bassam MM, Zengler K (2015) Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc Natl Acad Sci 112:15450–15455.  https://doi.org/10.1073/pnas.1506034112 CrossRefGoogle Scholar
  114. Engelmoer DJ, Kiers ET (2015) Host diversity affects the abundance of the extraradical arbuscular mycorrhizal network. New Phytol 205:1485–1491.  https://doi.org/10.1111/nph.13086 CrossRefGoogle Scholar
  115. Ennis CJ, Evans AG, Islam M, Ralebitso-Senior K, Senior E (2012) Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Crit Rev Environ Sci Technol 42:2311–2364.  https://doi.org/10.1080/10643389.2011.574115 CrossRefGoogle Scholar
  116. Erb KH, Krausmann F, Gaube V, Gingrich S, Bondeau A, Fischer-Kowalski M, Haberl H (2009) Analyzing the global human appropriation of net primary production – processes, trajectories, implications. An introduction. Ecol Econ 69:250–259.  https://doi.org/10.1016/j.ecolecon.2009.07.001 CrossRefGoogle Scholar
  117. Erb KH, Kastner T, Plutzar C, Bais ALS, Carvalhais N, Fetzel T, Gingrich S, Haberl H, Lauk C, Niedertscheider M, Pongratz J, Thurner M, Luyssaert S (2018) Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553:73–76.  https://doi.org/10.1038/nature25138 CrossRefGoogle Scholar
  118. Evans SE, Wallenstein MD (2014) Climate change alters ecological strategies of soil bacteria. Ecol Lett 17:155–164.  https://doi.org/10.1111/ele.12206 CrossRefGoogle Scholar
  119. Falloon P, Betts R (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigation-the importance of an integrated approach. Sci Total Environ 408:5667–5687. ​ https://doi.org/10.1016/j.scitotenv.2009.05.002 CrossRefGoogle Scholar
  120. FAO (2017) Soil organic carbon: the hidden potential. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  121. Fassbender HW (1987) Química de suelos com énfasis em suelos de America Latina, 2nd edn. Rev. Insituto Interamericano de Cooperación para La agricultura – IICA, San JoséGoogle Scholar
  122. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550.  https://doi.org/10.1038/nrmicro2832 CrossRefGoogle Scholar
  123. Faust K, Lima-Mendez G, Lerat J-S, Sathirapongsasuti JF, Knight R, Huttenhower C, Lenaerts T, Raes J (2015) Cross-biome comparison of microbial association networks. Front Microbiol 6:1200.  https://doi.org/10.3389/fmicb.2015.01200 CrossRefGoogle Scholar
  124. Fellbaum CR, Mensah JA, Pfeffer PE, Kiers ET, Bücking H (2012) The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis. Plant Signal Behav 7:1509–1512.  https://doi.org/10.4161/psb.22015 CrossRefGoogle Scholar
  125. Feng W, Plante AF, Six J (2014) Soil organic matter stability in organo-mineral complexes as a function of increasing C loading. Soil Biol Biochem 69:398–405.  https://doi.org/10.1016/j.soilbio.2013.11.024 CrossRefGoogle Scholar
  126. Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67:6253–6265. ​ https://doi.org/10.1093/jxb/erw403 CrossRefGoogle Scholar
  127. File AL, Klironomos J, Maherali H, Dudley SA (2012) Plant kin recognition enhances abundance of symbiotic microbial partner. PLoS One.  https://doi.org/10.1371/journal.pone.0045648 CrossRefGoogle Scholar
  128. Filho JAC, Pascholati SF, Sabrinho RR (2016) Mycorrhizal association and their role in plant disease protection. In: Hakeem K, Akhtar M (eds) Plant, soil and microbes. Springer, Cham, pp 95–143.  https://doi.org/10.1007/978-3-319-29573-2_6 CrossRefGoogle Scholar
  129. Filho JAC, Sobrinho RR, Pascholati SF (2017) Arbuscular mycorrhizal symbiosis and its role in plant nutrition in sustainable agriculture. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 129–164.  https://doi.org/10.1007/978-981-10-5343-6_5 CrossRefGoogle Scholar
  130. Foster RC (1994) Microorganisms and soil aggregates. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota. CSIRO Publications, Melbourne, pp 144–155Google Scholar
  131. Frank S, Schmid E, Havlık P, Schneider UA, Bottcher H, Balkovic Ĵ, Obersteiner M (2015) The dynamic soil organic carbon mitigation potential of European cropland. Glob Environ Change 35:269–278.  https://doi.org/10.1016/j.gloenvcha.2015.08.004 CrossRefGoogle Scholar
  132. Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2014) Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27:511–526.  https://doi.org/10.1175/JCLI-D-12-00579.1 CrossRefGoogle Scholar
  133. García-González E, Jiménez-Fontana R, Azcárate Goded P, Cardeñoso JM (2017) Inclusion of sustainability in university classrooms through methodology. In: Leal Filho W, Brandli L, Castro P, Newman J (eds) Handbook of theory and practice of sustainable development in higher education, World sustainability series. Springer, Cham, pp 3–19.  https://doi.org/10.1007/978-3-319-47868-5_1 Google Scholar
  134. Garnett T, Godfray C (2012) Sustainable intensification in agriculture. Navigating a course through competing food system priorities, food climate research network and the Oxford Martin programme on the future of food. University of Oxford, OxfordGoogle Scholar
  135. Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87:325–341CrossRefGoogle Scholar
  136. Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (Terra Preta de Índio). Geochim Cosmochim Acta 82:39–51.  https://doi.org/10.1016/j.gca.2010.11.029 CrossRefGoogle Scholar
  137. Glaser B, Wiedner K, Seelig S, Schmidt HP, Gerber H (2015) Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron Sustain Dev 35:667–678.  https://doi.org/10.1007/s13593-014-0251-4 CrossRefGoogle Scholar
  138. Glavatska O, Müller K, Butenschoen O, Schmalwasser A, Kandeler E, Scheu S, Totsche KU, Ruess L (2017) Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal. PLoS One.  https://doi.org/10.1371/journal.pone.0180264 CrossRefGoogle Scholar
  139. Goh C-H, Veliz Vallejos DF, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39:826–839.  https://doi.org/10.1007/s10886-013-0326-8 CrossRefGoogle Scholar
  140. Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371.  https://doi.org/10.1002/jsfa.6577 CrossRefGoogle Scholar
  141. Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, Beman JM, Abell G, Philippot L, Prosser J, Foulquier A, Yuste JC, Glanville HC, Jones DL, Angel R, Salminen J, Newton RJ, Bürgmann H, Ingram LJ, Hamer U, Siljanen HMP, Peltoniemi K, Potthast K, Bañeras L, Hartmann M, Banerjee S, Yu R-Q, Nogaro G, Richter A, Koranda M, Castle SC, Goberna M, Song B, Chatterjee A, Nunes OC, Lopes AR, Cao Y, Kaisermann A, Hallin S, Strickland MS, Garcia-Pausas J, Barba J, Kang H, Isobe K, Papaspyrou S, Pastorelli R, Lagomarsino A, Lindström ES, Basiliko N, Nemergut DR (2016) Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol 7:214.  https://doi.org/10.3389/fmicb.2016.00214
  142. Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37:112–129.  https://doi.org/10.1111/j.1574-6976.2012.00343.x CrossRefGoogle Scholar
  143. Gutjahr C (2014) Phytohormone signaling in arbuscular mycorrhiza development. Curr Opin Plant Biol 20:26–34.  https://doi.org/10.1016/j.pbi.2014.04.003 CrossRefGoogle Scholar
  144. Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617.  https://doi.org/10.1146/annurev-cellbio-101512-122413 CrossRefGoogle Scholar
  145. Haberl H, Erb K-H, Krausmann F (2014) Human appropriation of net primary production: planets, trends, and planetary boundaries. Annu Rev Environ Resour 39:363–691.  https://doi.org/10.1146/annurev-environ-121912-094620 CrossRefGoogle Scholar
  146. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Piutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci U S A 104:12942–12947.  https://doi.org/10.1073/pnas.0704243104 CrossRefGoogle Scholar
  147. Hadzi D, Klofutar C, Oblak S (1968) Hydrogen bonding in some adducts of oxygen bases with acids. Part IV. basicity in hydrogen bonding and ionization. J Chem Soc (A):905–918CrossRefGoogle Scholar
  148. Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: signalling, omics and adaptations. Springer, New York, pp 301–354.  https://doi.org/10.1007/978-1-4614-6108-1_13 CrossRefGoogle Scholar
  149. Hamel C, Plenchete C (2017) Implications of past, current, and future agricultural practices for mycorrhiza-mediated nutriente flux. In: Johnson NC, Gehring C, Jansa J (eds) Mycorrhizal mediation of soil fertility, structure and carbono storage. Elsevier, Amsterdam, pp 175–186.  https://doi.org/10.1016/B978-0-12-804312-7.00010-3 CrossRefGoogle Scholar
  150. Hapca S, Baveye PC, Wilson C, Lark RM, Otten W (2015) Three-dimensional mapping of soil chemical characteristics at micrometric scale by combining 2D SEM-EDX data and 3D X-ray CT images. PLoS One.  https://doi.org/10.1371/journal.pone.0137205 CrossRefGoogle Scholar
  151. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. MMBR 79:293–320.  https://doi.org/10.1128/MMBR.00050-14 CrossRefGoogle Scholar
  152. Harris RF (1981) Effect of water potential on microbial growth and acitivity. In: Parr JF, Gardner WR, Elliot LF (eds) Water potential relations in soil microbiology. Soil Sci Soc Am, Madison, pp 23–95Google Scholar
  153. Havlicek E, Mitchell EAD (2014) Soils supporting biodiversity. In: Dighton J, Krumins JA (eds) Interactions in soil: promoting plant growth, biodiversity, community and ecosystems 1. Springer, Dordrecht, pp 28–58.  https://doi.org/10.1007/978-94-017-8890-8_2 CrossRefGoogle Scholar
  154. Havlík P, Valin H, Herrero M, Obersteiner M, Schmid E, Rufino MC, Mosnier A, Thornton PK, Böttcher H, Conant RT, Frank S, Fritz S, Fuss S, Kraxner F, Notenbaert A (2014) Climate change mitigation through livestock system transitions. Proc Natl Acad Sci U S A 111:3709-3714.  https://doi.org/10.1073/pnas.1308044111 CrossRefGoogle Scholar
  155. Hawkins E, Sutton R (2016) Connecting climate model projections of global temperature change with the real world. Bull Am Meteorol Soc 97:963–980.  https://doi.org/10.1175/BAMS-D-14-00154.1 CrossRefGoogle Scholar
  156. He NP, Yu Q, Wu L, Wang YS, Han XG (2008) Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biol Biochem 40:2952–2959.  https://doi.org/10.1016/j.soilbio.2008.08.018 CrossRefGoogle Scholar
  157. Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292.  https://doi.org/10.1038/nature06591 CrossRefGoogle Scholar
  158. Henderson-Sellers A, McGuffie K (2012) The future of the world’s climate, 2nd edn. Elsevier Science, AmsterdamCrossRefGoogle Scholar
  159. Henkner J, Scholten T, Kühn P (2016) Soil organic carbon stocks in permafrost-affected soils in West Greenland. Geoderma 282:147–159.  https://doi.org/10.1016/j.geoderma.2016.06.021 CrossRefGoogle Scholar
  160. Henry HAL (2012) Soil extracellular enzyme dynamics in a changing climate. Soil Biol Biochem 47:53–59.  https://doi.org/10.1016/j.soilbio.2011.12.026 CrossRefGoogle Scholar
  161. Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59.  https://doi.org/10.1023/A:1022371130939 CrossRefGoogle Scholar
  162. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152.  https://doi.org/10.1007/s11104-008-9885-9 CrossRefGoogle Scholar
  163. Hinsinger P, Jones DL, Marschner P (2012) Biogeochemical, biophysical and biological processes in the rhizosphere. In: Huang PM, Li Y, Sumner M (eds) Handbook of soil sciences: resource management and environmental impacts, 2nd edn. CRC Press, Boca Raton, pp 6-1–6-30Google Scholar
  164. Hodge JM, Clasen TF (2014) Carbon financing of household water treatment: background, operation and recommendations to improve potential for health gains. Environ Sci Technol 48:12509–12515.  https://doi.org/10.1021/es503155m CrossRefGoogle Scholar
  165. Hoehler TM, Jørgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11:83–94.  https://doi.org/10.1038/nrmicro2939 CrossRefGoogle Scholar
  166. Homann PS, Sollins P, Fiorella M, Thorson T, Kern JS (1998) Regional soil organic carbon storage estimates for Western Oregon by multiple approaches. Soil Sci Soc Am J 62:789–796.  https://doi.org/10.2136/sssaj1998.03615995006200030036x CrossRefGoogle Scholar
  167. Horner-Devine MC, Silver JM, Leibold MA, Bohannan BJ, Colwell RK, Fuhrman JA, Green JL, Kuske CR, Martiny JB, Muyzer G, Ovreås L, Reysenbach AL, Smith VH (2007) A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88:1345–1353.  https://doi.org/10.1890/06-0286 CrossRefGoogle Scholar
  168. Horwath WR (2015) Carbon cycling: the dynamics and formation of organic matter. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic, San Diego, pp 339–359CrossRefGoogle Scholar
  169. Huang X, Zhu-Barker X, Horwath WR, Faeflen SJ, Luo H, Xin X, Jiang X (2016) Effect of iron oxide on nitrification in two agricultural soils with different pH. Biogeosciences 13:5609–5617.  https://doi.org/10.5194/bg-13-5609-2016 CrossRefGoogle Scholar
  170. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406.  https://doi.org/10.1128/AEM.67.10.4399-4406.2001 CrossRefGoogle Scholar
  171. Hunt C, Baum S (2009) The “hidden” costs of forestry off sets. Mitig Adapt Strat Glob Change 14:107–120.  https://doi.org/10.1007/s11027-008-9153-6 CrossRefGoogle Scholar
  172. Husson O (2013) Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinar overview pointing to integrative opportunities for agronomy. Plant Soil 362:389–417.  https://doi.org/10.1007/s11104-012-1429-7 CrossRefGoogle Scholar
  173. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York Google Scholar
  174. IPCC (2014a) In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  175. IPCC (2014b) In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  176. IPCC (2017) In: Shukla PR, Skea J, Diemen R, Huntley E, Pathak M, Portugal-Pereira J, Scull J, Slade R (eds) Meeting report of the intergovernmental panel on climate change expert meeting on mitigation, sustainability and climate stabilization scenarios. IPCC Working Group III Technical Support Unit, Imperial College London, LondonGoogle Scholar
  177. Jackson RS (2014) Site selection and climate. In: Jackson RS (ed) Wine science: principles and applications; a volume in food science and technology, 4th edn. Elsevier Science, Amsterdam, pp 307–346CrossRefGoogle Scholar
  178. Jansa J, Treseder KK (2017) Introduction: mycorrhizas and the carbon cycle. In: Johnson NC, Catherine Gehring C, Jansa J (eds) Mycorrhizal mediation of soil: fertility, structure, and carbon storage. Elsevier, Amsterdam, pp 343–355CrossRefGoogle Scholar
  179. Jaynes DB, Rogowski AS (1983) Applicability of Fick’s law to gas diffusion. Soil Sci Am J 47:425–430CrossRefGoogle Scholar
  180. Jewell TNM, Karaoz U, Bill M, Chakraborty R, Brodie EL, Williams KH, Beller HR (2017) Metatranscriptomic analysis reveals unexpectedly diverse microbial metabolism in a biogeochemical hot spot in an alluvial aquifer. Front Microbiol 8:40.  https://doi.org/10.3389/fmicb.2017.00040 CrossRefGoogle Scholar
  181. Johnson JA, Runge CF, Senauer B, Foley J, Polasky S (2014) Global agriculture and carbon trade-offs. Proc Natl Acad Sci U S A 111:12342–12347.  https://doi.org/10.1073/pnas.1412835111 CrossRefGoogle Scholar
  182. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. https://doi.org/10.2307/3545850CrossRefGoogle Scholar
  183. Jørgensen BB, Marshall IP (2016) Slow microbial life in the seabed. Annu Rev Mar Sci 8:311–332.  https://doi.org/10.1146/annurev-marine-010814-015535 CrossRefGoogle Scholar
  184. Joshi PA, Shekhawat DB (2014) Microbial contributions to global climate changes in soil en-vironments: impact on carbon cycle: a short review. Ann Appl Biol-Sci 1:R7–R9Google Scholar
  185. Kai FM, Tyler SC, Randerson JT, Blake DR (2011) Reduced methane growth rate explained by decreased northern hemisphere microbial sources. Nature 476:194–197.  https://doi.org/10.1038/nature10259 CrossRefGoogle Scholar
  186. Kaisermann A, Maron PA, Beaumelle L, Lata JC (2015) Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Appl Soil Ecol 86:158–164.  https://doi.org/10.1016/j.apsoil.2014.10.009 CrossRefGoogle Scholar
  187. Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630.  https://doi.org/10.1038/ncomms13630 CrossRefGoogle Scholar
  188. Karhu K, Auffret MD, Dungait JA, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Agren GI, Sebastià MT, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84.  https://doi.org/10.1038/nature13604 CrossRefGoogle Scholar
  189. Keiluweit M, Nico PS, Kleber M, Fendorf S (2016) Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry 127:157–171.  https://doi.org/10.1007/s10533-015-0180-6 CrossRefGoogle Scholar
  190. Kim JS, Sparovek G, Longo RM, De Melo WJ, Crowley D (2007) Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol Biochem 39:684–690.  https://doi.org/10.1016/j.soilbio.2006.08.010 CrossRefGoogle Scholar
  191. Kim S, Lee S, McCormick M, Kim JG, Kang H (2016) Microbial community and greenhouse gas fluxes from abandoned rice paddies with different vegetation. Microb Ecol 72:692–703.  https://doi.org/10.1007/s00248-016-0801-1 CrossRefGoogle Scholar
  192. Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grünwald T, Heim A, Ibrom A, Joness SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moors E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba U, Soussana J-F, Sutton MQA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Chang Biol 17:1167–1185.  https://doi.org/10.1111/j.1365-2486.2010.02282.x CrossRefGoogle Scholar
  193. Kirkham D, Powers WL (1972) Advanced soil physics. Wiley-Interscience, New YorkGoogle Scholar
  194. Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH (2013) Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One.  https://doi.org/10.1371/journal.pone.0047879 CrossRefGoogle Scholar
  195. Kovács ÁT (2014) Impact of spatial distribution on the development of mutualism in microbes. Front Microbiol 5:649.  https://doi.org/10.3389/fmicb.2014.00649 CrossRefGoogle Scholar
  196. Krausmann F, Erb KH, Gingrich S, Haberl H, Bondeau A, Gaube V, Lauk C, Plutzar C, Searchinger T (2013) Global human appropriation of net primary production doubled in the 20th century. Proc Natl Acad Sci U S A 110:10324–10329.  https://doi.org/10.1073/pnas.1211349110 CrossRefGoogle Scholar
  197. Krug JHA (2018) Accounting of GHG emissions and removals from forest management: a long road from Kyoto to Paris. Carbon Balance Manag 13:1.  https://doi.org/10.1186/s13021-017-0089-6
  198. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984.   https://doi.org/10.1111/j.1469-8137.2011.03962.x CrossRefGoogle Scholar
  199. Kuang J, Cadotte MW, Chen Y, Shu H, Liu J, Chen L, Hua Z, Shu W, Zhou J, Huang L (2017) Conservation of species-and trait-based modeling network interactions in extremely acidic microbial community assembly. Front Microbiol 8:1486.  https://doi.org/10.3389/fmicb.2017.01486 CrossRefGoogle Scholar
  200. Kumar M, Singh DP, Prabha R, Rai AK, Sharma L (2016) Role of microbial inoculants in nutrient use efficiency. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 133–142.  https://doi.org/10.1007/978-81-322-2644-4_9 CrossRefGoogle Scholar
  201. Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9:72–76Google Scholar
  202. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA (2015) Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol.  https://doi.org/10.1371/journal.pcbi.1004226 CrossRefGoogle Scholar
  203. Lal R (2004a) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22.  https://doi.org/10.1016/j.geoderma.2004.01.032 CrossRefGoogle Scholar
  204. Lal R (2004b) Agricultural activities and the global carbon cycle. Nutr Cycl Agroecosyst 70:103–116.  https://doi.org/10.1023/B:FRES.0000048480.24274.0f CrossRefGoogle Scholar
  205. Lal R (2010) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 60:708–721.  https://doi.org/10.1525/bio.2010.60.9.8 CrossRefGoogle Scholar
  206. Lal R (2011a) Soil health and climate change: an overview. In: Singh B, Cowie A, Chan K (eds) Soil health and climate change. Soil biology, vol 29. Springer, Berlin/Heidelberg, pp 3–24.  https://doi.org/10.1007/978-3-642-20256-8_1 Google Scholar
  207. Lal R (2011b) Sequestering carbon in soils of agro-ecosystems. Food Policy 36:S33–S39.  https://doi.org/10.1016/j.foodpol.2010.12.001 CrossRefGoogle Scholar
  208. Lal R (2016) Biochar and soil carbon sequestration. In: Guo M, He Z, Uchimiya M (eds) Agricultural and environmental applications of biochar: advances and barriers. Soil Sci Soc Am, SSSA, Madison, pp 175–198Google Scholar
  209. Lal R, Nagassa W, Lorenz K (2015) Carbon sequestration in soils. Curr Opin Environ Sustain 15:79–86.  https://doi.org/10.1016/j.cosust.2015.09.002 CrossRefGoogle Scholar
  210. Lamers LPM, van Diggelen JMH, Op den Camp HJM, Visser EJW, Lucassen ECHET, Vile MA, Jetten MSM, Smolders AJP, Roelofs JGM (2012) Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. Front Microbiol 3:156.  https://doi.org/10.3389/fmicb.2012.00156 CrossRefGoogle Scholar
  211. Lanza G, Rebensburg P, Kern J, Lentzsch P, Wirt S (2016) Impact of biochars and readily available carbon on soil microbial respiration and microbial community composition in a dynamic incubation experiment. Soil Till Res 164:18–24. ​ https://doi.org/10.1016/j.still.2016.01.005 CrossRefGoogle Scholar
  212. Larkin AA, Martiny AC (2017) Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ Microbiol Rep 9:55–70. ​  https://doi.org/10.1111/1758-2229.12523 CrossRefGoogle Scholar
  213. Larsen PE, Gibbons SM, Gilbert JA (2012) Modeling microbial community structure and functional diversity across time and space. FEMS Microbiol Lett 332:91–98.  https://doi.org/10.1111/j.1574-6968.2012.02588.x CrossRefGoogle Scholar
  214. Lee JY, Santamarina JC, Ruppel C (2010) Volume change associated with formation and dissociation of hydrate in sediment. Geochem Geophys Geosyst.  https://doi.org/10.1029/2009GC002667 CrossRefGoogle Scholar
  215. Lehmann RM (2007) Microbial distributions and their potential controlling factors in terrestrial subsurface environments. In: Franklin RB, Mills AL (eds) The spatial distribution of microbes in the environment. Springer, Dordrecht, pp 135–178.  https://doi.org/10.1007/978-1-4020-6216-2_6 CrossRefGoogle Scholar
  216. Lehmann J (2009) Terra preta Nova – where to from here? In: Woods WI, Teixeira WG, Lehmann J, Steiner C, Winkler Prins A (eds) Amazonian Dark Earths: Wim Sombroek’s Vision. Springer, Dordrecht, pp 473–486.  https://doi.org/10.1007/978-1-4020-9031-8_28
  217. Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops-a meta-analysis. Soil Biol Biochem 81:147–158. ​ https://doi.org/10.1016/j.soilbio.2014.11.013 CrossRefGoogle Scholar
  218. Lehmann J, da Silva JP Jr, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357.  https://doi.org/10.1023/A:1022833116184 CrossRefGoogle Scholar
  219. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota: a review. Soil Biol Biochem 43:1812–1836.  https://doi.org/10.1016/j.soilbio.2011.04.022 CrossRefGoogle Scholar
  220. Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants—a meta-analysis. Soil Biol Biochem 69:123–131. ​ https://doi.org/10.1016/j.soilbio.2013.11.001 CrossRefGoogle Scholar
  221. Leith H (1975) Modeling the primary productivity of the world. In: Leith H, Whittaker R (eds) Primary production of the biosphere. Springer, New York, pp 237–263CrossRefGoogle Scholar
  222. Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T, Vacher C (2017) Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. Adv Bot Res 82:101–133.  https://doi.org/10.1016/bs.abr.2016.10.007 Google Scholar
  223. Li L, Vogel J, He Z, Zou X, Ruan H, Huang W, Huang W, Wang J, Bianchi TS (2016) Association of soil aggregation with the distribution and quality of organic carbon in soil along an elevation gradient on Wuyi Mountain in China. PLoS One.  https://doi.org/10.1371/journal.pone.0150898 CrossRefGoogle Scholar
  224. Li X, Kappler U, Jiang G, Bond PL (2017) The ecology of acidophilic microorganisms in the corroding concrete sewer environment. Front Microbiol 8:683.  https://doi.org/10.3389/fmicb.2017.00683 CrossRefGoogle Scholar
  225. Liang C, Balser TC (2010) Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat Rev Microbiol 8:593–599.  https://doi.org/10.1038/nrmicro2386-c1 CrossRefGoogle Scholar
  226. Liao N, Li Q, Zhang W, Zhou G, Ma L, Min W, Ye J, Hou Z (2016) Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. Eur J Soil Biol 72:27–34.  https://doi.org/10.1016/j.ejsobi.2015.12.008 CrossRefGoogle Scholar
  227. Liu C, Lu M, Cui J, Li B, Fang C (2014) Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Glob Chang Biol 20:1366–1381.  https://doi.org/10.1111/gcb.12517 CrossRefGoogle Scholar
  228. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev. 81:e00063-16.  https://doi.org/10.1128/MMBR.00063-16
  229. Lorenz K, Lal R (2018) Agricultural land use and the global carbon cycle. In: Carbon sequestration in agricultural ecosystems. Springer, Cham, pp 1–37.  https://doi.org/10.1007/978-3-319-92318-5_1 CrossRefGoogle Scholar
  230. Lozano-García B, Parras-Alcántara L (2013) Land use and management effects on carbon and nitrogen in Mediterranean Cambisols. Agric Ecosyst Environ 179:208–214.  https://doi.org/10.1016/j.agee.2013.07.009 CrossRefGoogle Scholar
  231. Lucas J, Bill B, Stevenson B, Kaspari M (2017) The microbiome of the ant-built home: the microbial communities of a tropical arboreal ant and its nest. Ecosphere.  https://doi.org/10.1002/ecs2.1639 CrossRefGoogle Scholar
  232. Lukac M (2017) Soil biodiversity and environmental change in European forests. Cent Eur For J 63:59–65.  https://doi.org/10.1515/forj-2017-0010 CrossRefGoogle Scholar
  233. Lupatini M, Suleiman AKA, Jacques RJS, Antoniolli ZI, de Siqueira Ferreira A, Kuramae EE, Roesch LFW (2014) Network topology reveals high connectance levels and few key microbial genera within soils. Front Environ Sci 2:10.  https://doi.org/10.3389/fenvs.2014.00010 CrossRefGoogle Scholar
  234. Luxmoore RJ (1981) Micro, meso, and macroporosity of soil. Letter to editor. Soil Sci Soc Am J 45:671–672Google Scholar
  235. Maffei ME (2014) Magnetic field effects on plant growth, development, and evolution. Front Plant Sci 5:445.  https://doi.org/10.3389/fpls.2014.00445
  236. Magdoff FR, Bartlett RJ (1984) Soil pH buffering revisited. Soil Sci Soc Am J 49:145–148CrossRefGoogle Scholar
  237. Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938.  https://doi.org/10.1890/11-0026.1 CrossRefGoogle Scholar
  238. Mariotte P, Mehrabi Z, Bezemer TM, De Deyn GB, Kulmatiski A, Drigo B, Veen GFC, van der Heijden MGA, Kardol P (2018) Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol Evol 33:129–142.  https://doi.org/10.1016/j.tree.2017.11.005 CrossRefGoogle Scholar
  239. Maron PA, Mougel C, Ranjard L (2011) Soil microbial diversity: methodological strategy, spatial overview and functional interest. C R Biol 334:403–411.  https://doi.org/10.1016/j.crvi.2010.12.003 CrossRefGoogle Scholar
  240. Marques JDO, Luizão FJ, Teixeira WG, Sarrazin M, Ferreira SJF, Beldini TP, Marques EMA (2015) Distribution of organic carbon in different soil fractions in ecosystems of Central Amazonia. R Bras Ci Solo 39:232–242.  https://doi.org/10.1590/01000683rbcs20150142 CrossRefGoogle Scholar
  241. Marschner H, Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, New YorkGoogle Scholar
  242. Martin JP (1950) Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci 69:215–232CrossRefGoogle Scholar
  243. Maude RB (1996) Seedborne diseases and their control: principles and practice. CAB International, WallinfordGoogle Scholar
  244. Mazzoleni S, Bonanomi G, Giannino F, Incerti G, Piermatteo D, Spaccini R, Piccolo A (2012) New modeling approach to describe and predict carbon sequestration dynamics in agricultural soils. In: Piccolo A (ed) Carbon sequestration in agricultural soils. Springer, Berlin/Heidelberg, pp 291–307.  https://doi.org/10.1007/978-3-642-23385-2_11 Google Scholar
  245. Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J Appl Nat Sci 6:344–348.​  https://doi.org/10.31018/jans.v6i2.425 CrossRefGoogle Scholar
  246. Meena VS, Verma JP, Meena SK (2015) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557.  https://doi.org/10.1016/j.jclepro.2015.04.030 CrossRefGoogle Scholar
  247. Meena SK, Meena VS (2017) Importance of soil microbes in nutrient use efficiency and sustainable food production. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore,  pp 3–23.  https://doi.org/10.1007/978-981-10-5343-6_1 CrossRefGoogle Scholar
  248. Meena RS, Kumar S, Pandey A (2017) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based Agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop Weed 13:222–227Google Scholar
  249. Meena H, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2018) Response of sowing dates and bioregulators on yield of clusterbean under current climate in alley cropping system in eastern U.P. Indian Leg Res 41:563–571Google Scholar
  250. Metting FB Jr (1993) Structure and physiological ecology of soil microbial communities. In: Metting FB (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York, pp 3–25Google Scholar
  251. Miedema R (1997) Application of micromorphology of relevance to agronomy. Adv Agron 59:119–169CrossRefGoogle Scholar
  252. Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z-S, Cheng K, Das BS, Field DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O’Rourke S, Richer-de-Forges AC, Odeh I, Padarian J, Paustian K, Pan G, Poggio L, Savin I, Stolbovoy V, Stockmann U, Sulaeman Y, Tsui C-C, Vågen T-G, van Wesemael B, Winowiecki L (2017) Soil carbon 4 per mille. Geoderma 292:59–86.  https://doi.org/10.1016/j.geoderma.2017.01.002 CrossRefGoogle Scholar
  253. Molaei A, Lakzian A, Datta R, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT (2017a) Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int Agrophys 31:499–505CrossRefGoogle Scholar
  254. Molaei A, Lakzian A, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT, Datta R (2017b) Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: an incubation study. PLoS One.  https://doi.org/10.1371/journal.pone.0180663 CrossRefGoogle Scholar
  255. Moldrup P, Olesen T, Yoshikawa S, Komatsu T, Rolston D (2004) Three-porosity model for predicting the gas diffusion coefficient in undisturbed soil. Soil Sci Soc Am J 68:750–759.  https://doi.org/10.2136/sssaj2004.7500 CrossRefGoogle Scholar
  256. Moll J, Hoppe B, König S, Wubet T, Buscot F, Krüger D (2016) Spatial distribution of fungal communities in an arable soil. PLoS One.  https://doi.org/10.1371/journal.pone.0148130 CrossRefGoogle Scholar
  257. Moonen AC, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosys Environ 127:7–21.  https://doi.org/10.1016/j.agee.2008.02.013 CrossRefGoogle Scholar
  258. Moreira FMS, Siqueira JO (2006) Microbiologia e bioquímica do solo. Editora UFLA, LavrasGoogle Scholar
  259. Moss R, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. https://doi.org/10.1038/nature08823 CrossRefGoogle Scholar
  260. Mukherjee A, Lal R (2017) Biochar and soil characteristics. In: Lal R (ed) Encyclopedia of soil science, 3rd edn. Taylor and Francis, Abingdon, pp 183–188Google Scholar
  261. Muthukumar T, Priyadharsini P, Uma E, Jaison S, Pandey RR (2014) Role of arbuscular mycorrhizal fungi in alleviation of acidity stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 43–71.  https://doi.org/10.1007/978-1-4614-9466-9_3 Google Scholar
  262. Mwajita MR, Murage H, Tani A, Kahangi EM (2013) Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. SpringerPlus 2:606.  https://doi.org/10.1186/2193-1801-2-606
  263. Myrold DD, Zeglin LH, Jansson JK (2014) The potential of metagenomic approaches for understanding soil microbial processes. Soil Sci Soc Am J 78:3–10.  https://doi.org/10.2136/sssaj2013.07.0287dgs CrossRefGoogle Scholar
  264. Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, FordRobertson J, Frumhoff P, Karjalainen T, Krankina O, Kurz WA, Matsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sanchez MJ, Zhang X (2007) Forestry. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 541–584.  https://doi.org/10.1017/CBO9780511546013.013
  265. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670.  https://doi.org/10.1046/j.1351-0754.2003.0556.x CrossRefGoogle Scholar
  266. Nazir R, Mazurier S, Yang P, Lemanceau P, van Elsas JD (2017) The ecological role of type three secretion systems in the interaction of bacteria with fungi in soil and related habitats is diverse and context-dependent. Front Microbiol 8:38.  https://doi.org/10.3389/fmicb.2017.00038 CrossRefGoogle Scholar
  267. Neves EG, Petersen JB, Bartone RN, Silva CAD (2003) Historical and socio- cultural origins of Amazonian dark earths. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic Publishers, Dordrecht, pp 29–50Google Scholar
  268. Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396.  https://doi.org/10.1051/agro:2003011 CrossRefGoogle Scholar
  269. Nianpeng H, Ruomeng W, Yang G, Jingzhong D, Xuefa W, Guirui Y (2013) Changes in the temperature sensitivity of SOM decomposition with grassland succession: implications for soil C sequestration. Ecol Evol 3:5045–5054.   https://doi.org/10.1002/ece3.881 CrossRefGoogle Scholar
  270. Nikrad MP, Kerkhof LJ, Häggblom MM (2016) The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol Ecol.  https://doi.org/10.1093/femsec/fiw081 CrossRefGoogle Scholar
  271. Novozamsky I, Beek J, Bolt GH (1976) Chemical equilibria.  In: Bolt GH, Bruggenwert MGM (eds) soil chemistry: part a. basic elements, vol 5. Elsevier Scientific, Amsterdam, pp 13–42Google Scholar
  272. Nziguheba G, Vargas R, Bationo A, Black H, Buschiazzo DE, de Brogniez D, Joosten H, Melillo J, Richter D, Termansen M (2015) Soil carbon: a critical natural resource – wide-scale goals, urgent actions. In: Banwart SA, Noellemeyer E, Milne E (eds) Soil carbon: science, management, and policy for multiple. SCOPE, volume 7. Cab International, Wallingford, pp 10–25Google Scholar
  273. OECD/FAO (2017) OECD-FAO agricultural outlook 2017–2026. OECD Publishing and FAO.  https://doi.org/10.1787/agr_outlook-2017-en
  274. Ofaim S, Ofek-Lalzar M, Sela N, Jinag J, Kashi Y, Minz D, Freilich S (2017) Analysis of microbial functions in the rhizosphere using a metabolic-network based framework for metagenomics interpretation. Front Microbiol 8:1606.  https://doi.org/10.3389/fmicb.2017.01606 CrossRefGoogle Scholar
  275. Ohtsuka T, Mo W, Satomura T, Inatomi M, Koizumi H (2007) Biometric basedcarbon flux measurements and net ecosystem production (NEP) in a temperate deciduous broad-leaved forest beneath a flux tower. Ecosystems 10:324–334.  https://doi.org/10.1007/s10021-007-9017-z CrossRefGoogle Scholar
  276. Omondi MO, Xia X, Nahayo A, Liu X, Korai PK, Pan G (2016) Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 274:28–34. https://doi.org/10.1016/j.geoderma.2016.03.029CrossRefGoogle Scholar
  277. Orgiazzi A, Panagos P, Yigini Y, Dunbar MB, Gardi C, Montanarella L, Ballabio C (2016) A knowledge-based approach to estimating the magnitude and spatial patterns of potential threats to soil biodiversity. Sci Total Environ 545–546:11–20.  https://doi.org/10.1016/j.scitotenv.2015.12.092 CrossRefGoogle Scholar
  278. Osono T (2014) Diversity and ecology of endophytic and epiphytic fungi of tree leaves in Japan: a review. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, New Delhi, pp 3–26.  https://doi.org/10.1007/978-81-322-1575-2_1 Google Scholar
  279. Pagano MC (2014) Drought stress and mycorrhizal plants. In: Miransai M (ed) Use of microbes for the alleviation of soil stress, volume 1. Springer, New York, pp 97–110.  https://doi.org/10.1007/978-1-4614-9466-9_5 Google Scholar
  280. Pagano MC, Dhar PP (2015) Arbuscular mycorrhizal fungi: association and production of bioactive compounds in plants. In: Gupta VK, Tuohy MG, Lohani M, O’Donovan A (eds) Biotechnology of bioactive compounds: sources and applications. Wiley, Chichester, pp 225–243Google Scholar
  281. Pagano MC, Gupta VK (2016) Overview of the recent advances in mycorrhizal fungi. In: Pagano M (ed) Recent advances on mycorrhizal fungi. Fungal biology. Springer, Cham, pp 1–13.  https://doi.org/10.1007/978-3-319-24355-9_1 CrossRefGoogle Scholar
  282. Pajares S, Bohannan BJM (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045.  https://doi.org/10.3389/fmicb.2016.01045 CrossRefGoogle Scholar
  283. Pajares S, Bohannan BJM, Souza V (2016) Editorial: the role of microbial communities in tropical ecosystems. Front Microbiol 7:1805.  https://doi.org/10.3389/fmicb.2016.01805 CrossRefGoogle Scholar
  284. Papendick RI, Campbell GS (1981) Theory and measurement of water potential. In: Parr JF, Gardner WR, Elliot LF (eds) Water potential relations in soil microbiology. Soil Science Society of America, Madison, pp 1–22Google Scholar
  285. Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451.  https://doi.org/10.1007/s11104-011-0948-y CrossRefGoogle Scholar
  286. Paul ED (2016) The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biol Biochem 98:109–126.  https://doi.org/10.1016/j.soilbio.2016.04.001 CrossRefGoogle Scholar
  287. Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the earth mycobiome. Nat Rev Microbiol 14:434–447.  https://doi.org/10.1038/nrmicro.2016.59 CrossRefGoogle Scholar
  288. Peng S, Guo T, Liu G (2013) The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in Southwest China. Soil Biol Biochem 57:411–417.  https://doi.org/10.1016/j.soilbio.2012.10.026 CrossRefGoogle Scholar
  289. Petersen JB, Neves E, Heckenberger MJ (2001) Gift from the past: Terra Preta and prehistoric Amerindian occupation in Amazonia. In: McEwan C, Barreto C, Neves E (eds) Unknown Amazonia. British Museum Press, London, pp 86–105Google Scholar
  290. Piccolo A (2012) The nature of soil organic matter and innovative soil managements to fight global changes and maintain agricultural productivity. In: Piccolo A (ed) Carbon sequestration in agricultural soils. Springer, Berlin/Heidelberg, pp 1–19.  https://doi.org/10.1007/978-3-642-23385-2_1 Google Scholar
  291. Pickering AJ, Arnold BF, Dentz HN, Colford JM, Null C (2017) Climate and health co-benefits in low-income countries: a case study of carbon financed water filters in Kenya and a call for independent monitoring. Environ Health Perspect 125:278–283.  https://doi.org/10.1289/EHP342 CrossRefGoogle Scholar
  292. Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201.  https://doi.org/10.1016/j.geoderma.2012.08.003 CrossRefGoogle Scholar
  293. Poeplau C, Vos C, Don A (2017) Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil 3:61–66.  https://doi.org/10.5194/soil-3-61-201
  294. Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200.  https://doi.org/10.1007/s13593-011-0029-x CrossRefGoogle Scholar
  295. Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, McSpadden Gardener BB, Kinkel LL, Garret KA (2016) Microbiome networks: a systems framework for identiying candidate microbial assemblages for disease management. Phytopathology 106:1083–1096.  https://doi.org/10.1094/PHYTO-02-16-0058-FI CrossRefGoogle Scholar
  296. Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–55.  https://doi.org/10.1111/j.1365-2389.2010.01342.x CrossRefGoogle Scholar
  297. Prayogo C, Jones JE, Baeyens J, Bending GD (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702.  https://doi.org/10.1007/s00374-013-0884-5 CrossRefGoogle Scholar
  298. Pritchard R, Ryan CM, Grundy I, van der Horst D (2018) Human appropriation of net primary productivity and rural livelihoods: findings from six villages in Zimbabwe. Ecol Econ 146:115–124.  https://doi.org/10.1016/j.ecolecon.2017.10.003 CrossRefGoogle Scholar
  299. Prosser JI (2007) Microorganisms cycling soil nutrients and their diversity. In: Van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology. CRC Press, New York, pp 237–261Google Scholar
  300. Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 26:576–590.  https://doi.org/10.1016/j.biotechadv.2008.08.002 CrossRefGoogle Scholar
  301. Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in arid region of Rajasthan (India). Bangladesh J Bot 43:367–370CrossRefGoogle Scholar
  302. Ranger J, Nys C, Robert M (1992) Intérêt de l’implantation de minéraux–test dans les sols pour caractériser le fonctionnement actuel des sols. Science du Sol 30:193–214Google Scholar
  303. Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, volume 1. Springer, New York, pp 21–42.  https://doi.org/10.1007/978-1-4614-9466-9_2 Google Scholar
  304. Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531.  https://doi.org/10.1007/s00572-013-0486-y CrossRefGoogle Scholar
  305. Reed CA (2013) Myths about the proton. The nature of H+ in condensed media. Acc Chem Res 46:2567–2575CrossRefGoogle Scholar
  306. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893 CrossRefGoogle Scholar
  307. Reid DS (1980) Water activity as a the criterion of water availability. In: Ellwood DC, Latham MJ, Hedger JN, Lynch JM (eds) Contemporary microbial ecology. Academic, London, pp 15–28Google Scholar
  308. Remigi P, Zhu J, Young JPW, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24:63–75.  https://doi.org/10.1016/j.tim.2015.10.007 CrossRefGoogle Scholar
  309. Rey A (2015) Mind the gap: non-biological processes contributing to soil CO2 efflux. Glob Chang Biol 21:1752–1761.​  https://doi.org/10.1111/gcb.12821 CrossRefGoogle Scholar
  310. Richards LA (1965) Physical condition of water in soil. In: Black CA (ed) Methods of soil analysis, part 1, physical and mineralogical properties, Agronomy monograph series, vol 9. ASA, Madison, pp 128–152Google Scholar
  311. Rillig MC, Steinberg PD (2002) Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem 34:1371–1374.  https://doi.org/10.1016/S0038-0717(02)00060-3 CrossRefGoogle Scholar
  312. Rogers ED, Monaenkova D, Mijar M, Nori A, Goldman DI, Benfey PN (2016) X-ray computed tomography reveals the response of root system architecture to soil texture. Plant Physiol 171:2028–2040.  https://doi.org/10.1104/pp.16.00397 CrossRefGoogle Scholar
  313. Roland M, Vicca S, Bahn M, Ladreiter-Knauss T, Schmitt M, Janssens IA (2015) Importance of nondiffusive transport for soil CO2 efflux in a temperate mountain grassland. J Geophys Res Biogeosci 120:502–512.  https://doi.org/10.1002/2014JG002788 Google Scholar
  314. Rolston DE, Moldrup P (2002) Gas diffusivity. In: Dane JH, Topp GC (eds) Methods of soil analysis. Part 4, SSSA book series, vol 5. ASA and SSSA, Madison, pp 1113–1139Google Scholar
  315. Römbke J, Gardi C, Creamer R, Miko L (2016) Soil biodiversity data: actual and potential use in European and national legislation. Appl Soil Ecol 97:125–133.  https://doi.org/10.1016/j.apsoil.2015.07.003 CrossRefGoogle Scholar
  316. Rosenberg E, Zilber-Rosenberg I (2014) The hologenome concept: human, animal and plant microbiota. Springer, HeidelbergGoogle Scholar
  317. Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. MBio 7:e0139515.  https://doi.org/10.1128/mBio.01395-15
  318. Rousk J, Bengtson P (2014) Microbial regulation of global biogeochemical cycles. Front Microbiol 5:103.  https://doi.org/10.3389/fmicb.2014.00103 CrossRefGoogle Scholar
  319. Saleem M (2015) Microbiome ecosystem ecology: unseen majority in an anthropogenic ecosystem. In: Microbiome community ecology. SpringerBriefs in Ecology. Springer, Cham, pp 1–11.  https://doi.org/10.1007/978-3-319-11665-5_1 Google Scholar
  320. Sánchez-García M, Roig A, Sánchez-Monedero MA, Cayuela ML (2014) Biochar increases soil N2O emissions produced by nitrification-mediated pathways. Front Environ Sci 225.  https://doi.org/10.3389/fenvs.2014.00025
  321. Scharlemann JPW, VJ Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage 5:81–91.  https://doi.org/10.4155/cmt.13.77 CrossRefGoogle Scholar
  322. Schiraldi A, Fessas D, Signorelli M (2012) Water activity in biological systems – a review. Polish J Food Nut Sci 62:5–13.  https://doi.org/10.2478/v10222-011-0033-5 CrossRefGoogle Scholar
  323. Schlesinger WH (1999) Carbon sequestration in soils. Science 284:2095. https://doi.org/10.1126/science.284.5423.2095 CrossRefGoogle Scholar
  324. Schlüter S, Vogel H-J (2016) Analysis of soil structure turnover with garnet particles and X-ray microtomography. PLoS One.  https://doi.org/10.1371/journal.pone.0159948 CrossRefGoogle Scholar
  325. Schnitzer M (1990) Selected methods for the characterization of soil humic susbstances. In: MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (eds) Soil and crops sciences-selected readings. Soc Agron Soil Sci Am, Madison, pp 65–89Google Scholar
  326. Schulz H, Dunst G, Glaser B (2013) Positive effects of composted biochar on plant growth and soil fertility. Agron Sustain Dev 33:817–827.  https://doi.org/10.1007/s13593-013-0150-0 CrossRefGoogle Scholar
  327. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421.  https://doi.org/10.1017/S0953756201005196 CrossRefGoogle Scholar
  328. Seo DC, DeLaune RD (2010) Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment. Sci Total Environ 408:3623–3631.  https://doi.org/10.1016/j.scitotenv.2010.04.043 CrossRefGoogle Scholar
  329. Shaw MM, Pautasso M (2014) Networks and plant disease management: concepts and applications. Annu Rev Phytopathol 52:477–493.  https://doi.org/10.1146/annurev-phyto-102313-050229 CrossRefGoogle Scholar
  330. Sidhu C, Vikram S, Pinnaka AK (2017) Unraveling the microbial interactions and metabolic potentials in pre- and post-treated sludge from a wastewater treatment plant using metagenomic studies. Front Microbiol 8:1382.  https://doi.org/10.3389/fmicb.2017.01382 CrossRefGoogle Scholar
  331. Sierra CA (2012) Temperature sensitivity of organic matter decomposition in the Arrhenius equation: some theoretical considerations. Biogeochemistry 108:1–15.  https://doi.org/10.1007/s10533-011-9596-9 CrossRefGoogle Scholar
  332. Silva SR, Silva IR, Barros NF, de Sá Mendonça E (2011) Effect of compaction on microbial activity and carbon and nitrogen transformations in two oxisols with different mineralogy. R Bras Ci Solo 35:1141–1149.  https://doi.org/10.1590/S0100-06832011000400007 CrossRefGoogle Scholar
  333. Singh SJ (2015) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82.  https://doi.org/10.1016/j.agee.2015.01.026 CrossRefGoogle Scholar
  334. Skyllberg U, Raulund-Rasmussen K, Borggaard OK (2001) pH buffering in acidic soils developed under Picea abies and Quercus robur—effects of soil organic matter, adsorbed cations and soil solution ionic strength. Biogeochemistry 56:51–74.  https://doi.org/10.1023/A:1011988613449 CrossRefGoogle Scholar
  335. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  336. Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13.  https://doi.org/10.3852/11-229 CrossRefGoogle Scholar
  337. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057.  https://doi.org/10.1104/pp.111.174581 CrossRefGoogle Scholar
  338. Smith P, Haberl H, Popp A, Erb KH, Lauk C, Harper R, Tubiello FN, de Siqueira Pinto A, Jafari M, Sohi S, Masera O, Böttcher H, Berndes G, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Mbow C, Ravindranath NH, Rice CW, Robledo Abad C, Romanovskaya A, Sperling F, Herrero M, House JI, Rose S (2013) How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob Chang Biol 19:2285–2302.  https://doi.org/10.1111/gcb.12160 CrossRefGoogle Scholar
  339. Solaiman ZM (2014) Contribution of arbuscular mycorrhizal fungi to soil carbon sequestration. In: Solaiman Z, Abbott L, Varma A (eds) Mycorrhizal fungi: use in sustainable agriculture and land restoration. Soil Biology, vol 41. Springer, Berlin/Heidelberg, pp 287–296.  https://doi.org/10.1007/978-3-662-45370-4_18 Google Scholar
  340. Solaiman ZM, Mickan B (2014) Use of mycorrhiza in sustainable agriculture and land restoration. In: Solaiman Z, Abbott L, Varma A (eds) Mycorrhizal fungi: use in sustainable agriculture and land restoration, Soil biology, vol 41. Springer, Berlin/Heidelberg, pp 1–15.  https://doi.org/10.1007/978-3-662-45370-4_1 Google Scholar
  341. Speratti AB, Johnson MS, Sousa HM, Torres GN, Couto EG (2017) Impact of different agricultural waste biochars on maize biomass and soil water content in a Brazilian Cerrado Arenosol. Agronomy 7:49–68.  https://doi.org/10.3390/agronomy7030049 CrossRefGoogle Scholar
  342. Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KZ (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989.  https://doi.org/10.2134/jeq2011.0069 CrossRefGoogle Scholar
  343. Standing D, Killham K (2007) The soil environment. In: van Elsas JD, Trevors JT, Jansson JK (eds) Modern soil microbiology, 2nd edn. CRC Press, Boca Raton, pp 1–22Google Scholar
  344. Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow CE, Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun F, Caron DA, Fuhrman JA (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425.  https://doi.org/10.1038/ismej.2011.24 CrossRefGoogle Scholar
  345. Stein LY, Nicol GW (2011) Grand challenges in terrestrial microbiology. Front Microbiol 2:6.  https://doi.org/10.3389/fmicb.2011.00006 CrossRefGoogle Scholar
  346. Stevanović M, Popp A, Bodirsky BL, Humpenöder F, Müller C, Weindl I, Dietrich JP, Lotze-Campen H, Kreidenweis U, Rolinski S, Biewald A, Wang X (2017) Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: consequences for food prices. Environ Sci Technol 51:365–374.  https://doi.org/10.1021/acs.est.6b04291 CrossRefGoogle Scholar
  347. Steven F (2010) Unlocking the global warming toolbox: key choices for carbon restriction and sequestration. PennWell Corp, OklahomaGoogle Scholar
  348. Stiles CA, Mora CI, Driese SG (2003) Pedogenic processes and domain boundaries in a vertisol climosequence: evidence from titanium and zirconium distribution and morphology. Geoderma 116:279–299.  https://doi.org/10.1016/S0016-7061(03)00105-8 CrossRefGoogle Scholar
  349. Stotzky G (1972) Activity, ecology, and population dynamics of microorganisms in the soil. CRC Crit Ver Microbiol 2:59–137CrossRefGoogle Scholar
  350. Stotzky G (1997) Soil as an environment for microbial life. In: Van Elsas J, Trevors J, Wellington E (eds) Modern soil microbiology. Marcel Dekker, New York, pp 1–20Google Scholar
  351. Summers SK, Rainey R, Kaur M, Graham JP (2015) CO2 and H2O: understanding different stakeholder perspectives on the use of carbon credits to finance household water treatment projects. PLoS One.  https://doi.org/10.1371/journal.pone.0122894 CrossRefGoogle Scholar
  352. Tan KH (1982) Principles of soil chemistry. Marcel Dekker, New York, pp 179–194Google Scholar
  353. Tan KH (2011) Principles of soil chemistry, 4th edn. CRC Press/Taylor and Francis, Boca Raton/Broken Sound Parkway, pp 246–266Google Scholar
  354. Tecon R, Or D (2017) Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev 41:599–623. https://doi.org/10.1093/femsre/fux039 CrossRefGoogle Scholar
  355. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Villarreal Ruiz L, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688.  https://doi.org/10.1126/science.1256688 CrossRefGoogle Scholar
  356. Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: a review. Glob Chang Biol 20:3313–3328. https://doi.org/10.1111/gcb.12581 CrossRefGoogle Scholar
  357. Tian H, Lu C, Yang J, Banger K, Huntzinger DN, Schwalm CR, Michalak AM, Cook R, Ciais P, Hayes D, Huang M, Ito A, Jain AK, Lei H, Mao J, Pan S, Wilfred MP, Peng S, Poulter B, Schaefer K, Shi X, Tao B, Wang W, Wei Y, Yang Q, Zhang B, Zeng N (2015) Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions. Global Biogeochem 29:775–792.   https://doi.org/10.1002/2014GB005021 CrossRefGoogle Scholar
  358. Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson A-C (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49.  https://doi.org/10.3389/fpls.2017.00049 CrossRefGoogle Scholar
  359. Tisdale SL, Nelson WL, Beaton JD (1985) Soil fertility and fertilizers, 4th edn. Macmillian Publishers, New YorkGoogle Scholar
  360. Tokarz E, Urban D (2015) Soil redox potential and its impact on microorganisms and plants of wetlands. J Ecol Eng 16:20–30.  https://doi.org/10.12911/22998993/2801 CrossRefGoogle Scholar
  361. Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK (2016) Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front Plant Sci 7:990.  https://doi.org/10.3389/fpls.2016.00990 CrossRefGoogle Scholar
  362. Tucker M (1997) Climate change and the insurance industry: the cost of increased risk and the impetus for action. Ecol Econ 22:85–96.  https://doi.org/10.1016/S0921-8009(96)00556-3 CrossRefGoogle Scholar
  363. Ucar D, Zhang Y, Angelidaki I (2017) An overview of electron acceptors in microbial fuel cells. Front Microbiol 8:643.  https://doi.org/10.3389/fmicb.2017.00643 CrossRefGoogle Scholar
  364. Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805.  https://doi.org/10.1146/annurev-arplant-050312-120235 CrossRefGoogle Scholar
  365. Uhlirová E, Elhottova D, Triska J, Santruckova H (2005) Physiology and microbial community structure in soil at extreme water content. Folia Microbiol 50:161–166.  https://doi.org/10.1007/BF02931466 CrossRefGoogle Scholar
  366. van der Putten WH (2012) Climate change, aboveground- belowground interactions and species range shifts. Annu Rev Ecol Evol Syst 43:365–383.  https://doi.org/10.1146/annurev-ecolsys-110411-160423 CrossRefGoogle Scholar
  367. van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 27:235–246.  https://doi.org/10.1007/s11104-009-0050-x CrossRefGoogle Scholar
  368. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1996–1206.  https://doi.org/10.1111/nph.13312 CrossRefGoogle Scholar
  369. Vaz CMP, De Maria IC, Lasso PO, Tuller M (2011) Evaluation of an advanced benchtop micro-computed tomography system for quantifying porosities and pore-size distributions of two brazilian oxisols. Soil Sci Soc Am J 75:832–841.  https://doi.org/10.2136/sssaj2010.0245 CrossRefGoogle Scholar
  370. Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. emend. Fiori and Paol.). Bangladesh. J Bot 44:437–442.  https://doi.org/10.3329/bjb.v44i3.38551 CrossRefGoogle Scholar
  371. von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition: what do we know? Biol Fertil Soils 46:1–15.  https://doi.org/10.1007/s00374-009-0413-8 CrossRefGoogle Scholar
  372. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840.  https://doi.org/10.1038/nrmicro2910 CrossRefGoogle Scholar
  373. Voroney RP, Heck RJ (2015) The soil habitat. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic, San Diego, pp 15–39CrossRefGoogle Scholar
  374. Vos M, Wolf AB, Jennings SJ, George A, Kowalchuk GA (2013) Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev 37:936–954.  https://doi.org/10.1111/1574-6976.12023 CrossRefGoogle Scholar
  375. Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797.  https://doi.org/10.1104/pp.112.195727 CrossRefGoogle Scholar
  376. Walder F, Boller T, Wiemken A, Courty PE (2016) Regulation of plants’ phosphate uptake in common mycorrhizal networks: role of intraradical fungal phosphate transporters. Plant Signal Behav.  https://doi.org/10.1080/15592324.2015.1131372 CrossRefGoogle Scholar
  377. Wang W, Dalal R (2006) Carbon inventory for a cereal cropping system under contrasting tillage, nitrogen fertilisation and stubble management practices. Soil Till Res 91:68–74.  https://doi.org/10.1016/j.still.2005.11.005 CrossRefGoogle Scholar
  378. Wang Q, He T, Liu J (2016) Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils. Sci Rep 6:33814.  https://doi.org/10.1038/srep33814 CrossRefGoogle Scholar
  379. Weber APM, Horst RJ, Barbier GG, Oesterhelt C (2007) Metabolism and metabolomics of eukaryotes living under extreme conditions. Int Rev Cytol 256:1–34CrossRefGoogle Scholar
  380. Weil RR, Brady NC (2016) The nature and properties of soils, 15th edn. Pearson Education, LondonGoogle Scholar
  381. Wilding LP (1994) Factors of soil formation: contributions to pedology. In: Amundson R, Harden J, Singer M (eds) Factors of soil formation: a fiftieth anniversary retrospective, vol 33. Soil Sci Soc Am Special Publ, Madison, pp 15–30Google Scholar
  382. Williams RJ, Howe A, Hofmocke lKS (2014) Demonstrating micro- bial co-occurrence pattern analyses within and between ecosystems. Front Microbiol 5:358.  https://doi.org/10.3389/fmicb.2014.00358 CrossRefGoogle Scholar
  383. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes JA, Guisan A, Heikkinen RK, Høye TT, Kühn I, Luoto M, Maiorano L, Nilsson MC, Normand S, Öckinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrup P, Svenning JC (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev Camb Philos Soc 88:15–30.  https://doi.org/10.1111/j.1469-185X.2012.00235.x CrossRefGoogle Scholar
  384. World Bank (2017) Results-based climate finance in practice : delivering climate finance for low-carbon development (English). World Bank Group, Washington, DC. Accessed in http://documents.worldbank.org/curated/en/410371494873772578/Results-based-climate-finance-in-practice-delivering-climate-finance-for-low-carbon-development
  385. Wright JP, Jones CG (2006) The concept of organisms as ecosystem engineers ten years on progress, limitations, and challenges. Bioscience 56:203–209CrossRefGoogle Scholar
  386. Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107.​  https://doi.org/10.1023/A:1004347701584 CrossRefGoogle Scholar
  387. Yadav NA (2017) Agriculturally important micro biomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 4:1–4.  https://doi.org/10.26717/BJSTR.2017.01.000321
  388. Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M (2018) Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the North Eastern  Himalayan region of India. Arch Agron Soil Sci. 64:1254–1267.​  https://doi.org/10.1080/03650340.2018.1423555 CrossRefGoogle Scholar
  389. Yarrow D (2015) Geology into biology: carbon, minerals, and microbes-tools to remineralize soil, sequester carbon, and restore the earth. In: Goreau TJ, Larson RW, Campe J (eds) Geotherapy: innovative methods of soil fertility restoration, carbon sequestration, and reversing CO2 increase. CRC Press/Taylor and Francis Group, Boca Raton, pp 195–223CrossRefGoogle Scholar
  390. Yashiro Y, Lee NY, Ohtsuka T, Shizu Y, Saitoh TM, Koizumi H (2010) Biometric-based estimation of net ecosystem production in a mature Japanese cedar (Cryptomeria japonica) plantation beneath a flux tower. J Plant Res 123:463–472.  https://doi.org/10.1007/s10265-010-0323-8 CrossRefGoogle Scholar
  391. Zhang J, Zhou JM (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3:783–793.  https://doi.org/10.1093/mp/ssq035 CrossRefGoogle Scholar
  392. Zhang Y, Zhao YC, Shi XZ, Lu XX, Yu DS, Wang HJ, Sun WX, Dailek JL (2008) Variation of soil organic carbon estimates in mountain regions: a case study from Southwest China. Geoderma 146:449–456.  https://doi.org/10.1016/j.geoderma.2008.06.015 CrossRefGoogle Scholar
  393. Zhi J, Jing C, Lin S, Zhang C, Liu Q, DeGloria SD, Wu J (2014) Estimating soil organic carbon stocks and spatial patterns with statistical and gis-based methods. PLoS One.  https://doi.org/10.1371/journal.pone.0097757 CrossRefGoogle Scholar
  394. Zhou T, Shi P, Hui D, Luo Y (2009) Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon-climate feedback. J Geophys Res. 114.  https://doi.org/10.1029/2008JG000850 CrossRefGoogle Scholar
  395. Zhuang X, Gao J, Ma A, Fu S, Zhuang G (2013) Bioactive molecules in soil ecosystems: masters of the underground. Int J Mol Sci 14:8841–8868.  https://doi.org/10.3390/ijms14058841 CrossRefGoogle Scholar
  396. Zomer RJ, Bossio DA, Sommer R, Verchot LV (2017) Global sequestration potential of increased organic carbon in cropland soils. Sci Rep 7:15554–15558.  https://doi.org/10.1038/s41598-017-15794-8DO
  397. Zonta JH, Martinez MA, Pruski FF, Silva DD, Santos MR (2012) Effect of successive rainfall with different patterns on soil water infiltration rate. Rev Bras Ci Solo 36:377–388.  https://doi.org/10.1590/S0100-06832012000200007 CrossRefGoogle Scholar
  398. Zuccaro A, Lahrmann U, Langen G (2014) Broad compatibility in fungal root symbioses. Curr Opin Plant Biol 20:135–145.  https://doi.org/10.1016/j.pbi.2014.05.013 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Julio Alves Cardoso Filho
    • 1
  • Gildemberg Amorim Leal Junior
    • 1
  1. 1.Center of Agricultural Sciences, Sector of Plant PathologyFederal University of AlagoasRio LargoBrazil

Personalised recommendations