Advertisement

Using Traditional and Simulation Methods for C and N Cycling Studies with Additional Periods of Human Civilisation: Replicating the Procedures at Regional Levels Advocate

  • Paul Ola IgbojiEmail author
Chapter

Abstract

Carbon and nitrogen cycling are two essential processes in soil health and ecosystem stability. Many researchers and scholars have supported these processes as immensely vital for continued life on the planet earth. Not just their cycling but carbon and nitrogen sink are needed in the era of greenhouse gases emissions, associated global warming and climate change. The sinking of nitrogen naturally and through the activities of nitrogen fixers is also a panacea to nitrogen mobility, accumulated losses and constant replenishment with costly and environment-damaging inorganic fertilisers. An English experience may give clue to global action plan on enhancing soil carbon and nitrogen sink for various periods of human civilisation. These periods were grouped into prehistoric, historical and agricultural revolution, post-agricultural revolution, Green Planet and Post Green Planet. Besides, several types of land management were compared with reference to effective and efficient carbon sequestration, namely, grassland under permanent pasture on 5-year ley prior to grazing, grassland under permanent pasture sown with red clover prior to grazing, arable land under barley and deciduous woodland. By the aid of modelling, simulated data was generated for over 8500 years of English agriculture and compared with field data. The study showed that all these land management practices sequester little or no carbon but required integrated approaches. Nevertheless, the practices if continued were found to be sustainable, as serious changes that may require other sustainable options were forecasted over subsequent 25–30 years.

Keywords

Inorganic fertilisers Ecosystem stability Nitrogen cycling Carbon cycling 

Abbreviations

ANOVA

Analysis of Variance

AR

Agricultural revolution

ATP

Adenosine triphosphate

BD

Bulk density

CEC

Cation exchange capacity

CHCl3

Chloroform

CMC

Carboxyl methyl cellulose

COOH

Carboxylic

CPMAS

Cross polarisation magic angle spinning

Cult

Cultivation

Cv

Coefficient of variation

DMSO

Dimethylsulphoxide

DOC

Dissolved organic carbon

DOY

Day of the year

E(df)

Error degree of freedom

ECL

Chemiluminescence

EF

Electrostatic factor

EMBRACE

Earth Model Bias Reduction and Assessing Abrupt Climate Change

ESR

Electronic spin resonance

Fa

Aromaticity fraction

FA

Fulvic acid

FACE

Free-air carbon dioxide enrichment

FLSD

Fisher’s least significant difference

FTIR

Fourier transform infrared spectroscopy

FYM

Farmyard manure

GP

Green Planet

GPP

Gross primary productivity

H+

Hydrogen ion

Humic acid

HA

Prehistoric agriculture

HÁg

Historic agriculture

HS

Humic substances

K2S2O8

Potassium silicate

K2SO4

Potassium sulphate

KCl

Potassium chloride

KD

Kilo Dalton

MBC

Microbial carbon

MRT

Mean residence time

MUB

Modified universal buffer

MW

Molecular weight

N2H2

Hydrazine

NMR

Nuclear magnetic resonance

OD

Above Datum

OH

Hydroxyl

OM

Organic matter

PAR

Post-agricultural revolution

PD

Particle density

PGP

Post Green Planet

PHAg

Prehistoric agriculture

PNP

р-Nitrophenyl Phosphate

POM

Particulate organic matter

R2

Coefficient of determination

RPM

Resistant plant material

Rpm

Revolution per minute

RQ

Respiratory quotient

RT

Research time

Se

Standard error

SIR

Substrate-induced respiration

SOC

Soil organic carbon

SOM

Soil organic matter

SOMNET

Soil Organic Matter Network

SON

Soil organic nitrogen

SWC

Soil water content

WFPS

Water-filled pore space

WHC

Water holding capacity

XAD-8

Polymethylmethacrylate resin

References

  1. Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (1985) In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment, and water: geochemistry, isolation, and characterization. John Wiley, New YorkGoogle Scholar
  2. Alef K (1990) Bestimmung mikrobieller Aktivität und Biomasse in Boden und Kompost. Umweltwiss Schadst Forsch 2(2):76–78CrossRefGoogle Scholar
  3. Alef K (1995) Soil respiration. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry, 2nd edn. Academic, London, pp 214–219Google Scholar
  4. Alef K, Kleiner D (1987) Applicability of arginine ammonification as indicator of microbial activity in different soils. Biol Fertil Soils 5(2):148–151CrossRefGoogle Scholar
  5. Alef K, Nannipieri P (1995) Cellulase activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, p 345Google Scholar
  6. Alef K, Nannipieri P (1998) Methods in applied soil microbiology and biochemistry, 2nd edn. Academic, LondonGoogle Scholar
  7. Alef K, Beck T, Zelles L, Kleiner D (1988) A comparison of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils. Soil Biol Biochem 20(4):561–565CrossRefGoogle Scholar
  8. Alef K, Nannipieri P, Trazar-Cepeda C (1995) Phosphatase activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, pp 335–336Google Scholar
  9. Alexander M (1977) Soil microbiology. Wiley, New YorkGoogle Scholar
  10. Anderson JPE (1982) Soil respiration. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, chemical and microbiological properties, 2nd edn. American Society of Agronomy, MadisonGoogle Scholar
  11. Anderson J, Domsch K (1978a) Mineralization of bacteria and fungi in chloroform-fumigated soils. Soil Biol Biochem 10(3):207–213CrossRefGoogle Scholar
  12. Anderson J, Domsch K (1978b) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10(3):215–221CrossRefGoogle Scholar
  13. Anderson JR, Slinger JM (1975) Europium chelate and fluorescent brightener staining of soil propagules and their photomicrographic counting—I. Methods Soil Biol Biochem 7(3):205–209CrossRefGoogle Scholar
  14. Anderson HA, Stewart M, Miller JD, Hepburn A (1984) Organic nitrogen in soils and associated surface waters. In: Wilson WS (ed) Advances in soil organic matter research: the impact on agriculture and environment. The Royal Society of Chemistry, CambridgeGoogle Scholar
  15. Appelqvist IAM (1990) The binding of Cu [Superior] 2 [plus] and AI [superior] 3 [plus] ions by a high molecular weight humic acid fraction using continuous flow stirred cell-flow injection analysis. University of Birmingham, BirminghamGoogle Scholar
  16. Babiuk L, Paul EA (1970) The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can J Microbiol 16(2):57–62CrossRefGoogle Scholar
  17. Ball A, Milne E, Drake B (2000) Elevated atmospheric-carbon dioxide concentration increases soil respiration in a mid-successional lowland forest. Soil Biol Biochem 32(5):721–723CrossRefGoogle Scholar
  18. Batterman SA, Hedin LO, Van Breugel M, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502(7470):224CrossRefGoogle Scholar
  19. Beck T (1973) Uber die Eignung von Modellversuchen bei der Messung der biologischen Aktivitat von Boden. Bayer Landw Jb 50:270–288Google Scholar
  20. Benefield C (1971) A rapid method for measuring cellulase activity in soils. Soil Biol Biochem 3(4):325–329CrossRefGoogle Scholar
  21. Benjamin MM, Honeyman BD (1992) Trace metals. In: Butcher SS, Charlson RJ, Orans G, Wolfe GV (eds) Global biogeochemical cycles. Academic Press, New York, pp 318–352Google Scholar
  22. Birch J, Melville M (1969) An electrolytic respirometer for measuring oxygen uptake in soils. Eur J Soil Sci 20(1):101–110CrossRefGoogle Scholar
  23. Bremner JM, Mulvaney RL (1978) Urease activity in soils. In: Burns RG (ed) Soil enzymes. Academic, New York, pp 149–196Google Scholar
  24. Briggs DJ, Courtney FM (1985) Agriculture and environment: the physical geography of temperate agriculture systems. Longman Group Ltd., LondonGoogle Scholar
  25. Brookes PD, Paul EA (1987) A new automated technique for measuring respiration in soil samples. Plant Soil 101(2):183–187CrossRefGoogle Scholar
  26. Brookes P, Landman A, Pruden G, Jenkinson D (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17(6):837–842CrossRefGoogle Scholar
  27. Brumme R, Beese F (1995) Automated monitoring of biological trace gas production and consumption. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, pp 468–472Google Scholar
  28. Burns RG (1978) Enzyme activity in soil: some theoretical and practical considerations. In: Burn RG (ed) Soil enzymes. Academic, London, pp 73–75Google Scholar
  29. Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14(5):423–427CrossRefGoogle Scholar
  30. Burns RJ (1986) Interaction of enzymes with soil mineral and organic colloids. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes, SSSA Special Publication 17. SSSA, Madison, pp 429–452Google Scholar
  31. Burns RG, Pukite A, McLaren A (1972) Concerning the location and persistence of soil urease 1. Soil Sci Soc Am J 36(2):308–311CrossRefGoogle Scholar
  32. Cannell MGR, Milne R, Dewar RC, Howard PJA (1994) Carbon pools and sinks in British vegetation and soils. NERL Annual ReportGoogle Scholar
  33. Cantor L (1987) The changing English countryside (1400–1700). Routledge and Kegan Paul Ltd, LondonGoogle Scholar
  34. Carlisle SM, Trevors JT (1986) Effect of the herbicide glyphosate on respiration and hydrogen consumption in soil. Water Air Soil Pollut 27(3–4):391–401CrossRefGoogle Scholar
  35. Chambers JD, Mingay GE (1966) The agricultural revolution 1750–1880. Batsford, LondonGoogle Scholar
  36. Chaussod R, Nicolardot (1982) Mesure de la biomasse microbienne dans les sols cultivés. I Approche cinétique et estimation simplifiée du carbone facilement minéralisable. Rev Ecol Biol Sol 19:501–512Google Scholar
  37. Chen Y, Senesi N, Schnitzer M (1977) Information provided on humic substances by E4/E6 ratios 1. Soil Sci Soc Am J 41(2):352–358CrossRefGoogle Scholar
  38. Cheng W, Coleman DC (1989) A simple method for measuring CO2 in a continuous air-flow system: modifications to the substrate-induced respiration technique. Soil Biol Biochem 21(3):385–388CrossRefGoogle Scholar
  39. Chhonkar P, Tarafdar J (1981) Characteristics and location of phosphatases in soil-plant system. J Indian Soc Soil Sci 29(2):215–219Google Scholar
  40. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M (2014) Carbon and other biogeochemical cycles. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 465–570Google Scholar
  41. Clark FE, Kemper W (1967) Microbial activity in relation to soil water and soil aeration. Irrig Agric Lands 11:472–480Google Scholar
  42. Clarke A, Stone BJ (1965) Properties of a β-(1→ 4)-glucan hydrolase from Aspergillus niger. Biochem J 96(3):802CrossRefGoogle Scholar
  43. Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad AJ (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13(2):623–645CrossRefGoogle Scholar
  44. Coleman K, Jenkinson DS (2005) ROTHC-26.3 A model for the turnover of carbon in soil-Model description and windows users guide, November 1999 issue (modified April 2005). Rothamsted Research, HarpendenGoogle Scholar
  45. Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81(8):2314–2330CrossRefGoogle Scholar
  46. Compton JE, Boone RD, Motzkin G, Foster DR (1998) Soil carbon and nitrogen in a pine-oak sand plain in central Massachusetts: role of vegetation and land-use history. Oecologia 116(4):536–542CrossRefGoogle Scholar
  47. Curci M, Pizzigallo M, Crecchio C, Mininni R, Ruggiero P (1997) Effects of conventional tillage on biochemical properties of soils. Biol Fertil Soils 25(1):1–6CrossRefGoogle Scholar
  48. Datta R, Anand S, Moulick A, Baraniya D, Pathan SI, Rejsek K, Vranova V, Sharma M, Sharma D, Kelkar A (2017) How enzymes are adsorbed on soil solid phase and factors limiting its activity: a review. Int Agrophys 31(2):287–302CrossRefGoogle Scholar
  49. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, Formanek P (2017a) Enzymatic degradation of lignin in soil: a review. Sustainability 9(7):1163CrossRefGoogle Scholar
  50. Datta R, Baraniya D, Wang Y-F, Kelkar A, Meena RS, Yadav GS, Teresa Ceccherini M, Formanek P (2017b) Amino acid: its dual role as nutrient and scavenger of free radicals in soil. Sustainability 9(8):1402CrossRefGoogle Scholar
  51. Davis B, Walter B, Ball N, Fitter A (1992) The soil: the new naturalistic survey of British natural history. Harper Collins, LondonGoogle Scholar
  52. DeNobilli M, Gjessing E, Sequi P (1989) In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. In search of structure. Wiley, Chichester, p 561Google Scholar
  53. Dent JM, Russell EJ (1966) A history of agricultural science in Great Britain. George Allen and Unwin, LondonGoogle Scholar
  54. Dick W, Juma N, Tabatabai M (1983) Effects of soils on acid phosphatase and inorganic pyrophosphatase of corn roots. Soil Sci 136(1):19–25CrossRefGoogle Scholar
  55. Domsch KH (1962) Bodenatmung, Sammelbericht über Methoden und Ergebnisse. Zbl Bakt Abt II 116:33–78Google Scholar
  56. Domsch KH, Schroder M (1986) Einfluβ einiger Herbizide auf den Mikrobiellen Biomasse-Kohlenstoff und den Mineralstickstoffgehalt des Bodens. In: DFG-Forschungsbericht Herbizide 11. VCH verlagsgesellschaft mbH, WeinheimGoogle Scholar
  57. Domsch K, Beck T, Anderson J, Söderström B, Parkinson D, Trolldenier GJ (1979) A comparison of methods for soil microbial population and biomass studies. Z Pflanzenernähr Bodenkd 142(3):520–533CrossRefGoogle Scholar
  58. Douglas L, Bremner J (1970) Extraction and colorimetric determination of urea in soils 1. Proc Soil Sci Soc Am J 34(6):859–862CrossRefGoogle Scholar
  59. Durán J, Morse JL, Rodríguez A, Campbell JL, Christenson LM, Driscoll CT, Fahey TJ, Fisk MC, Mitchell MJ, Templer PH (2017) Differential sensitivity to climate change of C and N cycling processes across soil horizons in a northern hardwood forest. Soil Biol Biochem 107:77–84CrossRefGoogle Scholar
  60. Eivazi F, Tabatabai MJ (1977) Phosphatases in soils. Soil Biol Biochem 9(3):167–172CrossRefGoogle Scholar
  61. Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5(7):459CrossRefGoogle Scholar
  62. Elliott E, Cambardella CA (1991) Physical separation of soil organic matter. Agric Ecosyst Environ 34(1–4):407–419CrossRefGoogle Scholar
  63. Enders C, Tschapek M, Glane R, Kolloid Z (1948) Concepts of the origins, composition and structure of humic substances. In: Wilson WS (ed) Advances in soil organic matter: the impact on agriculture and environment. Royal Society of Chemistry, Cambridge, pp 3–5Google Scholar
  64. Eriksson KE, Wood TM (1985) Biodegradation of cellulose. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, London, pp 469–503CrossRefGoogle Scholar
  65. Europe’s Environment (EE) (1993) The Dobris assessment. Prepared by the European Environmental Agency Force. HMSO, LondonGoogle Scholar
  66. Falkowski PG (1994) The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res 39(3):235–258CrossRefGoogle Scholar
  67. Falkowski PG, Barber RT, Smetacek VJ (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281(5374):200–206CrossRefGoogle Scholar
  68. Falkowski P, Scholes R, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder SJ (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290(5490):291–296CrossRefGoogle Scholar
  69. FAO (2000) Carbon sequestration options under the clean development mechanism address land degradation. World resources reports. Rome, FAOGoogle Scholar
  70. Farage P, Pretty J, Ball A (2005) Carbon sequestration in tropical dryland agroecosystems. Carbon sequestration in dryland tropics modelling report. Centre for Environment and Society/Department of Biological Sciences, University of Essex, EssexGoogle Scholar
  71. Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21(5):2082–2094CrossRefGoogle Scholar
  72. Flaig W (1988) Humic substances and their role in the environment. Wiley, ChichesterGoogle Scholar
  73. Florkin M, Stotz E (1964) Report of the Enzyme Commission of the International Union of Biochemistry. International Union of Biochemistry, AmsterdamGoogle Scholar
  74. Foereid B, de Neergaard A, Høgh-Jensen H (2004) Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biol Biochem 36(7):1075–1085CrossRefGoogle Scholar
  75. Fowler PJ (1983) The farming of prehistoric Britain. Cambridge University Press, CambridgeGoogle Scholar
  76. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 368(1621):20130164CrossRefGoogle Scholar
  77. Frankenberger W Jr, Johanson J (1986) Use of plasmolytic agents and antiseptics in soil enzyme assays. Soil Biol Biochem 18(2):209–213CrossRefGoogle Scholar
  78. Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brännström Å, Dybzinski R (2012) Modeling carbon allocation in trees: a search for principles. Tree Physiol 32(6):648–666CrossRefGoogle Scholar
  79. Franklin O, Näsholm T, Högberg P, Högberg MN (2014) Forests trapped in nitrogen limitation–an ecological market perspective on ectomycorrhizal symbiosis. New Phytol 203(2):657–666CrossRefGoogle Scholar
  80. Franzluebbers K, Franzluebbers A, Jawson M (2002) Environmental controls on soil and whole-ecosystem respiration from a tallgrass prairie. Soil Sci Soc Am J 66(1):254–262CrossRefGoogle Scholar
  81. Gabrielle B, Mary B, Roche R, Smith P, Gosse G (2002) Simulation of carbon and nitrogen dynamics in arable soils: a comparison of approaches. Eur J Agron 18(1–2):107–120CrossRefGoogle Scholar
  82. Gosewinkel U, Broadbent FE (1984) Conductimetric determination of soil urease activity. Commun Soil Sci Plant Anal 15(11):1377–1389CrossRefGoogle Scholar
  83. Gottschalk G, Andressen JR, Hippe H (1981) In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryote, vol II. Springer, Berlin, pp 1767–1803Google Scholar
  84. Gray TRG, Williams ST (1977) Soil micro-organisms. Longman, LondonGoogle Scholar
  85. Grenville A, Grant A (1988) The countryside of medieval England. Basil Blackwell Ltd, OxfordGoogle Scholar
  86. Hart P (1984) Effects of soil type and past cropping on the nitrogen supplying ability of arable soils. University of Reading, ReadingGoogle Scholar
  87. Hayano K (1986) Cellulase complex in a tomato field soil: induction, localization and some properties. Soil Biol Biochem 18(2):215–219CrossRefGoogle Scholar
  88. Hayes MHB (1985) In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water. Wiley, New York, p 329Google Scholar
  89. Hayes MHB (1991) Concepts of the origins, composition and structure of humic substances. In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. In search of structure. Wiley, New York, p 3Google Scholar
  90. Hayes MH, Swift RJ (1978) The chemistry of soil organic colloids. Wiley, New York, pp 179–320Google Scholar
  91. Hayes M, Swift R, Wardle R, Brown J (1975) Humic materials from an organic soil: a comparison of extractants and of properties of extracts. Geoderma 13(3):231–245CrossRefGoogle Scholar
  92. Heinemeyer O, Insam H, Kaiser E, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infra-red gas analysis. Plant Soil 116(2):191–195CrossRefGoogle Scholar
  93. Hoffman E, Schmidt WJBZ (1953) Uber das Enzymsystem unserer Kulturboden. 2 Urease. Biochem Z 324(2):125–127Google Scholar
  94. Holderness BA, Turner M (1991) Land, labour and agriculture (1700–1920). Hambledon Press, LondonGoogle Scholar
  95. Holland EA, Parton WJ, Detling JK, Coppock DLJT (1992) Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow. Am Nat 140(4):685–706CrossRefGoogle Scholar
  96. Hope C, Burns RG (1987) Activity, origins and location of cellulases in a silt loam soil. Biol Fertil Soils 5(2):164–170CrossRefGoogle Scholar
  97. Houghton RA, Hackler JL, Daniels RC (1995) Continental scale estimates of the biotic carbon flux from land cover change: 1850–1980, Rep. ORNL/. CDIAC-79 NDP-050, R. C. Daniels. Oak Ridge Natl. Lab, Oak RidgeGoogle Scholar
  98. Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302(5650):1512–1513CrossRefGoogle Scholar
  99. Hunt HW (1977) A simulation model for decomposition in grasslands. Ecology 58(3):469–484CrossRefGoogle Scholar
  100. Igboji PO (2006) The effects of land management on the biological properties of East Anglian agricultural soils. University of Essex, EssexGoogle Scholar
  101. Igboji PO, Pretty JN, Ball AS (2015) Effect of park grassland management on C-fluxes in temperate ecosystem. Elixir Int J Elixir Agric 82:2415–2434Google Scholar
  102. Imbert M, Blondeau RJ (1998) On the iron requirement of lactobacilli grown in chemically defined medium. Curr Microbiol 37(1):64–66CrossRefGoogle Scholar
  103. Inubushi K, Wada H, Takai YJ (1984) Determination of microbial biomass-nitrogen in submerged soil. Soil Sci Plant Nutr 30(3):455–459CrossRefGoogle Scholar
  104. Isbister J, Shippen R, Caplan JJ (1980) A new method for monitoring cellulose and starch degradation in soils. Bull Environ Contam Toxicol 24(1):570–574CrossRefGoogle Scholar
  105. Isermeyer H (1952) Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 56(1–3):26–38CrossRefGoogle Scholar
  106. Jaggi W (1976) Die Bestimmung der CO_2-Bildung als Maβ der bodenbiologischen Aktivitat. Schweiz Landwirtch Forsch 15(314):317–380Google Scholar
  107. Janssens I, Dieleman W, Luyssaert S, Subke J-A, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci GJ (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3(5):315CrossRefGoogle Scholar
  108. Jenkinson D (1988) Determination of microbial biomass carbon and nitrogen in soil. CAB International, Wallingford, pp 368–386Google Scholar
  109. Jenkinson D (1991) The Rothamsted long-term experiments: are they still of use? Agron J 83(1):2–10CrossRefGoogle Scholar
  110. Jenkinson D, Rayner JJ (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123(5):298–305CrossRefGoogle Scholar
  111. Joergensen R, Brookes P, Jenkinson D (1990) Survival of the soil microbial biomass at elevated temperatures. Soil Biol Biochem 22(8):1129–1136CrossRefGoogle Scholar
  112. Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140(2–3):227–238CrossRefGoogle Scholar
  113. Johnson DW, Todd D (1988) Nitrogen fertilization of young yellow poplar and loblolly pine plantations at differing frequencies. Soil Sci Soc Am J 52(5):1468–1477CrossRefGoogle Scholar
  114. Johnson DW, Todd D, Tolbert VR (2003) Changes in ecosystem carbon and nitrogen in a loblolly pine plantation over the first 18 years. Soil Sci Soc Am J 67(5):1594–1601CrossRefGoogle Scholar
  115. Joliff G, Edelman A, Klier A, Rapoport GJ (1989) Inducible secretion of a cellulase from Clostridium thermocellum in Bacillus subtilis. Appl Environ Microbiol 55(11):2739–2744Google Scholar
  116. Kaiser E, Mueller T, Joergensen R, Insam H, Heinemeyer O (1992) Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biol Biochem 24(7):675–683CrossRefGoogle Scholar
  117. Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6(1):68–72CrossRefGoogle Scholar
  118. Kieft TL (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19(2):119–126CrossRefGoogle Scholar
  119. Kieft TL, Rosacker LL (1991) Application of respiration-and adenylate-based soil microbiological assays to deep subsurface terrestrial sediments. Soil Biol Biochem 23(6):563–568CrossRefGoogle Scholar
  120. King AW, Post WM, Wullschleger SD (1997) The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2. Climate Change 35(2):199–227CrossRefGoogle Scholar
  121. Kiss S, Dragan-Bularda M, Radulescu D (1978) Soil polysaccharides: activity and agricultural importance. In: Burns RG (ed) Soil enzymes. Academic, New York, pp 117–147Google Scholar
  122. Kissel DE, Cabrera ML (1988) Factors affecting urease activity. In: Bock BR, Kissel DE (eds) Ammonia volatilization from urea fertilizers. TVA, National Fertilizer, Muscle ShoalsGoogle Scholar
  123. Knoepp JD, Swank WT (1997) Forest management effects on surface soil carbon and nitrogen. Soil Sci Soc Am J 61(3):928–935CrossRefGoogle Scholar
  124. Kononova MJ, Somne PP (1966) Soil organic matter. Pergamon Press, Oxford/New YorkGoogle Scholar
  125. Körner C (2003) Slow in, rapid out--carbon flux studies and Kyoto targets. Science 300(5623):1242–1243CrossRefGoogle Scholar
  126. Kowalenko C, Ivarson K (1978) Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biol Biochem 10(5):417–423CrossRefGoogle Scholar
  127. Kroeckel L, Stolp H (1986) Influence of the water regime on denitrification and aerobic respiration in soil. Biol Fertil Soils 2(1):15–21CrossRefGoogle Scholar
  128. Kshattriya S, Sharma G, Mishra R (1992) Enzyme activities related to litter decomposition in forests of different age and altitude in North East India. Soil Biol Biochem 24(3):265–270CrossRefGoogle Scholar
  129. Lackner KS (2003) A guide to CO2 sequestration. Science 300(5626):1677–1678CrossRefGoogle Scholar
  130. Lal R, Kimble J, Follett R (1998) Management of carbon sequestration in soil. In: Lal R (ed) Land use and soil C pools in terrestrial ecosystems. CRC Press, Boca Raton, pp 1–10Google Scholar
  131. Lamothe PJ, McCormick PG (1973) Role of hydrindantin in the determination of amino acids using ninhydrin. Anal Chem 45(11):1906–1911CrossRefGoogle Scholar
  132. Larmola T, Leppänen SM, Tuittila E-S, Aarva M, Merilä P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci U S A 111(2):734–739CrossRefGoogle Scholar
  133. Lee Y-H, Fan L (1980) Properties and mode of action of cellulase. In: Advances in biochemical engineering, vol 17. Springer, New York, pp 101–129Google Scholar
  134. Levia DF Jr, Frost E (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274(1–4):1–29CrossRefGoogle Scholar
  135. Lovelock J (1995) New statements on the Gaia theory. Microbiologia 11(3):295–304Google Scholar
  136. Lundgren B (1981) Fluorescein diacetate as a stain of metabolically active bacteria in soil. Oikos 36:17–22CrossRefGoogle Scholar
  137. Malcolm RL (1989) In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. In search of structure. Wiley, Chichester, p 339Google Scholar
  138. Malkomes H-P (1985) Einfluß des Herbizids Dinoseb-acetat und dessen Kombination mit einem Phospholipid auf bodenmikrobiologische Aktivitäten unter Labor-und Gewächshausbedingungen/Influence of the herbicide dinoseb acetate and its combination with a phospholipid on microbial activities in soil under laboratory and field conditions. Z Pflanzenkrankh Pflanz/J Plant Dis Protect 92:489–501Google Scholar
  139. Mann L (1986) Changes in soil carbon storage after cultivation. Soil Sci 142(5):279–288CrossRefGoogle Scholar
  140. Martens R (1985) Limitations in the application of the fumigation technique for biomass estimations in amended soils. Soil Biol Biochem 17(1):57–63CrossRefGoogle Scholar
  141. Martin J, Haider K, Kassim G (1980) Biodegradation and stabilization after 2 years of specific crop, lignin, and polysaccharide carbons in soils. Congr Int Soc Soil Sci 44(6):1250–1255CrossRefGoogle Scholar
  142. McCarty G, Bremner J, Chai H (1989) Effect of N-(n-butyl) thiophosphoric triamide on hydrolysis of urea by plant, microbial, and soil urease. Biol Fertil Soils 8(2):123–127CrossRefGoogle Scholar
  143. McGill W, Cole C (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26(4):267–286CrossRefGoogle Scholar
  144. Menge DN, Hedin LO (2009) Nitrogen fixation in different biogeochemical niches along a 120,000-year chronosequence in New Zealand. Ecology 90(8):2190–2201CrossRefGoogle Scholar
  145. Metherell AK (1992) Simulation of soil organic matter dynamics and nutrient cycling in microbial assimilation of nitrogen. Biol Fertil Soils 12:261–264CrossRefGoogle Scholar
  146. Metherell AK, Parton WJ, Cambardella CA, Peterson GA, Harding LA, Cole CV (1993) Simulation of soil organic matter dynamics in dryland wheat-fallow cropping systems. In: Proceedings of the international symposium on soil processes and management systems: greenhouse gas emissions and carbon sequestration, Ohio State University, April 5–9Google Scholar
  147. Meyerholt J, Zaehle S, Smith MJ (2016) Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation. Biogeosciences 13(5):1491–1518CrossRefGoogle Scholar
  148. Moore S, Stein WH (1948) Photometric nin-hydrin method for use in the chromatography of amino acids. J Biol Chem 176:367–388Google Scholar
  149. Moyo C, Kissel D, Cabrera M (1989) Temperature effects on soil urease activity. Soil Biol Biochem 21(7):935–938CrossRefGoogle Scholar
  150. Mueller T, Joergensen R, Meyer B (1992) Estimation of soil microbial biomass C in the presence of living roots by fumigation-extraction. Soil Biol Biochem 24(2):179–181CrossRefGoogle Scholar
  151. Mulvaney R, Bremner J (1979) A modified diacetyl monoxime method for colorimetric determination of urea in soil extracts. Commun Soil Sci Plant Anal 10(8):1163–1170CrossRefGoogle Scholar
  152. Nakas JP, Klein DA (1981) Use of an amino acid mixture to estimate the mineralization capacity of grassland soils. Soil Biol Biochem 13:427–428CrossRefGoogle Scholar
  153. Nannipieri P (1994) Productivity, sustainability and pollution. In: Parkhurst CE, Double BM, Gupta VV, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO, Melbourne, pp 238–244Google Scholar
  154. Nannipieri P, Ceccanti B, Cervelli S, Sequi P (1974) Use of 0· 1 m pyrophosphate to extract urease from a podzol. Soil Biol Biochem 6(6):359–362CrossRefGoogle Scholar
  155. Nannipieri P, Ceccanti B, Cervelli S (1978) Stability and kinetic properties of humus-urease complexes. Soil Biol Biochem 10(2):143–147CrossRefGoogle Scholar
  156. Nannipieri P, Ceccanti B, Bianchi D (1988) Characterization of humus-phosphatase complexes extracted from soil. Soil Biol Biochem 20(5):683–691CrossRefGoogle Scholar
  157. Nannipieri P, Grego S, Ceccanti B, Bollag J, Stotzky G (1990) Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York/Basel, pp 293–355Google Scholar
  158. Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57(1):99–136CrossRefGoogle Scholar
  159. Newman DK, Banfield JF (2002) Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science 296(5570):1071–1077CrossRefGoogle Scholar
  160. Nicks AD (1974) Stochastic generation of the occurrence, pattern, location of maximum amount of daily rainfall. In: Proceedings symposium on statistical hydrology, United States Department of Agriculture Misc, vol 1275, pp 154–171Google Scholar
  161. Nip M, Tegelaar E, De Leeuw J, Schenck P, Holloway P (1986) A new non-saponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften 73(10):579–585CrossRefGoogle Scholar
  162. Norman J, Garcia R, Verma SJ (1992) Soil surface CO2 fluxes and the carbon budget of a grassland. J Geophys Res Atmos 97(D17):18845–18853CrossRefGoogle Scholar
  163. Ogunseitan O (2005) Microbial diversity. Blackwell Publishing Company, MaldenGoogle Scholar
  164. Ojima D (2006) Century soil organic matter model version 5. Natural Resource Ecology Laboratory 5, Fort CollinsGoogle Scholar
  165. Ojima DS, Parton W, Schimel D, Owensby C (1990) Simulated impacts of annual burning on prairie ecosystems. In: Collins SL, Wallance L (eds) Fire in North American prairies. University of Oklahoma, NormanGoogle Scholar
  166. Parkinson D, Gray TR, Williams ST (1971) Methods for study-ing the ecology of soil micro-organisms. Blackwells, OxfordGoogle Scholar
  167. Parton WJ, Anderson DW, Cole CV, Stewart JWB (1983) Simulation of soil organic matter formation and mineralization in semi-arid agroecosystems. In: Lowrance RR, Todd RL, Asmussen LE, Leonard RA (eds) Nutrient cycling in agricultural ecosystem, Special Publication No 23. The University of Georgia, College of Agriculture Experiment Stations, Athens, pp 553–550Google Scholar
  168. Parton W, Schimel DS, Cole C, Ojima D (1987) Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Sci Soc Am J 51(5):1173–1179CrossRefGoogle Scholar
  169. Parton WJ, Metherell AK, Harding LA, Cole CV (1993) CENTURY: Soil organic matter model environment. Technical documentation, agroecosystem version 4.0. Great Plains System Research. USDA-ARS, Fort CollinsGoogle Scholar
  170. Paul E, Johnson R (1977) Microscopic counting and adenosine 5′-triphosphate measurement in determining microbial growth in soils. Appl Environ Microbiol 34(3):263–269Google Scholar
  171. Paul E, Collins H, Leavitt S (2001) Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma 104(3–4):239–256CrossRefGoogle Scholar
  172. Paul E, Morris S, Six J, Paustian K, Gregorich E (2003) Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils. Soil Sci Soc Am J 67(5):1620–1628CrossRefGoogle Scholar
  173. Perry PJ (1973) British agriculture (1875–1914). Methuen and Co. Ltd, LondonGoogle Scholar
  174. Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199(1):41–51CrossRefGoogle Scholar
  175. Pidwimy M (2005) Introduction to the biosphere. In: Fundamaentals of physical geography. University of British Columbia, OkanaganGoogle Scholar
  176. Plentinger M, Penning de Vries F (1995) CAMASE, register of agroecosystems models, version 1. Centre for Agricultural Publishing and Documentation, WageningenGoogle Scholar
  177. Pochon J, Tardieux P (1962) Techniques d’analyse en microbiologie du sol. Editions de la Tourelle, St MandeGoogle Scholar
  178. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6(3):317–327CrossRefGoogle Scholar
  179. Pretty J (2002) Reconnecting people, land and nature. Earthscan, LondonGoogle Scholar
  180. Pretty J, Ball A (2001) Agricultural influences on carbon emissions and sequestration: a review of evidence and the emerging trading options. Centre Environ Soc Occ Pap 3:31Google Scholar
  181. Pumpanen J, Ilvesniemi H, Hari P (2003) A process-based model for predicting soil carbon dioxide efflux and concentration. Soil Sci Soc Am J 67(2):402–413CrossRefGoogle Scholar
  182. Qian Y, Bandaranayake W, Parton W, Mecham B, Harivandi M, Mosier AJ (2003) Long-term effects of clipping and nitrogen management in turfgrass on soil organic carbon and nitrogen dynamics. J Environ Qual 32(5):1694–1700CrossRefGoogle Scholar
  183. RCEP (1996) Commission on Environmental Pollution, 1996. Sustainable use of soil. HMSO, Royal Commission on Environmental Pollution (RCEP), LondonGoogle Scholar
  184. Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512CrossRefGoogle Scholar
  185. Rhee Y, Hah Y, Hong S (1987) Relative contributions of fungi and bacteria to soil carboxymethylcellulase activity. Soil Biol Biochem 19(4):479–481CrossRefGoogle Scholar
  186. Richter J (1972) Zur Methodik des Bodengashaushaltes. II. Ergebnisse und Diskussion. Z Pflanzenern Bodenkde 132(3):220–239CrossRefGoogle Scholar
  187. Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400(6739):56CrossRefGoogle Scholar
  188. Rowell DL (1994) Soil science: methods and applications, vol 1. Longman Scientific Ltd, LondonGoogle Scholar
  189. Ryan MJ (1996) Comparing models of ecosystem function for temperate conifer forests. I. Model description and validation. In: Global change: effects on coniferous forests and grasslands. Wiley, ChichesterGoogle Scholar
  190. Sarkar J, Batistic L, Mayaudon J (1980) Les hydrolases du sol et leur association avec les hydrates de carbone. Soil Biol Biochem 12(4):325–328CrossRefGoogle Scholar
  191. Sarmiento JL, Gruber N (2002) Sinks for anthropogenic carbon. Phys Today 55(8):30–36CrossRefGoogle Scholar
  192. Sato K (1981) Relations between soil microflora and CO 2 evolution upon decomposition of cellulose. Plant Soil 61(1–2):251–258CrossRefGoogle Scholar
  193. Schinner F, Von Mersi W (1990) Xylanase-, CM-cellulase-and invertase activity in soil: an improved method. Soil Biol Biochem 22(4):511–515CrossRefGoogle Scholar
  194. Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8(1):51–81CrossRefGoogle Scholar
  195. Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348(6298):232CrossRefGoogle Scholar
  196. Schlesinger W (1991) The global carbon cycle. Wiley, New YorkGoogle Scholar
  197. Schlosser HJ (1988) Auswertung ökotoxikologischer Forschung zur Belastung von Ökosystemen durch Chemikalien: Bundesministerium für Forschung u. Technologie Förderkennzeichen 03 7393 4. Projektleitung Biologie, Ökologie, Energie (PBE) d. Kernforschungsanlage JülichGoogle Scholar
  198. Schröder D, Gewehr H (1977) Stroh-und Zelluloseabbau in verschiedenen Bodentypen. Z Pflanzenernähr Bodenk 140(3–4):273–284CrossRefGoogle Scholar
  199. Schröder D, Urban B (1985) Bodenatmung, Celluloseabbau und Dehydrogenaseaktivität in verschiedenen Böden und ihre Beziehungen zur organischen Substanz sowie Bodeneigenschaften. Forschung 38:166–172Google Scholar
  200. Schuffelen AC, Bolt GH (1962) Landbouwk tidjschr. ste Jaargang No 4/5Google Scholar
  201. Schuster E (1988) EinfluB von Pflanzenschutzmittel-Spritzfolgen und-Kombinationen auf die mikro-biologische Aktivitat des Bodens. Freiland-und Laborversuche. Dissertations arbeit, Fach Boden-Kunde Universitat TrierGoogle Scholar
  202. Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall F, Berry G, Senesi N, Steelink C (1989) Humic substances. In: Hessen et al (eds) Humic substances II. In search of structure. Wiley, Chichester, p 372Google Scholar
  203. Shen S, Pruden G, Jenkinson D (1984) Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biol Biochem 16(5):437–444CrossRefGoogle Scholar
  204. Simmons IG, Tooley MJ (1981) The environment in British prehistory. Duckworth, LondonGoogle Scholar
  205. Sinsabaugh R, Linkins A (1988) Adsorption of cellulase components by leaf litter. Soil Biol Biochem 20(6):927–931CrossRefGoogle Scholar
  206. Sinsabaugh RL, Linkins A (1989) Ellulase mobility in decomposing leaf litter. Soil Biol Biochem 21(2):205–209CrossRefGoogle Scholar
  207. Skujiņš J (1978) History of abiotic soil enzyme research. In: Burns RG (ed) Soil enzymes. Academic, London, pp 1–49Google Scholar
  208. Skujiņš J, McLaren A (1969) Assay of urease activity using 14C-urea in stored, geologically preserved, and in irradiated soils. Soil Biol Biochem 1(1):89–99CrossRefGoogle Scholar
  209. Smith J, Paul E, Bollag J, Stotzky G (1990) The significance of soil microbial biomass estimations. In: Bollag J-M, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 357–396Google Scholar
  210. Smith P, Smith JU, Powlson DS (1996) Soil organic matter network (SOMNET): model and experimental metadata. GCTE Task 3.3.1. Global Change and Terrestrial Ecosystems Rep. No 7, WallingfordGoogle Scholar
  211. Smith P, Smith J, Powlson D, McGill W, Arah J, Chertov O, Coleman K, Franko U, Frolking S, Jenkinson D (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81(1–2):153–225CrossRefGoogle Scholar
  212. Söderström B (1977) Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biol Biochem 9(1):59–63CrossRefGoogle Scholar
  213. Sollins P, Glassman C, Paul E, Swanston C, Lajtha K, Heil J (1999) Soil carbon and nitrogen. Elliott Management Corporation, New York, pp 89–105Google Scholar
  214. Somerville L, Greaves MP (1987) In: Somerville L, Greaves MP (eds) Pesticide effects on soil microflora. Taylor and Francis, London/New YorkGoogle Scholar
  215. Sowerby A, Blum H, Gray TR, Ball AS (2000) The decomposition of Lolium perenne in soils exposed to elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biol Biochem 32(10):1359–1366CrossRefGoogle Scholar
  216. Sparling G (1981a) Heat output of the soil biomass. Soil Biol Biochem 13(5):373–376CrossRefGoogle Scholar
  217. Sparling G (1981b) Microcalorimetry and other methods to assess biomass and activity in soil. Soil Biol Biochem 13(2):93–98CrossRefGoogle Scholar
  218. Sparling G, West A (1990) A comparison of gas chromatography and differential respirometer methods to measure soil respiration and to estimate the soil microbial biomass. Pedobiologia 34(2):103–112Google Scholar
  219. Speir T, Ross D (1978) Soil phosphatase and sulphatase. Soil Enzymes 203:197–250Google Scholar
  220. Speir T, Ross D (1981) A comparison of the effects of air-drying and acetone dehydration on soil enzyme activities. Soil Biol Biochem 13(3):225–229CrossRefGoogle Scholar
  221. Steelink C, Wershaw RL, Thorn KA, Wilson MA (1989) In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II: In search of structure. Wiley, Chichester, p 281Google Scholar
  222. Stocker BD, Prentice IC, Cornell SE, Davies-Barnard T, Finzi AC, Franklin O, Janssens I, Larmola T, Manzoni S, Näsholm T (2016) Terrestrial nitrogen cycling in Earth system models revisited. New Phytol 210(4):1165–1168CrossRefGoogle Scholar
  223. Stotzky G (1965) Microbial respiration. In: Methods of soil analysis. Part 2, Agronomy Monograph 9. UFRGS, Porto Alegre, pp 1550–1572Google Scholar
  224. Stutzenberger FJ (1972) Cellulolytic activity of Thermomonospora curvata: optimal assay conditions, partial purification, and product of the cellulase. Appl Microbiol 24(1):83–90Google Scholar
  225. Sullivan BW, Smith WK, Townsend AR, Nasto MK, Reed SC, Chazdon RL, Cleveland CC (2014) Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proc Natl Acad Sci 111:8101CrossRefGoogle Scholar
  226. Suttner T, Alef K (1988) Correlation between the arginine ammonification, enzyme activities, microbial biomass, physical and chemical properties of different soils. Zentralbl Mikrobiol 143(8):569–573CrossRefGoogle Scholar
  227. Swift RS (1985) Fractionation of soil humic substances. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water: geochemistry, isolation and characterisation. Wiley, New York, pp 387–408Google Scholar
  228. Swift RS (1989) In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. In search of structure. Wiley, Chichester, p 467Google Scholar
  229. Tabatabai M, Bremner J (1972) Assay of urease activity in soils. Soil Biol Biochem 4(4):479–487CrossRefGoogle Scholar
  230. Tarafdar J, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3(4):199–204CrossRefGoogle Scholar
  231. Tateno M (1988) Limitations of available substrates for the expression of cellulase and protease activities in soil. Soil Biol Biochem 20:117–118CrossRefGoogle Scholar
  232. Thalmann A (1968) Zur Methodik der Bestimmung der DehydrogenaseaktivitAt im Boden mittels triphenytetrazoliumchlorid (TTC). Landwirtsch Forsch 21:249–258Google Scholar
  233. Thirsk J (1991) The agrarian history of England and Wales, vol 111. Cambridge University Press, New YorkGoogle Scholar
  234. Thirsk J (2000) The agrarian history of England and Wales (1850–1914), vol VII. Cambridge University Press, New YorkGoogle Scholar
  235. Torsvik VL, Goksoyr J (1978) Determination of bacterial DNA in soil. Soil Biol Biochem 10(1):7–12CrossRefGoogle Scholar
  236. Trasar-Cepeda MC, Gil-Sotres F (1987) Phosphatase activity in acid high organic matter soils in Galicia (NW Spain). Soil Biol Biochem 19(3):281–287CrossRefGoogle Scholar
  237. Trasar-Cepeda MC, Gil-Sotres F (1988) Kinetics of acid phosphatase activity in various soils of Galicia (NW Spain). Soil Biol Biochem 20(3):275–280CrossRefGoogle Scholar
  238. Trevors JT (1985) Oxygen consumption in soil: effect of assay volume. Soil Biol Biochem 17:385–386CrossRefGoogle Scholar
  239. Trolldenier G (1973) The use of fluorescence microscopy for counting soil microorganisms. Bull Ecol Res Commun (Stockholm) 17:53–59Google Scholar
  240. Turner J, Lambert M (2000) Change in organic carbon in forest plantation soils in eastern Australia. For Ecol Manag 133(3):231–247CrossRefGoogle Scholar
  241. Van de Werf H, Verstraete W (1987) Estimation of active soil microbial biomass by mathematical analysis of respiration curves: development and verification of the model. Soil Biol Biochem 19(3):253–260CrossRefGoogle Scholar
  242. Van de Werf H, Genouw G, Van Vooren L, Verstraete W (1995) The determination of active microbial biomass by the respiration simulation method of Chapter 8 ‘Microbial biomass’. In: Alef K, Nannipieri P (eds) Methods in applied soil and biochemistry. Academic Press Ltd., London, pp 405–408Google Scholar
  243. Vance E, Brookes P, Jenkinson D (1987a) Microbial biomass measurements in forest soils: determination of kc values and tests of hypotheses to explain the failure of the chloroform fumigation-incubation method in acid soils. Soil Biol Biochem 19(6):689–696CrossRefGoogle Scholar
  244. Vance E, Brookes P, Jenkinson D (1987b) Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol Biochem 19(6):697–702CrossRefGoogle Scholar
  245. Vance ED, Brookes PC, Jenkinson DS (1987c) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707CrossRefGoogle Scholar
  246. Verma SB (1990) Micrometeorological methods for measuring surface fluxes of mass and energy. Remote Sens Rev 5(1):99–115CrossRefGoogle Scholar
  247. Vitousek PM, Menge DN, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Lond B Biol Sci: Biol Sci 368(1621):20130119CrossRefGoogle Scholar
  248. Walker AP, Zaehle S, Medlyn BE, De Kauwe MG, Asao S, Hickler T, Parton W, Ricciuto DM, Wang YP, Wårlind D (2015) Predicting long-term carbon sequestration in response to CO2 enrichment: how and why do current ecosystem models differ? Glob Biogeochem Cycles 29(4):476–495CrossRefGoogle Scholar
  249. Webb J, Bellamy P, Loveland P, Goodlass G (2003) Crop residue returns and equilibrium soil organic carbon in England and Wales. Soil Sci Soc Am J 67(3):928–936CrossRefGoogle Scholar
  250. Weinberg ED (1997) The Lactobacillus anomaly: total iron abstinence. Perspect Biol Med 40(4):578–583CrossRefGoogle Scholar
  251. Wenzel S, Cox PM, Eyring V, Friedlingstein PJ (2014) Emergent constraints on climate carbon cycle feedbacks in the CMIP5 Earth system models. J Geophys Res Biogeo 119(5):794–807CrossRefGoogle Scholar
  252. Wershaw RL (1985) In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water. Wiley, New York, p 561Google Scholar
  253. Widén B, Majdi H (2001) Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Can J For Res 31(5):786–796CrossRefGoogle Scholar
  254. Wilke B-M (1986) Einfluß verschiedener potentieller anorganischer Schadstoffe auf die mikrobielle Aktivität von Waldhumusformen unterschiedlicher Pufferkapazität. Dr.-Haus Bayreuth Verlag-Ges. Springer Verlag, Berlin/Heidelberg/New YorkGoogle Scholar
  255. Wilson MJHS (1989) Solid-state nuclear magnetic resonance spectroscopy of humic substances: basic concepts and techniques. Wiley, New York, pp 310–338Google Scholar
  256. Wilson JM, Griffin D (1975) Water potential and the respiration of microorganisms in the soil. Soil Biol Biochem 7(3):199–204CrossRefGoogle Scholar
  257. Wormel P (1999) Essex Farming (1900–2000). Alberton Books, ColchesterGoogle Scholar
  258. Writtle College (2004) Crop production handbook: data and general information (2003–2004). Writtle College, Chelmsford Press, EssexGoogle Scholar
  259. Wu J, Joergensen R, Pommerening B, Chaussod R, Brookes P (1990) Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem 22(8):1167–1169CrossRefGoogle Scholar
  260. Yamane K, Suzuki H, Nisizawa K (1970) Purification and properties of extracellular and cell-bound cellulase components of Pseudomonas fluorescens var. cellulosa. J Biochem 67(1):19–35CrossRefGoogle Scholar
  261. Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC, Hickler T, Luo Y, Wang YP, El-Masri B, Thornton P (2014) Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO 2 Enrichment studies. New Phytol 202(3):803–822CrossRefGoogle Scholar
  262. Zantua M, Bremner J (1975) Comparison of methods of assaying urease activity in soils. Soil Biol Biochem 7(4–5):291–295CrossRefGoogle Scholar
  263. Zibilske LJ (1994) Carbon mineralization … methods of soil analysis: Part 2—Microbiological and biochemical properties, vol 5.2, pp 835–863.  https://doi.org/10.2136/sssabookser5.2.frontmatter CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Soil Science and Environmental ManagementFaculty of Agriculture and Natural Resources Management, Ebonyi State UniversityAbakalikiNigeria

Personalised recommendations