Advertisement

HPTLC Fingerprint in Herbal Drug Formulations

  • Tochhawng Lalhriatpuii
Chapter

Abstract

High-performance thin-layer chromatography (HPTLC) is a powerful analytical technique which is wonderfully suitable for qualitative and quantitative analytical tasks. HPTLC plays an important role in today’s analytical world, not in competition to HLPC but as a complementary method. Fingerprint analysis approach using HPTLC has become the most potent technique for quality control of herbal medicines because of its simplicity, flexibility and reliability. It can serve as a tool for identification, authentication and quality control of herbal medicines. The development of chromatographic fingerprints plays an important role in the quality control of complex herbal medicines. Phytochemical evaluation is one of the tools for the quality assessment, which include preliminary phytochemical screening, chemo profiling and marker compound analysis using modern analytical techniques. High-performance thin-layer chromatography (HPTLC) has emerged as an important tool for the qualitative, semi-quantitative and quantitative phytochemical analysis of the herbal drugs and formulations which includes developing TLC fingerprinting profiles and estimation of biomarkers. In this chapter, attempts will be made to expand the use of HPTLC and at the same time create interest among prospective researchers in herbal analysis and to focus on the theoretical background of HPTLC and few examples of herbal drugs and formulations analysed by various researchers using HPTLC method.

Keywords

HPLC Fingerprinting Herbal drugs Quality control Qualitative Quantitative 

References

  1. Abourashed AA, Mossa JS. HPTLC determination of caffeine in stimulant herbal products and power drinks. J Pharm Biomed Anal. 2004;36:617–20.CrossRefGoogle Scholar
  2. Ahirwal B, Ahirwal D, Ram A. Evaluation of standards and quality control parameters of herbal drugs, Souvenir, recent trends in herbal therapy 2006: 25–29.Google Scholar
  3. Alam P. Densitometric HPTLC analysis of 8-gingerol in Zingiber Officinale extract and ginger- containing dietary supplements, teas, and commercial creams. Asian Pac J Trop Biomed. 2013;3(8):634–8.CrossRefGoogle Scholar
  4. Alam P, Alam A, Anwer MK, Alqasoumi SI. Quantitative estimation of hesperidin by HPTLC in different varieties of citrus peels. Asian Pac J Trop Biomed. 2014;4(4):262–6.CrossRefGoogle Scholar
  5. Amit J, Sunil C, Vimal K, Anupam P. Phytosomes: a revolution in herbal drugs. Pharma Rev. 2007:11–3.Google Scholar
  6. Andola HC, Purohit VK. High performance thin layer chromatography (HPTLC): a modern analytical tool for biological analysis. Nat Sci. 2010;8(10):58–61.Google Scholar
  7. Arup U, Ekman S, Lindblom L, Mattsson JE. High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist. 1993;25:61–71.CrossRefGoogle Scholar
  8. Attimarad M, MA KK, Aldhubaib BE, Harsha S. High-performance thin layer chromatography: a powerful analytical technique in pharmaceutical drug discovery. Pharma Methods. 2011;2(2):71–4.CrossRefGoogle Scholar
  9. Bagul MS, Rajani M. Phytochemical evaluation of classical formulation: a case study. Indian Drugs. 2005;42:15–9.Google Scholar
  10. Bele AA, Khale A. Standardisation of herbal drugs: an overview. Int Res J Pharm. 2011;2(12):56–60.Google Scholar
  11. Brainthwaite A, Smith FJ, Stock R, Rice CBF. Chromatographic methods. 5th ed. London: Kluwer Academic Publishers; 1999.CrossRefGoogle Scholar
  12. Choudhary N, Sekhon BS. An overview of advances in the standardization of herbal drugs. J Pharm Educ Res. 2011;2(2):55–70.Google Scholar
  13. Ekka NR, Namdeo KP, Samal PK. Standardization strategies for herbal drugs: an overview. Res J Pharm Tech. 2008;1(4):310–2.Google Scholar
  14. Ermer J. Linearity. In: Ermer J, Miller JHMB, editors. Method validation in pharmaceutical analysis. Weinheim: Wiley-VCH; 2005.CrossRefGoogle Scholar
  15. Gantait A, Barman T, Mukherjee PK. Validated method for estimation of curcumin in turmeric powder. Int J Trad Knowled. 2011;10(2):247–50.Google Scholar
  16. Garofolo F. Bioanalytical method validation. In: Chan CC, Lam H, Lee YC, Zhang X-U, editors. Analytical method validation and instrument performance verification. Hoboken, NJ: Wiley-Interscience; 2004. p. 105–38.CrossRefGoogle Scholar
  17. International Conference on Harmonisation (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use. Validation of analytical procedures: methodology. Geneva: ICH-Q2B; 1996.Google Scholar
  18. International Organization for Standardization. Accuracy (trueness and precision) of measurement methods and results. Geneva: ISO:DIS 5725–1 to 5725–3; 1994.Google Scholar
  19. Jaenchen DE, Reich E. Planar chromatography: instrumentation. In: Encyclopedia of separation science. New York: Academic Press; 2000. p. 839–47.CrossRefGoogle Scholar
  20. Jeganathan NS, Kannan K. HPTLC method for estimation of ellagic acid and gallic acid in Triphala churnam formulations. Res J Phytochem. 2008;2(1):1–9.CrossRefGoogle Scholar
  21. Jena A, Saha D, Biswal B, Jana SB, Koley A, Sur D, Battacharya A. Pharmacognostic studies of leaves of Pterospermum suberifolium. Int J Res Pharma Biomed Sci. 2011;2(1):2229–3701.Google Scholar
  22. Jork H, Funk W. TLC reagents & detection methods – physical & chemical detection methods: fundamentals. Hoboken: Wiley; 1990. p. 15–40.Google Scholar
  23. Knapp DR. Handbook of analytical derivatization reactions. Hoboken: Wiley-Interscience; 1979. p. 2–24.. 449-453, 482Google Scholar
  24. Koll K, Reich E, Blatter A, Veit M. Validation of standardized high-performance thin-layer chromatographic methods for quality control and stability testing of herbals. J AOAC Int. 2003;86:909–15.PubMedGoogle Scholar
  25. Lee YC. Method validation for HPLC analysis of related substances in pharmaceutical products. In: Chan CC, Lam H, Lee YC, Zhang X-U, editors. Analytical method validation and instrument performance verification. Hoboken, NJ: Wiley-Interscience; 2004. p. 27–9.CrossRefGoogle Scholar
  26. Nyiredy S. Planar chromatographic method development using the PRISMA optimization system and flow charts. J Chromatogr Sci. 2002;40:553–63.CrossRefGoogle Scholar
  27. Patel K, Bhatt C. Development and validation of a HPTLC method for simultaneous densitometric analysis of Glycyrrhetic acid and Solasodine in herbal drug formulation. Int J Curr Pharm Res. 2017;9(4):29–32.CrossRefGoogle Scholar
  28. Patel VR, Patel RK. HPTLC method development and validation for quantification of markers of Dhatrinisha churna. Pharmacog J. 2012;4(29):26–9.CrossRefGoogle Scholar
  29. Patel R, Patel M, Dubey N, Dubey N. Patel B. HPTLC method development and validation: strategy to minimize methodological failures. J Food Drug Anal. 2012;20(4):794–804.Google Scholar
  30. Patra KC, Pareta SK, Harwansh RK, Kumar JK. Traditional approaches towards standardization of herbal medicines -a review. J Pharm SciTechnol. 2010;2(11):372–9.Google Scholar
  31. Pattanaya P, Jena RK, Panda SKHPTLC. Fingerprinting in the standardisation of sulaharan yoga: an Ayurvedic tablet formulation. Int J Pharma Sci Review Res. 2010;3(2):33–6.Google Scholar
  32. Potawale SE, Gabhe SY, Mahadik KR. Quantification of gymnemagenin and β-sitosterol in marketed herbal formulation by validated normal phase HPTLC method. Chromatogr Res Int. 2014:1–6.CrossRefGoogle Scholar
  33. Renger B. Quantitative planar chromatography as a tool in pharmaceutical analysis. J AOAC Int. 1993;76:7–13.Google Scholar
  34. Renger B. Contemporary thin layer chromatography in pharmaceutical quality control. J AOAC Int. 1998;81:333–9.Google Scholar
  35. Saraswathy A, Rukmani S, Ariyanathan S. Analysis of Hinguvachadi Churna. Indian J Tradit Knowl. 2009;8(3):319–25.Google Scholar
  36. Scott RM. The stationary phase in thin layer chromatography. J Chromatogr Sci. 1973;2:129–35.CrossRefGoogle Scholar
  37. Sethi PD. Quantitative analysis of pharmaceutical formulations, high performance thin layer chromatography. New Delhi: CBS Publishers and Distributors; 1996. p. 1–30.Google Scholar
  38. Shah VP, Midha KK, Findlay JWA, Hill AM, Hulse JD, Mc-Gilveray IJ, McKay G. Bioanalytical method validation – a revisit with a decade progress. Pharma Res. 2000;17(12):1551–8.CrossRefGoogle Scholar
  39. Sherma J. Basic techniques, materials and apparatus in handbook of thin-layer chromatography. New York: Marcel Dekker; 1991. p. 3–41.Google Scholar
  40. Sherma J. Chromatographic methods of analysis: thin layer chromatography. In: Swarbrick J, editor. Encyclopedia of pharmaceutical technology. 3rd ed. Swarbrick: Informa Healthcare; 2007. p. 538–50.Google Scholar
  41. Shewiyo DH, Kaaleb E, Rishab PG, Dejaegherc B, Verbekec JS, Heydenc YV. HPTLC methods to assay active ingredients in pharmaceutical formulations: a review of the method development and validation steps. J Pharm Biomedical Anal. 2012;66:11–23.CrossRefGoogle Scholar
  42. Shinde DB, Chavan MJ, Wakte PS. HPTLC in herbal drug quantification. In: Srivastava MM, editor. High-performance thin-layer chromatography (HPTLC). Berlin: Springer; 2011. p. 117–21.CrossRefGoogle Scholar
  43. Srivastava MM. High-performance thin-layer chromatography (HPTLC). Berlin: Springer; 2011. p. 32–60.CrossRefGoogle Scholar
  44. Van der Hyden Y, Nijhuis A, Smayers-Verbeke J, Vandeginste BMG, Massart DL. Guidance for robustness/ruggedness test in method validation. J Pharm Biomed Anal. 2001;24:723–53.CrossRefGoogle Scholar
  45. Wagner H. Plant drug analysis: a thin layer chromatography atlas. 2nd ed. Berlin: Springer; 1996.CrossRefGoogle Scholar
  46. Wall PE. Thin-layer chromatography: a modern practical approach. Chromatography: a modern practical journal of scientific and innovative research 1096 approach. Cambridge: Royal Society of Chemistry; 2005. p. 100–50.Google Scholar
  47. Wani MS, Parakh SR, Dehghan MHG, Polshettiwar SA, Chopade VV, Chepurwar S. Herbal medicine and its standardization. Pharma Info. 2007;5(6):1–6.Google Scholar
  48. Yuwono M, Indrayanto G. Validation of chromatographic methods of analysis. In: Brittain G, editor. Profiles of drugs substances, excipients and related methodology, vol. 32. San Diego: Academic Press Elsevier Inc; 2005. p. 243–58.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Tochhawng Lalhriatpuii
    • 1
  1. 1.Department of PharmacyRegional Institute of Paramedical & Nursing Sciences (RIPANS)AizawlIndia

Personalised recommendations