Agarwood: Medicinal Side of the Fragrant Plant

  • Pratap Kalita
  • Probin Kr. Roy
  • Supriyo Sen


Agarwood is considered primarily to be a source of fragrant resins which is used in perfumery. However, its medical attributes are equally important but remains overshadowed by the popularity of its aroma, which is attractive both as a flavor and fragrance ingredient as well as for the economic value it posesses. The divide between the Eastern and the Western world with regard to its fragrant versus medicinal use has also restricted R&D in on the medicinal aspect of agarwood. This chapter is an attempt to look at the medicinal side of the fragrant plant. The phytoconstituent profile of agarwood and its use in traditional therapy are reviewed and current research on pharmacological and toxicological aspects is discussed elaborately to give an overview of the present understanding of the medicinal nature of agarwood. The ultimate aim of this effort is to prime and synergise more research thinking on this neglected aspect that can ultimately lead to identification and synthesis of novel medicinal molecules and therapies from agarwood.


Aquilaria Traditional knowledge Pharmacological activity Phytoconstituents Toxicity 


  1. Adam AZ, Lee SY, Mohamed R. Pharmacological properties of agarwood tea derived from Aquilaria (Thymelaeaceae) leaves: An emerging contemporary herbal drink. J Herb Medicine. 2017;10:37–44.CrossRefGoogle Scholar
  2. Afiffudden SKN, Alwi H, Hamid KHK. Determination of 4′-hydroxyacetanilide in leaves extract of Aquilaria malaccencis by high pressure liquid chromatography. Procedia Soc Behav Sci. 2015;195:2726–33.CrossRefGoogle Scholar
  3. Akter S, Islam MT, Zulkefeli M, Khan SI. Agarwood production: a multidisciplinary field to be explored in Bangladesh. Int J Pharm Life Sci. 2013;2:22–32.CrossRefGoogle Scholar
  4. Alam J, Mujahid M, Rahman M, Akhtar J, Khalid M, Jahan Y, Basit A, Khan A, Shawwal M, Iqbal SS. An insight of pharmacognostic study and phytopharmacology of Aquilaria agallocha. J Appl Pharm Sci. 2015;5:173–81.Google Scholar
  5. Alam J, Mujahid M, Jahan Y, Bagga P, Rahman MA. Hepatoprotective potential of ethanolic extract of Aquilaria agallocha leaves against paracetamol induced hepatotoxicity in SD rats. J Tradit Complement Med. 2017;7:9–13.CrossRefGoogle Scholar
  6. Alla T, Handral M, Nandakumar K, Venkatrao N, Shalam S, Shantakumar SM. Anxiolytic and anticonvulsant activity of alcoholic extract of heartwood of Aquilaria agallocha roxb, (Thymelaeceae) in mice. Pharmacology. 2007;2:218–25.Google Scholar
  7. Alokail MS, Al-Daghri NM, Alarifi SA, Draz HM, Hussain T, Yakout SM. Long-term exposure to incense smoke alters metabolism in Wistar albino rats. Cell Biochem Funct. 2011;29:96–101.CrossRefGoogle Scholar
  8. Batubara R, Surjanto S, Sihombing TM, Ginting H. The safety of tea agarwood (Aquilaria malaccensis) from tree induction through test of toxicity subchronic oral 90 days. Biofarmasi. 2016;14(2):69–76.Google Scholar
  9. Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea—a review. J Am Coll Nutr. 2006;25:79–99.CrossRefGoogle Scholar
  10. Chakrabarty K, Kumar A, Menon V. Trade in Agarwood. New Delhi: TRAFFIC India and WWF-India; 1994. p. 51.Google Scholar
  11. Chen W, Ching-Hung C, Chieh-Ming JC, Bing-Chung L, Daina H. Supercritical carbon dioxide extraction of triglycerides from Aquilaria crassna seeds. Sep Purif Technol. 2010;73:135–41.CrossRefGoogle Scholar
  12. Chen D, Xu Z, Chai X, Zeng K, Jia Y, Bi D, Ma Z, Tu P. Nine 2-(2-Phenylethyl) chromone derivatives from the resinous wood of Aquilaria sinensis and their inhibition of LPS induced NO production in RAW 264.7 cells. Eur J Org Chem. 2012;27:5389–97.CrossRefGoogle Scholar
  13. Chitre T, Bhutada P, Nandakumar K, Somani R, Miniyar P, Mundhada Y, Gore S, Jain K. Analgesic and anti-inflammatory activity of heartwood of Aquilaria agallocha in laboratory animals. Pharmacology. 2007;1:288–98.Google Scholar
  14. CITES, UNEP-WCMC Species Database: CITES-Listed Species; 2018. Accessed 10 Sep 2018.
  15. Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, Majid AM. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Mol. 2015;20:11808–29.CrossRefGoogle Scholar
  16. Dahham SS, Hassan LE, Ahamed MB, Majid AS, Majid AM, Zulkepli NN. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna). BMC Complement Altern Med. 2016a;16:236.Google Scholar
  17. Dahham SS, Tabana YM, Hassan LE, Ahamed MB, Majid AS, Majid AM. In vitro antimetastatic activity of Agar wood (Aquilaria crassna) essential oils against pancreatic cancer cells. Alex J Med. 2016b;52:141–50.CrossRefGoogle Scholar
  18. Dash M, Patra JK, Panda PP. Phytochemical and antimicrobial screening of extracts of Aquilaria agallocha Roxb. Afr J Biotechnol. 2008;7:3531–4.Google Scholar
  19. Duan Z, Li W, Dou Z, Xie H, He A, Shi M. Extraction and antioxidant activity of flavonoids from Aquilaria sinensis (Lour.) Gilg leaves. J Food Sci. 2015;36:45–50.Google Scholar
  20. Farber JL. Mechanisms of cell injury by activated oxygen species. Environ Health Perspect. 1994;102:17–24.PubMedPubMedCentralGoogle Scholar
  21. Feng J, Yang XW, Wang RF. Bio-assay guided isolation and identification of α-glucosidase inhibitors from the leaves of Aquilaria sinensis. Phytochemistry. 2011;72:242–7.CrossRefGoogle Scholar
  22. Fratkin J. Chinese herbal patent formulas: a practical guide. Colorado: Shya Publications; 1994.Google Scholar
  23. Gao X, Xie M, Liu S, Guo X, Chen X, Zhong Z, Wang L, Zhang W. Chromatographic fingerprint analysis of metabolites in natural and artificial agarwood using gas chromatography-mass spectrometry combined with chemometric methods. J Chromatogr B. 2014;967:264–73.CrossRefGoogle Scholar
  24. Han W, Li X. Antioxidant activity of aloeswood tea in vitro. Spatula DD. 2012;2(1):43–50.CrossRefGoogle Scholar
  25. Haslett C, Chilvers ER, Boon NA, Colledge NR, Hunter JA. Side effects of NSAIDS. In: Davidson’s Principles and Practice of Medicine. Edinburgh: Churchill Livingstone; 2002. p. 989–90.Google Scholar
  26. Hendra H, Moeljopawiro S, Nuringtyas TR. Antioxidant and antibacterial activities of agarwood (Aquilaria malaccensis Lamk.) leaves. AIP Conf Proc. 2016;1755(1):140004.Google Scholar
  27. Huang J, Chen H, Yu Z, Zhou Y, Ning G. Effects of different ratios of Aquilaria sinensis leaf meal on the growth performance, slaughter performance and nutrients digestibility of broiler. China Feed. 2016;11:36–42.Google Scholar
  28. Huo HX, Gu YF, Sun H, Zhang YF, Liu WJ, Zhu ZX, Shi SP, Song YL, Jin HW, Zhao YF, Tu PF, Li J. Anti-inflammatory 2-(2-phenylethyl) chromone derivatives from Chinese agarwood. Fitoterapia. 2017;118:49–55.CrossRefGoogle Scholar
  29. Hussain T, Al-Attas OS, Al-Daghri NM, Mohammed AA, Rosas ED, Ibrahim S, Vinodson B, Ansari MG, El-Din KIA. Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke. Mol Cell Biochem. 2014;391:127–36.CrossRefGoogle Scholar
  30. Ibrahim AH, Al-Rawi SS, Majid AA, Rahman NA, Abo-Salah KM, AbKadir MO. Separation and fractionation of Aquilaria malaccensis oil using supercritical fluid extraction and the cytotoxic properties of the extracted oil. Procedia Food Science. 2011;1(1):1953–9.CrossRefGoogle Scholar
  31. Ishihara M, Tsuneya T, Shiga M, Uneyama K. Three sesquiterpenes from agarwood. Phyrochem. 1991;30(2):563–6.CrossRefGoogle Scholar
  32. IUCN, IUCN Red List of Threatened Species; 2018. Accessed 17 Nov 2018.
  33. Jermsri P, Kumphune S. Ethyl acetate extract of Aquilaria crassna preserve actin cytoskeleton on simulated ischemia induced cardiac cell death. J Med Plants Res. 2012;6(23):4057–62.Google Scholar
  34. Jermsri P, Jiraviriyakul A, Unajak S, Kumphune S. Effects of Aquilaria crassna crude extract on simulated ischemia induced cardiac cell death. Int J Pharm Bio Sci. 2012;3(3):604–13.Google Scholar
  35. Jung D. The value of agarwood. Reflections upon its use and history in south Yemen. Extended Version of a talk given at the Workshop “The Use of Herbs in Yemeni Healing Practices,” Halle, September 25–26, 2009.
  36. Kakino M, Hara H. Pharmacological effects of Aquilaria spp. leaves and their chemical constituents. In: Mohamed R, editor. Agarwood-Science behind the fragrance. Singapore: Springer; 2016. p. 125–36.Google Scholar
  37. Kakino M, Tazawa S, Maruyama H, Tsuruma K, Araki Y, Shimazawa M, Hara H. Laxative effects of agarwood on low-fiber diet-induced constipation in rats. BMC Complement Altern Med. 2010;10:1–8.CrossRefGoogle Scholar
  38. Kamonwannasit S, Nantapong N, Kumkrai P, Luecha P, Kupittayanant S, Chudapongse N. Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall. Ann Clin Microbiol Antimicrob. 2013;12:1–7.CrossRefGoogle Scholar
  39. Karimi I, Becker LA, Chalechale A, Ghashghaii A. Biochemical plasma profile of male rats exposed to smoke of agarwood (Aquilaria spp.). Comp Clin Pathol. 2012;21:1053–8.CrossRefGoogle Scholar
  40. Khalil AS, Rahim AA, Taha KK, Abdallah KB. Characterization of methanolic extracts of agarwood leaves. J Archaeol Sci. 2013;1:78–88.Google Scholar
  41. Kim YC, Lee EH, Lee YM, Kim HK, Song BK, Lee EJ, Kim HM. Effect of the aqueous extract of Aquilaria agallocha stems on the immediate hypersensitivity reactions. J Ethnopharmacol. 1997;58:31–8.CrossRefGoogle Scholar
  42. Knecht DA, LaFleur RA, Kahsai AW, Argueta CE, Beshir AB, Fenteany G. Cucurbitacin I inhibits cell motility by indirectly interfering with actin dynamics. PLoS One. 2010;5:1–11.CrossRefGoogle Scholar
  43. Kumphune S, Prompunt E, Phaebuaw K, Sriudwong P, Pankla R, Thongyoo P. Anti-inflammatory effects of the ethyl acetate extract of Aquilaria crassna inhibits LPS-induced tumour necrosis factor-alpha production by attenuating P38 MAPK activation. Int J Green Pharm. 2011;5:43–8.CrossRefGoogle Scholar
  44. Li H, Jiang Z, Mei Q. Comparative study on the effect of Aquilaria sinensis leaf tea and agarwood on promoting small intestine propulsion. Asia-Pacific Tradit Med. 2013;9:24–5.Google Scholar
  45. Liao G, Mei WL, Kong FD, Li W, Yuan JZ, Dai HF. 5,6,7,8-Tetrahydro-2-(2-phenylethyl) chromones from artificial agarwood of Aquilaria sinensis and their inhibitory activity against acetylcholinesterase. Phytochemistry. 2017;139:98–108.CrossRefGoogle Scholar
  46. Lin FH, Peng YH, Ke FF, Deng YL. Experimental study on the content, antioxidant activity in vitro, and delaying aging effect of tannins from the leaf of Aquilaria sinensis (Lour.) Gilg. J Guangdong Pharm Univer. 2012;3:011.Google Scholar
  47. Liu MC, Bleecker ER, Lichtenstein LM, Kagey-Sobotka A, Niv Y, McLemore TL, Permutt S, Proud D, Hubbard WC. Evidence for elevated levels of histamine, prostaglandin D2, and other broncho constricting prostaglandins in the airways of subjects with mild asthma. Am Rev Respir Dis. 1990;142(1):126–32.CrossRefGoogle Scholar
  48. Maxwell SR, Prospects for the use of antioxidant therapies. Drugs. 1995;49(3):345–61CrossRefGoogle Scholar
  49. Miniyar PB, Chitre TS, Karve SS, Deuskar HJ, Jain KS. Anti-oxidant activity of ethyl acetate extract of Aquilaria agallocha on nitrite-induced methemoglobin formation. IJGP. 2008;2(1):43–5.CrossRefGoogle Scholar
  50. Naef R. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: A review. Flavour Fragr J. 2011;26:73–89.CrossRefGoogle Scholar
  51. Okugawa H, Ueda R, Matsumoto K, Kawanishi K, Kato A. Effects of agarwood extracts on the central nervous system in mice. Planta Med. 1993;59(01):32–6.CrossRefGoogle Scholar
  52. Oldfield S, Lusty C, MacKinven A. The word list of threatened trees. Cambridge: World Conservation Press; 1998. p. 650.Google Scholar
  53. Pranakhon R, Pannangpetch P, Aromdee C. Antihyperglycemic activity of agarwood leaf extracts in STZ-induced diabetic rats and glucose uptake enhancement activity in rat adipocytes. Songklanakarin J Sci Technol. 2011;33(4):405–10.Google Scholar
  54. Radosevic I. Uses and benefits for agarwood essential oil; 2018. Accessed 15 Feb 2018.
  55. Rahman H, Vakati K, Eswaraiah MC. In-vivo and in-vitro anti-inflammatory activity of Aquilaria agallocha oil. Int J Basic Med Sci Pharm. 2012;2:7–10.Google Scholar
  56. Rahman H, Eswaraiah MC, Dutta AM. Anti-arthritic activity of leaves and oil of Aquilaria agallocha. Haya Saudi J Life Sci. 2016a;1:34–43.Google Scholar
  57. Ritter JM. Anti-inflammatory and immunosuppressive drugs. In: Rang HP, Dale MM, editors. Pharmacology. Edinburgh: Churchill Livingston; 2000. p. 229–32.Google Scholar
  58. Said F, Kamaluddin MT. Efficacy of the Aquilaria malaccensis leaves active fraction in glucose uptake in skeletal muscle on diabetic Wistar rats. IJHSR. 2016;6(7):162–7.Google Scholar
  59. Saidana D, Mahjoub S, Boussaada O, Chriaa J, Mahjoub MA, Cheraif I, Daami M, Mighri Z, Helal AN. Antibacterial and antifungal activities of the essential oils of two saltcedar species from Tunisia. J Am Oil Chem Soc. 2008;85:817–26.CrossRefGoogle Scholar
  60. Sanchez-Moreno C, Larrauri JA, Saura-Calixto F. Free radical scavenging capacity an inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res Int. 1999;32:407–512.CrossRefGoogle Scholar
  61. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agri Food Chem. 1996;44:37–41.CrossRefGoogle Scholar
  62. Sattasai J, Bantadkit J, Aromdee C, Lattmann E, Airarat W. Antipyretic, analgesic and anti-oxidative activities of Aquilaria crassna leaves extract in rodents. J Ayurveda Integr Med. 2012;3(4):175–9.CrossRefGoogle Scholar
  63. Shao H, Mei WL, Kong FD, Dong WH, Gai CJ, Li W, Zhu GP, Dai HF. Fragrant sesquiterpenes of agarwood from Gyrinops salicifolia. Fitoterapia. 2016;113:182–7.CrossRefGoogle Scholar
  64. Singhal KG, Gupta GD. Hepatoprotective and antioxidant activity of methanolic extract of flowers of Nerium oleander against CCl4-induced liver injury in rats. Asian Pac J Trop Med. 2012;5(9):677–85.CrossRefGoogle Scholar
  65. Soehartono T, Newton AC. Reproductive ecology of Aquilaria spp. in Indonesia. Forest Ecol Manag. 2001;152(3):59–71.CrossRefGoogle Scholar
  66. Stajner D, Milic N, Mimica-dukic N, Lazic B, Igic R. Antioxidant abilities of cultivated and wild species of garlic. Phytother Res. 1998;12:513–4.Google Scholar
  67. Strunin L. Metabolism of drugs by the liver. Ann R Coll Surg Engl. 1971;48:76–7.PubMedPubMedCentralGoogle Scholar
  68. Suhatri S, Putra DZ, Elisma E. Effect of aloe leaf extract (Aquilaria malaccensis Lamk.) on atherosclerosis in quail bull (Coturnix-coturnix japonica) (author’s transl). J Farmasi Higea. 2017;6:174–82.Google Scholar
  69. Sun J, Wang S, Xia F, Wang KY, Chen JM, Tu PF. Five new benzophenone glycosides from the leaves of Aquilaria sinensis (Lour.) Gilg. Chin Chem Lett. 2014;25:1573–6.CrossRefGoogle Scholar
  70. Sun J, Xia F, Wang S, Wang KY, Chen JM, Tu PF. Structural elucidation of two new megastigmane glycosides from the leaves of Aquilaria sinensis. Chin J Nat Med. 2015;13:0290–4.Google Scholar
  71. Tajuddin SN, Muhamad NS, Yarmo MA, Yusoff MM. Characterization of the chemical constituents of agarwood oils from Malaysia by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Mendeleev Commun. 2013;23:51–2.CrossRefGoogle Scholar
  72. Takemoto H, Ito M, Shiraki T, Yagura T, Honda G. Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components. J Nat Med. 2008;62(1):41–6.CrossRefGoogle Scholar
  73. Vakati K, Rahman H, Eswaraiah MC, Dutta AM. Evaluation of hepatoprotective activity of ethanolic extract of Aquilaria agallocha leaves (EEAA) against CCl4 induced hepatic damage in rat. Sch J App Med Sci. 2013;1:9–12.Google Scholar
  74. Vogel GH, Vogel WH, Scholkens BA, Sandow J, Muller G, Vogel WF. Pharmacological assays. In: Drug discovery and evaluation. 2nd ed. Berlin; 2002. p. Springer-Verlag, 725–72.CrossRefGoogle Scholar
  75. Wang H. Determination of Genkwanin in the leaves of Aquilaria sinensis (Lour.) Gilg with HPLC. Guiding J Trad Chin Med Pharm. 2008;14:69–70.Google Scholar
  76. Wang SC, Wang F, Yue CH. Chemical constituents from the petioles and leaves of Aquilaria sinensis. Biochem Syst Ecol. 2015;61:458–61.CrossRefGoogle Scholar
  77. Wang HN, Dong WH, Huang SZ, Li W, Kong FD, Wang H, Wang J, Mei WL, Dai HF. Three new sesquiterpenoids from agarwood of Aquilaria crassna. Fitoterapia. 2016;114:7–14.CrossRefGoogle Scholar
  78. White MV. The role of histamine in allergic diseases. J Allergy Clin Immunol. 1990;86(4):599–605.CrossRefGoogle Scholar
  79. Xiang P, Mei W, Chen H, Kong F, Wang H, Liao G, Zhou L, Dai H. Four new bi-phenylethylchromones from artificial agarwood. Fitoterapia. 2017;120:61–6.CrossRefGoogle Scholar
  80. Yagura T, Shibayama N, Ito M, Kiuchi F, Honda G. Three novel diepoxy tetrahydrochromones from agarwood artificially produced by intentional wounding. Tetrahedron Lett. 2005;46:4395–8.CrossRefGoogle Scholar
  81. Yang D, Wang J, Li W, Dong W, Mei W, Dai H. New guaiane and acorane sesquiterpenes in high quality agarwood “Qi-Nan” from Aquilaria sinensis. Phytochem Lett. 2016a;17:94–9.CrossRefGoogle Scholar
  82. Yang DL, Li W, Dong WH, Wang J, Mei WL, Dai HF. Five new 5, 11-epoxyguaiane sesquiterpenes in agarwood “Qi-Nan” from Aquilaria sinensis. Fitoterapia. 2016b;112:191–6.CrossRefGoogle Scholar
  83. Yang Y, Wen-Li M, Fan-Dong K, Hui-Qin C, Wei L, Zhi-Bao C, Hao-Fu D. Four new bi-2-(2-phenylethyl) chromone derivatives of agarwood from Aquilaria crassna. Fitoterapia. 2017;119:20–5.CrossRefGoogle Scholar
  84. Yang Y, Hui-Qin C, Fan-Dong K, Li-Man Z, Wei L, Wen-Hua D, Zhi-Bao C, Wen-Li M, Hao-Fu D. Dimeric sesquiterpenoid-4H-chromone derivatives from agarwood of Aquilaria crassna and their cytotoxicity. Phytochemistry. 2018;145:207–13.CrossRefGoogle Scholar
  85. Yoneda K, Yamaga-Ra E, Nakanishi T, Nagashima T, Kawasaki I, Yoshida T, Mori H, Miura I. Sesquiterpenoids in two different kinds of agarwood. Phytochemistry. 1984;23:2068–9.CrossRefGoogle Scholar
  86. Zhu Z, Zhao Y, Huo H, Gao X, Zheng J, Li J, Tu P. HHX-5, a derivative of sesquiterpene from Chinese agarwood, suppresses innate and adaptive immunity via inhibiting STAT signaling pathways. Eur J Pharmacol. 2016;791:412–23.CrossRefGoogle Scholar
  87. Zulkifle NL, Omar NAM, Tajuddin SN, Shaari MR. Anti-diabetic activities of Malaysian Agarwood (Aquilaria Spp.) Leaves extract conference on Industry–Academia joint initiatives in Biotechnology CIA. Biotech. 2013;13:5–7.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Pratap Kalita
    • 1
  • Probin Kr. Roy
    • 2
    • 3
  • Supriyo Sen
    • 4
    • 5
  1. 1.Faculty of Pharmaceutical SciencesAssam Down Town UniversityGuwahatiIndia
  2. 2.BIRAC BIG Project (Ouija Biosolutions Pvt. Ltd.)Guwahati Biotech Park, Indian Institute of Technology-Guwahati CampusGuwahatiIndia
  3. 3.Division of Pharmaceutical TechnologyDefence Research Laboratory (DRL)TezpurIndia
  4. 4.BIRAC BIG Project (Ouija Biosolutions Pvt. Ltd.)Guwahati Biotech Park, Indian Institute of Technology-Guwahati CampusGuwahatiIndia
  5. 5.School of Life SciencesAssam Don Bosco UniversitySonapurIndia

Personalised recommendations