Advertisement

Novel Drug Delivery System in Phytochemicals: Modern Era of Ancient Science

  • Rinku BaishyaEmail author
  • Jyoti L. Hati Boruah
  • Manob J. Bordoloi
  • Deepak Kumar
  • Pratap Kalita
Chapter

Abstract

India has a long hereditary usage of numerous phytochemicals, and their formulations in the officially recognized alternative system of medicine viz. Ayurveda, Homeopathy, Yoga, Siddha, Unani, and Naturopathy. The ancient system of traditional Indian medicine uses medicinal plants to extract biologically active phytochemicals and formulate in various dosage forms. Biologically active phytochemicals have enormous therapeutic potential which can be further potentiated through various beneficial novel drug delivery systems (NDDS). In the recent past, development of NDDS based strategies for phytochemicals has gained considerable attention as the NDDS based formulations and dosage forms compared to conventional dosage form are more advantageous. The use of different form like nanoparticles, liposome, nanoemulsion, ethosome, microsphere, phytosomes, solid lipid nanoparticles have contributed significantly to the enhancement of therapeutic potential of plant-derived extracts and their constituents. The introduction of all these, the actives and extracts in the formulations have demonstrated remarkable improvement in the stability, solubility, sustained release profile, targeted delivery, improved therapeutic efficacy, and reduced toxicity. The rationale behind the development of NDDS based drug delivery strategies is to enhance drug delivery and an improved safety profile in the drug delivery process along with patient compliance. The NDDS will not only increase the market of phytochemicals but will also play a major role in providing better and effective therapy to mankind. The current chapter highlights the recent developments of novel drug delivery systems in phytochemicals and their classes, methods of preparation, administration, biological/pharmacological activity, safety, and applicability.

Keywords

Phytochemical Novel drug delivery Natural products Herbal medicine 

References

  1. Abou ElWafa AA, Mursi NM, El-Shaboury KM. A pharmaceutical study on certain ocular drug delivery systems. MS Thesis. Cairo University, Cairo (2003).Google Scholar
  2. Ainbinder D, Touitou E. Testosterone ethosomes for enhanced transdermal delivery. Drug Deliv. 2005;12:297–303.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81:680–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Al-Farsi A, Ellis PM. Treatment paradigms for patients with metastatic non-small cell lung cancer, squamous lung cancer: first, second, and third-line. Front Oncol. 2014;4:157.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.PubMedCrossRefGoogle Scholar
  6. Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol. 2010;79:330–8.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anitha A, Maya S, Deepa N, Chennazhia KP, Naira SV, Tamurab H, Jayakumara R. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym. 2011;83:452–61.CrossRefGoogle Scholar
  8. Anonymous. Transdermal patch. http://www.levinhealthcare.com. 2010.
  9. Anuradha CA, Aukunuru J. Preparation, characterisation and in vivo evaluation of bis-demethoxy curcumin analogue (BDMCA) nanoparticles. Trop J Pharm Res. 2010;9:51–8.CrossRefGoogle Scholar
  10. Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 2013;334:133–41.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ayala-Zavala JF, Soto-Valdez H, Gonzalez-Leon A, Alvarez-Parrilla E, Martın-Belloso O, Gonzalez-Aguilar GA. Microencapsulation of cinnamon leaf (cinnamomumzeylanicum) and garlic (Allium sativum) oils in β -cyclodextrin. J Incl Phenom Macrocycl Chem. 2008;60:359–68.CrossRefGoogle Scholar
  12. Baillie AJ, Coombs GH, Dolan TF, Laurie J. Non-ionic surfactant vesicles, niosomes, as delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol. 1986;38:502–5.PubMedCrossRefGoogle Scholar
  13. Balasubramaniam A, Kumar VA, Pillai KS. Formulation and in-vivo evaluation of niosome encapsulated daunorubicin hydrochloride. Drug Dev Ind Pharm. 2002;28:1181–93.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Barragan-Montero V, Winum J, Moles J, Juan E, Clavel C, Montero J. Eur J Med Chem. 2005;40:1022–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bendas ER, Tadros MI. Enhanced transdermal delivery of sulbutamolsulfate via ethosomes. AAPS Pharm Sci Tech. 2007;8:1–7.CrossRefGoogle Scholar
  16. Benson HE, Watkinson AC. Topical and transdermal drug delivery: principles and practice. New Jersey: Wiley Online Library; 2011.CrossRefGoogle Scholar
  17. Blumenthal M, Goldberg A, Brinkmann J. Herbal medicine. Newton: Integrative Medicine Communications; 2000.Google Scholar
  18. Bombardelli E, Curri SB, Loggia DR, Del NP, Tubaro A, Gariboldi P. Fitoterapia. 1989;60:1–9.Google Scholar
  19. Bonifacio BV, Silva PB, Ramos MA, Negri KMS, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1–5.PubMedCrossRefGoogle Scholar
  20. Brahmankar DM, Jaiswal SB. Biopharmaceutics and pharmacokinetics—a treatise. 1st ed. New Delhi: Vallabh Prakashan; 1998.. (reprint 2008):61:359–362Google Scholar
  21. Cevc G, Gebauer D, Steiber J, Schatzlein A, Blume G. Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochem Biophys Acta. 1998;1368:201–15.PubMedCrossRefGoogle Scholar
  22. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS Pharm Sci Tech. 2005;6:E329–57.CrossRefGoogle Scholar
  23. Chan ES, Yim ZH, Phan SH, Mansa RF, Ravindra P. Encapsulation of herbal aqueous extract throughabsorption with ca-alginate hydrogel beads. Food Bioprod Process. 2010a;88(40239):195–201.CrossRefGoogle Scholar
  24. Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010b;624:163–75.PubMedCrossRefGoogle Scholar
  25. Chao P, Deshmukh M, Kutscher HL, Gao D, Rajan SS, Hu P, Laskin DL, Stein S, Sinko PJ. Pulmonary targeting microparticulate campothecin delivery system: anticancer evaluation in a rat orthotopic lung cancer model. Anticancer Drugs. 2010;21:65–76.PubMedCrossRefGoogle Scholar
  26. Cheson BD, Arbuck SG. Clinical trials referral resource. Clinical trials with topotecan. Oncology. 1993;7:49–51.PubMedGoogle Scholar
  27. Costa G, Carbone PP, Gold GL, Owens AH Jr, Miller SP, Krant MJ, Bono VH Jr. Clinical trial of vinblastine in multiple myeloma. Cancer Chemother Rep 1. 1963;27:87–9.Google Scholar
  28. Darney PD. Hormonal implants: contraception for a new century. Am J Obstet Gynecol. 1994;170:1536–43.PubMedCrossRefGoogle Scholar
  29. Das MK, Senapati PC. Furosemide loaded alginate microspheres prepared by ionic cross linking technique: morphology and release characteristics. Indian J Pharm Sci. 2008;70:77–84.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine. 2010;6:153–60.CrossRefGoogle Scholar
  31. El Maghraby GM, Williams AC, Barry BW. Skin delivery of oestradiol from deformable and traditional liposomes: mechanistic studies. J Pharm Pharmacol. 1999;51:1123–34.PubMedCrossRefGoogle Scholar
  32. El Maghraby GM, Williams AC, Barry BW. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm. 2000;196:63–74.PubMedCrossRefGoogle Scholar
  33. Eldhose MP, Mathew F, Mathew NJ. Transfersomes – A Review. Int J Pharma Pharma Res. 2016;6:436–52.Google Scholar
  34. El-Samaligy MS, Afifi NN, Mahmoud EA. Int J Pharm. 2006;319:121–9.PubMedCrossRefGoogle Scholar
  35. Frei E, Franzino A, Shnider BI, Costa G, Colsky J, Brindley CO, Hosley JF, Gold GL, Jonsson U. Clinical studies of vinblastine. Cancer Chemother Rep 1. 1961;12:125–9.Google Scholar
  36. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18.PubMedCrossRefGoogle Scholar
  37. Fry DW, White JC, Goldman ID. Rapid secretion of low molecular weight solutes from liposomes without dilution. Anal Biochem. 1978;90:809–15.PubMedCrossRefGoogle Scholar
  38. Fu RQ, He FC, Meng DS, Chen L. Taxol PLA nanoparticles. ACTA Academiae Medicinae Militaris Tertiae. 2006;28:1573–4.Google Scholar
  39. Gera M, Sharma N, Ghosh M, Huynh DL, Lee SJ, Min T, Kwon T, Jeong DK. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget. 2017;8:66680–98.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Goyal A, Kumar S, Nagpal M, Singh I, Arora S. Potential of novel drug delivery system for herbal drugs. Ind J Pharm Edu Res. 2011;45:3.Google Scholar
  41. Jadon PS, Gajbhiye V, Jadon RS, Gajbhiye KR, Ganesh N. Enhanced oral bioavailability of griseofulvin via niosomes. AAPS Pharm Sci Tech. 2009;10:1186–92.CrossRefGoogle Scholar
  42. Jain NK. Liposomes as drug carriers, controlled and novel drug delivery. 1st ed: CBS Publisher; 2005. p. 321–6.Google Scholar
  43. Jain S, Singh P, Mishra V, Vyas SP. Mannosylated niosomes as adjuvant carrier system for oral genetic immunization against Hepatitis B. Immunol Lett. 2005;101:41–9.PubMedCrossRefGoogle Scholar
  44. James JS. DOXIL approved for KS. AIDS Treat News. 1995;236:6.Google Scholar
  45. Kanan K, Karar PK, Manavalan R. Formulation and evaluation of sustained release microspheres ofacetazolamide by solvent evaporation technique. J Pharm Sci Res. 2009;1:36–9.Google Scholar
  46. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.PubMedCrossRefGoogle Scholar
  47. Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev. 2009;14:226–46.PubMedGoogle Scholar
  48. Kidd P, Head K. A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylchoiine complex (Siliphos’). Altern Med Rev. 2005;10(3):193–203.PubMedGoogle Scholar
  49. Koli JR, Lin S. Development of anti oxidantethosomes for topical delivery utilizing the synergistic properties of Vit A palmitate, Vit E and Vit C. AAPS Pharm Sci Tec. 2009;11:1–8.Google Scholar
  50. Kshirsagar AC, Yenge VB, Sarkar A, Singhal RS. Efficacy of pullulan in emulsification of turmeric oleoresin and its subsequent microencapsulation. Food Chem. 2009;113:1139–45.CrossRefGoogle Scholar
  51. Kumar VS, Kesari A. Herbosome—a novel carrier for herbal delivery. Int J Curr Pharm Res. 2011;3:36–41.Google Scholar
  52. Kumar K, Rai AK. Development and evaluation of floating microspheres of curcumin. Trop J Pharm Res. 2012;11:713–9.CrossRefGoogle Scholar
  53. Kumar R, Kumar MS, Mahadevan N. Multipleemulsions: a review. Int J Adv Pharm Res. 2012;2:9–19.Google Scholar
  54. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18.CrossRefGoogle Scholar
  55. Kwon GS. Block copolymer micelles as drug delivery systems. Adv Drug Deliv Rev. 2002;54:167.CrossRefGoogle Scholar
  56. Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev. 1996;21:107–16.CrossRefGoogle Scholar
  57. Lachman L, Lieberman HA, Kanig JL. The Theory and practice of Industrial Pharmacy. 3rd ed. Philadelphia: Lea & Febiger; 1996. p. 510–1.Google Scholar
  58. Lasic DD. Liposomes: from physics to applications. Amsterdam/London, New York, Tokyo: Elsevier; 1993.Google Scholar
  59. Le BG, Rysanek N. Cyclodextrins and their industrial uses. Duchene D Ed.; Editions de Santé. 1987.p.107–30.Google Scholar
  60. Legha SS, Tenney DM, Krakoff IR. Phase I study of taxol using a 5-day intermittent schedule. J Clin Oncol. 1986;4:762–6.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Leo E, Scatturin A, Vighi E, Dalpiaz A. Polymeric nanoparticles as drug controlled release systems: anew formulation strategy for drugs with small or largemolecular weight. J Nanosci Nanotechnol. 2006;6:3070–9.PubMedCrossRefGoogle Scholar
  62. Li HR, Li SF, Dua HQ. Preparation of liposomes containing extracts of Tripterygium wilfordii and evaluation of its stability. Zhongguo Zhong Yao Za Zhi. 2007;32:2128–31.PubMedGoogle Scholar
  63. Lieberman HA, Rieger MM, Banker GS. Pharmaceutical dosage forms: disperse systems. 2nd ed. New York: Marcel Dekker Inc.; 1998. p. 339–44.CrossRefGoogle Scholar
  64. Lin J, Sahakian DC, de Morais SM, Xu JJ, Polzer RJ, Winter SM. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr Top Med Chem. 2003;3:1125–54.PubMedCrossRefGoogle Scholar
  65. Lindner K. Using cyclodextrin aroma complexes in the catering. Food Nahrung. 2006;26:675–80.CrossRefGoogle Scholar
  66. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.PubMedCrossRefGoogle Scholar
  67. Lodzki M, Godin B, Rakou L, Mechoulam R, Gallily R, Touitou E. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model. J Control Release. 2003;93(3):377–87.PubMedCrossRefGoogle Scholar
  68. Loftsson T, Stefansson E. Effect of cyclodextrins on topical drug delivery tothe eye. Drug Dev Ind Pharm. 1997;23:473–81.CrossRefGoogle Scholar
  69. Lu Y, Hou SX, Chen T, Sun YY, Yang BX, Yuan ZY. Preparation of transferosomes of vicristine sulfate and study on its precutaneous penetration. Zhongguo Zhong Yao Za Zhi. 2005;30:900–3.PubMedGoogle Scholar
  70. Lucas-Abellan C, Fortea I, Lopez-Nicolas JM, Nunez-Delicado E. Cyclodextrins as resveratrol carrier system. Food Chem. 2007;104:39–44.CrossRefGoogle Scholar
  71. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727–47.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol. 2007;60:171–7.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Mastropaolo D, Camerman A, Luo Y, Brayer GD, Camerman N. Crystal and molecular structure of paclitaxel (taxol). Proc Natl Acad Sci U S A. 1995;92:6920–4.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar DS. Curcumin Loaded-PLGA nanoparticles conjugated withTet-1 peptide for potential use in Alzheimer’s disease. PLoS One. 2012;7(3):e32616.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mauri P, Simonetti P, Gardana C. Liquid chromatography/atmospheric pressure chemical ionization mass spectrometry of terpene lactones in plasma of volunteers dosed with Ginkgo biloba L. extracts. Rapid Commun Mass Spectrom. 2001;15:929–34.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm. 2003;56:189–96.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Merdan VM, Alhaique F, Touitou E. Vesicular carriers for topical delivery. Acta Techno Legis Medicament. 1998;12:1–6.Google Scholar
  78. Mishra D, Mishra PK, Dubey V, Nahar M, Jain NK. Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes. J Control Release. 2007;33:424–33.Google Scholar
  79. Muir AH, Robb R, McLaren M, Daly F, Belch JJ. The use of Ginkgo biloba in Raynaud’s disease: a double-blind placebo-controlled trial. J Vasc Med. 2002;7:265–7.CrossRefGoogle Scholar
  80. Mujaffar F, Singh UK, Chauhan L. Review of microemulsion as futuristic drug delivery. Int J Pharm Sci. 2013;5:39–51.Google Scholar
  81. Musthaba SM, Baboota S, Ahmed S, Ahuja A, Ali J. Status of novel drug delivery technology for phytotherapeutics. Expert Opin Drug Deliv. 2009;6:625–37.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Nazzal S, Smalyukh II, Lavrentovich OD, Khan MA. Preparation and in vitro characterization of a eutectic based semisolid self nanoemulsified drug delivery system of ubiquinone: mechanism and progress of emulsion formation. Int J Pharm. 2002;235:247–65.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Orlikova B, Diederich M. Power from the garden: plant compounds as inhibitors of the hallmarks of cancer. Curr Med Chem. 2012;19:2061–87.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Overby A, Zhao CM, Chen D. Plant phytochemicals: potential anticancer agents against gastric cancer. Curr Opin Pharmacol. 2014;19C:6–10.CrossRefGoogle Scholar
  85. Pandey S, Goyani M, Devmurari V, Fakir J. Transferosomes: a Novel approach for transdermal drug delivery. Pharm Lett. 2009;1:143–50.Google Scholar
  86. Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M. Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release. 2005;106:99–110.PubMedCrossRefGoogle Scholar
  87. Patel R, Singh SK, Singh S, Sheth NR, Gendle R. Development and characterization of curcumin loaded transferosomes for transdermal delivery. J Pharm Sci. 2009;1:71–80.Google Scholar
  88. Pawar P, Kalamkar R, Jain A, Aberkar S. Ethosomes: a novel tool for herbal drug delivery. IJPPR Human. 2015;3:191–202.Google Scholar
  89. Pimple S, Manjappa AS, Ukawala M, Murthy RS. PLGA nanoparticles loaded with etoposide and quercetin dihydrate individually: in vitro cell line study to ensure advantage of combination therapy. Cancer Nanotechnol. 2012;3:25–36.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Prausnitz MR, Langer R, Mitragotri S. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–24.PubMedCrossRefGoogle Scholar
  92. Priprem A, Watanatorn J, Sutthiparinyanont S, Phachonpai W, Muchimapura S. Anxiety and cognitive effects of Quercetin liposomes in rats. Nanomedicine. 2008;4:70–8.PubMedCrossRefGoogle Scholar
  93. Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull. 2011;34:945–53.PubMedCrossRefGoogle Scholar
  94. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36:887–913.CrossRefGoogle Scholar
  95. Riondel J, Jacrot M, Picot F, Beriel H, Mouriquand C, Potier P. Therapeutic response to taxol of six human tumors xenografted into nude mice. Cancer Chemother Pharmacol. 1986;17:137–42.PubMedCrossRefGoogle Scholar
  96. Rossi R, Basilico F, Rossoni G, Riva A, Morazzoni P, Mauri PL. J Pharm Biomed Anal. 2009;50:224–7.PubMedCrossRefGoogle Scholar
  97. Russo GL. Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochem Pharmacol. 2007;74:533–44.PubMedCrossRefGoogle Scholar
  98. Saltzman WM, Fung LK. Polymeric implants for cancer chemotherapy. Adv Drug Deliv Rev. 1997;26:209–30.PubMedCrossRefGoogle Scholar
  99. Saraf S, Kaur CD. Phytoconstituents as photoprotective novel cosmetic formulations. Pharmacogn Rev. 2010;4:1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Shahiwala A, Misra A. Studies in topical application of niosomally entrapped Nimesulide. J Pharm Pharm Sci. 2002;5:220–5.PubMedPubMedCentralGoogle Scholar
  101. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37:223–30.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Sheena IP, Singh UV, Kamath R, Uma Devi P, Udupa N. Niosomal with a ferin A, with better tumor efficiency. Indian J Pharm Sci. 1998;60:45–8.Google Scholar
  103. Simon YL, Jackson J, Miyake H, Burt H, Gleave ME. Polymeric micellar paclitaxel phosphorylates Bcl-2 and induces apoptotic regression of androgen-independent LNCaP prostate tumors. Prostate. 2000;44:156–63.CrossRefGoogle Scholar
  104. Singh D. Application of novel drug delivery system in enhancing the therapeutic potential of phytoconstituents. Asian J Pharm. 2015;9(4):S1–S12.Google Scholar
  105. Singh HP, Utreja P, Tiwari AK, Jain S. Elastic liposomal formulation for sustained delivery of colchicine: in vitro characterization and in vivo evaluation of anti-gout activity. AAPS J. 2009;11:54–64.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Szejtli J. Cyclodextrins and their inclusion complexes. Budapest: AkadémiaiKiadó; 1982. p. 296.Google Scholar
  107. Szejtli J. Cyclodextrin technology. Dordrecht: Kluwer Academic; 1988. p. 450.CrossRefGoogle Scholar
  108. Teng Y, Morrison ME, Munk P, Webber SE, Prochazka K. Release kinetics studies of aromatic molecules into water from block polymer micelles. Macromolecules. 1998;31:3578–87.CrossRefGoogle Scholar
  109. Thamake SI, Raut SL, Ranjan AP, Gryczynski Z, Vishwanatha JK. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy. Nanotechnology. 2011;22(3):035101.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Thompson DO. Cyclodextrins—enabling excipients: their present and future use in pharmaceuticals. Crit Rev Ther Drug. 1997;14:1–104.CrossRefGoogle Scholar
  111. Touitou E, Alkabes M, Dayan N, Eliaz M. Ethosomes: the novel vesicular carriers for enhanced skin delivery. Pharm Res. 1997;14:305–6.Google Scholar
  112. Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;33:172–6.Google Scholar
  113. Vadhanam MV, Ravoori S, Aqil F, Gupta RC. Chemoprevention of mammary carcinogenesis by sustained systemic delivery of ellagic acid. Eur J Cancer Prev. 2011;20:484–91.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004;4:35–51.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: an overview. J Adv Pharm Technol Res. 2010;1:274–82.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery system. J Incl Phenom Macrocycl Chem. 2008;62:23–42.CrossRefGoogle Scholar
  117. Wall JG, Burris HA, Von Hoff DD, Rodriguez G, Kneuper-Hall R, Shaffer D, et al. A phase I clinical and pharmacokinetic study of the topoisomerase I inhibitor topotecan (SK&F 104864) given as an intravenous bolus every 21 days. Anticancer Drugs. 1992;3:337–45.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wang X, Jiang Y, Wang YW, et al. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008;108:419–24.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Weiss R, Fintelmann V. Herbal medicine. 2nd ed. Stuttgart, New York: Thieme; 2000.Google Scholar
  120. Wen Z, Liu B, Zheng Z, You X, Pu Y, Li Q. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chem Eng Res Design. 2010;88:1102–7.CrossRefGoogle Scholar
  121. Wiernik PH, Schwartz EL, Strauman JJ, Dutcher JP, Lipton RB, Paietta E. Phase I clinical and pharmacokinetic study of taxol. Cancer Res. 1987;47:2486–93.PubMedPubMedCentralGoogle Scholar
  122. Xiao L, Zhang YH, Xu JC, Jin XH. Preparation of floating rutin-alginate-chitosan microcapsule. Chin Trad Herb Drugs. 2008;2:209–12.Google Scholar
  123. Xiao-Ying L, Luo JB, Yan ZH, Rong HS, Huang WM. Preparation and in vitro-in vivo evaluations of topically applied capsaicin transferosomes. Yao Xue Xue Bao. 2006;41:461–6.PubMedGoogle Scholar
  124. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351:19–29.PubMedCrossRefGoogle Scholar
  125. You J, Cui FD, Han X, Wang YS, Yang L, Yu YW, Li OP. Study of the preparation of sustained releasemicrospheres containing zedoary turmeric oil by the emulsion solvent diffusion method and evaluation of theself emulsification and bioavailability of the oil. Colloids Surf B Biointerfaces. 2006;48:35–41.PubMedCrossRefGoogle Scholar
  126. Zhang J, Jasti B, Li X. Formulation and characterization of silibinin-loaded sterically stabilized solid lipid nanoparticles. Drug Deliv. 2007;15:381–7.CrossRefGoogle Scholar
  127. Zhao HR, Wang K, Zhao Y, Pan LQ. Novel sustained release implant of herbal extract using chitosan. Biomaterials. 2002;23:4459–62.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rinku Baishya
    • 1
    Email author
  • Jyoti L. Hati Boruah
    • 1
  • Manob J. Bordoloi
    • 1
  • Deepak Kumar
    • 2
  • Pratap Kalita
    • 3
  1. 1.Pharmacology Laboratory, Natural Products Chemistry Group, Chemical Science and Technology DivisionCSIR-North East Institute of Science and TechnologyJorhatIndia
  2. 2.Organic and Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical BiologyKolkataIndia
  3. 3.Department of PharmacyAssam Down Town UniversityGuwahatiIndia

Personalised recommendations