Advertisement

Plant Latex: A Rich Source of Haemostatic Proteases

  • Maheshwari Kumari Singh
  • O. S. BindhuEmail author
Chapter

Abstract

Chronic wounds are key concern equally for the patient, and clinician since it seriously reduces the quality of life. Existing Global estimates indicate that almost six million people suffer from chronic injuries including India. Despite remarkable developments in the pharmaceutical drug industry, the availability of drugs capable of stimulating the process of wound repair is still limited. Besides the conventional systems of Indian Medicine, the folk and tribal medicine employ a number of plants for treatment of cuts, wounds and burns. Some of these plants have been screened scientifically for the evaluation of their wound healing activity both in vitro and in vivo in different pharmacological models. However, the potential of most of the plants remains unexplored. Haemostasis through blood coagulation and subsequent fibrinolysis is the initial event of wound healing, which is a multi-step process. Plant latex is a rich source of several hydrolytic enzymes which are responsible for their diverse health applications. Many latex proteases have been explored to validate their potential haemostatic/wound healing potentials. The present chapter will focus on recent advances in the field of plant latex biology, the presence of different proteases, their role in haemostasis and related molecular mechanisms.

Keywords

Wound healing Plant latex Haemostasis Proteases 

References

  1. Abraham KI, Joshi PN. Studies on proteinases from Calotropis gigantea latex: purification and some properties of two proteinases containing carbohydrate. Biochim Biophys Acta. 1979;568:111–9.PubMedCrossRefGoogle Scholar
  2. Agrawal AA, Konno K. Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst. 2009;40(1):311–31.CrossRefGoogle Scholar
  3. Anusha R, Singh MK, Bindhu O. Characterisation of potential milk coagulants from Calotropis gigantea plant parts and their hydrolytic pattern of bovine casein. Eur Food Res Technol. 2014;238(6):997–1006.CrossRefGoogle Scholar
  4. Arun M, Satish S, Anima P. Herbal boon for wounds. Wounds. 2013;6(7):8.Google Scholar
  5. Ashwani K, editor. Ayurvedic medicines: some potential plants for medicine from India. a meeting of the international forum on traditional medicines. Toyama, Japan: Toyama Medical and Pharmaceutical University; 1999.Google Scholar
  6. Badgujar SB. Evaluation of hemostatic activity of latex from three Euphorbiaceae species. J Ethnopharmacol. 2014;151(1):733–9.PubMedCrossRefGoogle Scholar
  7. Badgujar SB, Mahajan RT. Characterization of thermo- and detergent stable antigenic glycosylated cysteine protease of Euphorbia nivulia Buch.-Ham. and evaluation of its ecofriendly applications. Sci World J. 2013;2013:716545.CrossRefGoogle Scholar
  8. Baidamshina DR, Trizna EY, Holyavka MG, Bogachev MI, Artyukhov VG, Akhatova FS, et al. Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci Rep. 2017;7:46068.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barrett AJ. Classification of peptidases: proteolytic enzymes: serine and cysteine peptidases. Methods Enzymol. 1994;244:1–15.PubMedCrossRefGoogle Scholar
  10. Barrett AJ. Proteolytic enzymes: aspartic and metallo peptidases. Cambridge, MA: Academic Press; 1995.Google Scholar
  11. Barrett AJ, Woessner JF, Rawlings ND. Handbook of proteolytic enzymes. Amsterdam: Elsevier; 2012.Google Scholar
  12. Begum D, Nath SC. Ethnobotanical review of medicinal plants used for skin diseases and related problems in Northeastern India. J Herbs Spices Med Plants. 2000;7(3):55–93.CrossRefGoogle Scholar
  13. Bindhu OS, Singh MK. Hemostatic, milk clotting and blood stain removal potential of cysteine proteases from Calotropis gigantea (L.) R. Br. Latex. Pharmacogn Mag. 2014;10(Suppl 2):S350.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Biswas TK, Mukherjee B. Plant medicines of Indian origin for wound healing activity: a review. Int J Low Extrem Wounds. 2003;2(1):25–39.PubMedCrossRefGoogle Scholar
  15. Bolay E. Feigenund wurgefeigen. Pharm Unserer Zeit. 1979;4:97–112.Google Scholar
  16. Clark R. Wound repair: overview and general con- 17. Becker, DL, McGonnell, I, Makarenkova, H, Patel, K, Tickle, sideration In The Molecular and Cellular Biology of Wound Re- C, Lorimer, J, and Green, CR (1999) Roles for alpha. 1996;1:3–50.Google Scholar
  17. Devaraj KB, Gowda LR, Prakash V. An unusual thermostable aspartic protease from the latex of Ficus racemosa (L.). Phytochemistry. 2008;69(3):647–55.PubMedCrossRefGoogle Scholar
  18. Domsalla A, Melzig MF. Occurrence and properties of proteases in plant latices. Planta Med. 2008;74(7):699–711.PubMedCrossRefGoogle Scholar
  19. Eagle H, Harris TN. Studies in blood coagulation: V. The coagulation of blood by proteolytic enzymes (trypsin, papain). J Gen Physiol. 1937;20(4):543.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Farrell BD, Dussourd DE, Mitter C. Escalation of plant defense: do latex and resin canals spur plant diversification? Am Nat. 1991;138(4):881–900.CrossRefGoogle Scholar
  21. Fernández-Lucas J, Castañeda D, Hormigo D. New trends for a classical enzyme: papain, a biotechnological success story in the food industry. Trends Food Sci Technol. 2017;68:91–101.CrossRefGoogle Scholar
  22. Fonseca KC, Morais NC, Queiroz MR, Silva MC, Gomes MS, Costa JO, et al. Purification and biochemical characterization of Eumiliin from Euphorbia milii var. hislopii latex. Phytochemistry. 2010;71(7):708–15.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Glynn L. The pathology of scar tissue formation. Handbook of inflammation. 1981;3:120–128.Google Scholar
  24. Gomes MT, Oliva ML, Lopes MT, Salas CE. Plant proteinases and inhibitors: an overview of biological function and pharmacological activity. Curr Protein Pept Sci. 2011;12(5):417–36.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gowda CD, Shivaprasad HV, Kumar RV, Rajesh R, Saikumari YK, Frey BM, et al. Characterization of major zinc containing myonecrotic and procoagulant metalloprotease ‘malabarin’from non lethal Trimeresurus malabaricus snake venom with thrombin like activity: its neutralization by chelating agents. Curr Top Med Chem. 2011;11(20):2578–88.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Goyal M, Nagori B, Sasmal D. Wound healing activity of latex of Euphorbia caducifolia. J Ethnopharmacol. 2012;144(3):786–90.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Green KA, Almholt K, Ploug M, Rønø B, Castellino FJ, Johnsen M, et al. Profibrinolytic effects of metalloproteinases during skin wound healing in the absence of plasminogen. J Investig Dermatol. 2008;128(8):2092–101.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Guimaraes-Ferreira CA, Rodrigues EG, Mortara RA, Cabral H, Serrano FA, Ribeiro-dos-Santos R, et al. Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa. Neoplasia. 2007;9(9):723–33.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Headon D, Walsh G. The industrial production of enzymes. Biotechnol Adv. 1994;12(4):635–46.PubMedCrossRefPubMedCentralGoogle Scholar
  30. James JF. The milkweeds. Am Nat. 1887;21(7):605–15.CrossRefGoogle Scholar
  31. Kasarla R, Elumalai A, Chinna Eswaraiah M, Ravi P, Naresh V. An annual review on wound-healing medicinal plants (Jan–Dec 2011). Scholars Res Library. 2012;2:182–5.Google Scholar
  32. Kniep H. Über die Bedeutung des Milchsafls der Pflanzen. Flora oder Allgemeine Botanische Zeitung. 1905;94:129–205.CrossRefGoogle Scholar
  33. Konno K. Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry. 2011;72(13):1510–30.PubMedCrossRefGoogle Scholar
  34. Kumar B, Vijayakumar M, Govindarajan R, Pushpangadan P. Ethnopharmacological approaches to wound healing exploring medicinal plants of India. J Ethnopharmacol. 2007;114(2):103–13.CrossRefGoogle Scholar
  35. Labarère J. Proteolytic activities during growth and aging in the fungus Podospora anserina: effect of specific mutations. Arch Microbiol. 1980;124(2):269–74.CrossRefGoogle Scholar
  36. Lequette Y, Boels G, Clarisse M, Faille C. Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling. 2010;26(4):421–31.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Lewinsohn TM. The geographical distribution of plant latex. Chemoecology. 1991;2(1):64–8.CrossRefGoogle Scholar
  38. Li Q, Yi L, Marek P, Iverson BL. Commercial proteases: present and future. FEBS Lett. 2013;587(8):1155–63.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Lijnen H. Matrix metalloproteinases and cellular fibrinolytic activity. Biochem Mosc. 2002;67(1):92–8.CrossRefGoogle Scholar
  40. Lopez-Otin C, Bond JS. Proteases: multifunctional enzymes in life and disease. J Biol Chem. 2008;283(45):30433–7.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Magalhães A, Magalhães HP, Richardson M, Gontijo S, Ferreira RN, Almeida AP, et al. Purification and properties of a coagulant thrombin-like enzyme from the venom of Bothrops leucurus. Comp Biochem Physiol A Mol Integr Physiol. 2007;146(4):565–75.PubMedCrossRefGoogle Scholar
  42. Mahajan RT, Badgujar SB. Biological aspects of proteolytic enzymes: a review. J Pharm Res. 2010;3(9):2048–68.Google Scholar
  43. Mahlberg PG. Laticifers: an historical perspective. Bot Rev. 1993;59(1):1–23.CrossRefGoogle Scholar
  44. Martin A. The use of antioxidants in healing. Dermatol Surg. 1996;22(2):156–60.PubMedCrossRefGoogle Scholar
  45. Martin P. Wound healing-aiming for perfect skin regeneration. Science. 1997;276(5309):75–81.PubMedCrossRefGoogle Scholar
  46. Mekkriengkrai D, Ute K, Swiezewska E, Chojnacki T, Tanaka Y, Sakdapipanich JT. Structural characterization of rubber from jackfruit and euphorbia as a model of natural rubber. Biomacromolecules. 2004;5(5):2013–9.PubMedCrossRefGoogle Scholar
  47. Metcalfe C. Distribution of latex in the plant kingdom. Econ Bot. 1967;21(2):115–27.CrossRefGoogle Scholar
  48. Miner KJ, CWCN F, Agbim SN, editors. Papain-urea-chlorophyllin copper complex sodium ointment (PUC) and trypsin, balsam peru, and castor oil (TBC) in the treatment and healing of recurrent Stage II and Stage III pressure ulcers. In: The 38th Annual WOCN Society Conference; 2006.Google Scholar
  49. Nath L, Dutta S. Wound healing response of the proteolytic enzyme curcain. Indian J Pharmacol. 1992;24(2):114.Google Scholar
  50. Oduola T, Adeosun GO, Oduola TA, Avwioro GO, Oyeniyi MA. Mechanism of action of Jatropha gossypifolia stem latex as a haemostatic agent. Eur J Gen Med. 2005;2(4):140–3.CrossRefGoogle Scholar
  51. Osoniyi O, Onajobi F. Coagulant and anticoagulant activities in Jatropha curcas latex. J Ethnopharmacol. 2003;89(1):101–5.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Park J-H, Lee J-H, Cho MH, Herzberg M, Lee J. Acceleration of protease effect on Staphylococcus aureus biofilm dispersal. FEMS Microbiol Lett. 2012;335(1):31–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Patel GK, Kawale AA, Sharma AK. Purification and physicochemical characterization of a serine protease with fibrinolytic activity from latex of a medicinal herb Euphorbia hirta. Plant Physiol Biochem. 2012;52:104–11.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, et al. Noneluting enzymatic antibiofilm coatings. ACS Appl Mater Interfaces. 2012;4(9):4708–16.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Porras-Reyes BH, Lewis WH, Roman J, Simchowitz L, Mustoe TA. Enhancement of wound healing by the alkaloid taspine defining mechanism of action. Proc Soc Exp Biol Med. 1993;203(1):18–25.PubMedCrossRefGoogle Scholar
  56. Powers ME, Smith PA, Roberts TC, Fowler BJ, King CC, Trauger SA, et al. Type I signal peptidase and protein secretion in Staphylococcus epidermidis. J Bacteriol. 2011;193(2):340–8.PubMedCrossRefGoogle Scholar
  57. Priya KS, Gnanamani A, Radhakrishnan N, Babu M. Healing potential of Datura alba on burn wounds in albino rats. J Ethnopharmacol. 2002;83(3):193–9.PubMedCrossRefGoogle Scholar
  58. Priyanka Uday RRA, Bhat PR, Rinimol VR, Bindu J, Nafeesa Z, Swamy SN. Laticiferous plant proteases in wound care. Int J Pharm Pharm Sci. 2015;7(1):44–9.Google Scholar
  59. Prusti A, Behera K. Ethnobotanical exploration of Malkangiri district of Orissa, India. Int J Ethnobot Res Ethnobot Leaflets. 2007;2007(1):14.Google Scholar
  60. Rajesh R, Gowda CR, Nataraju A, Dhananjaya B, Kemparaju K, Vishwanath B. Procoagulant activity of Calotropis gigantea latex associated with fibrin (ogen) olytic activity. Toxicon. 2005;46(1):84–92.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Rajesh R, Nataraju A, Gowda C, Frey B, Frey F, Vishwanath B. Purification and characterization of a 34-kDa, heat stable glycoprotein from Synadenium grantii latex: action on human fibrinogen and fibrin clot. Biochimie. 2006;88(10):1313–22.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Rajesh R, Shivaprasad HV, Gowda CDR, Nataraju A, Dhananjaya BL, Vishwanath BS. Comparative study on plant latex proteases and their involvement in hemostasis: a special emphasis on clot inducing and dissolving properties. Planta Med. 2007;73(10):1061–7.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Ramachandra Reddy P, Rao PP, Prabhakar M. Ethnomedicinal practices amongst Chenchus of Nagarjunasagar Srisailam Tiger Reserve (NSTR), Andhra Pradesh: plant remedies for cuts, wounds and boils. Ethnobot. 2003;15:67–71.Google Scholar
  64. Ramos MV, Grangeiro TB, Freire EA, Sales MP, Souza DP, Araújo ES, et al. The defensive role of latex in plants: detrimental effects on insects. Arthropod Plant Interact. 2010;4(1):57–67.CrossRefGoogle Scholar
  65. Ramos MV, Viana CA, Silva AF, Freitas CD, Figueiredo IS, Oliveira RS, et al. Proteins derived from latex of C. procera maintain coagulation homeostasis in septic mice and exhibit thrombin-and plasmin-like activities. Naunyn Schmiedeberg’s Arch Pharmacol. 2012;385(5):455–63.CrossRefGoogle Scholar
  66. Ramproshad S, Afroz T, Mondal B, Khan R, Ahmed S. Screening of phytochemical and pharmacological activities of leaves of medicinal plant Plumeria rubra. Int J Res Pharma Chem. 2012;2(4):1001–7.Google Scholar
  67. Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res. 2009;38(suppl 1):D227–D33.PubMedPubMedCentralGoogle Scholar
  68. Richter G, Schwarz HP, Dorner F, Turecek PL. Activation and inactivation of human factor X by proteases derived from Ficus carica. Br J Haematol. 2002;119(4):1042–51.PubMedCrossRefPubMedCentralGoogle Scholar
  69. de Roos A, Grassin C, Herweijer M, Kragh KM, Poulsen CH, Soe JB, et al. Industrial enzymes: enzymes in food applications. In: Enzymes in industry: production and applications. 2nd ed; 2004. p. 101–55.Google Scholar
  70. Salas CE, Gomes MT, Hernandez M, Lopes MT. Plant cysteine proteinases: evaluation of the pharmacological activity. Phytochemistry. 2008;69(12):2263–9.PubMedCrossRefGoogle Scholar
  71. Samuel JK, Andrews B. Traditional medicinal plant wealth of Pachalur and Periyur hamlets Dindigul district, Tamil Nadu. Indian J Trad Knowl. 2010;9(2):264–70.Google Scholar
  72. Sathya M, Kokilavani R. Phytochemical screening and in vitro antioxidant activity of Saccharum spontaneum Linn. Int J Pharm Sci Rev Res. 2013;18(1):75–9.Google Scholar
  73. Sawant R, Nagendran S. Protease: an enzyme with multiple industrial applications. World J Pharm Sci. 2014;3:568–79.Google Scholar
  74. Sengupta A, Bhattacharya D, Pal G, Sinha N. Comparative studies on calotropins DI and DII from the latex of Calotropis gigantea. Arch Biochem Biophys. 1984;232(1):17–25.PubMedCrossRefGoogle Scholar
  75. Sharma Y, Jeyabalan G, Singh R, Semwal A. Current aspects of wound healing agents from medicinal plants: a review. J Med Plants Studies. 2013;1:2320–3862.Google Scholar
  76. Sherry S, Fletcher AP, Alkjaersig N. Fibrinolysis and fibrinolytic activity in man. Physiol Rev. 1959;39(2):343–82.PubMedCrossRefGoogle Scholar
  77. Shivaprasad H, Rajesh R, Nanda B, Dharmappa K, Vishwanath B. Thrombin like activity of Asclepias curassavica L. latex: action of cysteine proteases. J Ethnopharmacol. 2009;123(1):106–9.PubMedCrossRefGoogle Scholar
  78. Shivaprasad HV, Rajaiah R, Frey BM, Frey FJ, Vishwanath BS. Pergularain e I’–a plant cysteine protease with thrombin-like activity from Pergularia extensa latex. Thrombosis Res. 2010a;125(3):e100–e5.CrossRefGoogle Scholar
  79. Shivaprasad HV, Rajesh R, Yariswamy M, Vishwanath BS. Procoagulant properties of plant latex proteases. Toxin Hemost. 2010b:591–603.Google Scholar
  80. Shivaprasad H, Rajesh R, Vishwanath B. Hemostatic interference of plant latex proteases. SM J Clin Pathol. 2016;1(1):1–7.Google Scholar
  81. Singh KA, Kumar R, Rao GRK, Jagannadham MV. Crinumin, a chymotrypsin-like but glycosylated serine protease from Crinum asiaticum: purification and physicochemical characterisation. Food Chem. 2010;119(4):1352–8.CrossRefGoogle Scholar
  82. Singh MK, Usha R, Hithayshree K, Bindhu O. Hemostatic potential of latex proteases from Tabernaemontana divaricata (L.) R. Br. ex. Roem. and Schult. and Artocarpus altilis (Parkinson ex. FA Zorn) Forsberg. J Thromb Thrombolysis. 2015;39(1):43–9.PubMedCrossRefGoogle Scholar
  83. Siritapetawee J, Thumanu K, Sojikul P, Thammasirirak S. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex. Biochim Biophys Acta. 2012;1824(7):907–12.PubMedCrossRefGoogle Scholar
  84. Stanley LR, Vinay K, Abul K, Ramzi S, Nelson F. Robbins & cotran pathologic basis of disease-8th Edition. 8th ed. Philadelphia, PA: Saunders/Elsevier; 2010.Google Scholar
  85. Steenkamp V, Mathivha E, Gouws M, Van Rensburg C. Studies on antibacterial, antioxidant and fibroblast growth stimulation of wound healing remedies from South Africa. J Ethnopharmacol. 2004;95(2):353–7.PubMedCrossRefGoogle Scholar
  86. Subramanian SP, Saratha V. Evaluation of antibacterial activity of Calotropis gigantea latex extract on selected pathogenic bacteria. J Pharm Res. 2010;3(3):517–21.Google Scholar
  87. Suh DD, Schwartz IP, Canning DA, Snyder HM, Zderic SA, Kirsch AJ. Comparison of dermal and epithelial approaches to laser tissue soldering for skin flap closure. Lasers Surg Med. 1998;22(5):268–74.PubMedCrossRefGoogle Scholar
  88. Taylor RM, Cuming AC. Purification of an endoproteinase that digests the wheat ‘Em’protein in vitro, and determination of its cleavage sites. FEBS Lett. 1993;331(1–2):76–80.PubMedCrossRefGoogle Scholar
  89. Thankamma L. Hevea latex as a wound healer and pain killer. Curr Sci. 2003;84(8):971–2.Google Scholar
  90. Uday P, Maheshwari M, Sharanappa P, Nafeesa Z, Kameshwar VH, Priya B, et al. Exploring hemostatic and thrombolytic potential of heynein-A cysteine protease from Ervatamia heyneana latex. J Ethnopharmacol. 2017;199:316–22.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Upadhyay R. Plant latex: a natural source of pharmaceuticals and pesticides. Int J Green Pharm. 2011;5(3):169.CrossRefGoogle Scholar
  92. Venkatesh B, Achar RR, Sharanappa P, Priya B, Swamy SN. Synergistic caseinolytic activity and differential fibrinogenolytic action of multiple proteases of Maclura spinosa (Roxb. ex Willd.) latex. Pharmacogn Mag. 2015;11(Suppl 3):S457.PubMedPubMedCentralGoogle Scholar
  93. Verpoorte R. Pharmacognosy in the new millennium: leadfinding and biotechnology. J Pharm Pharmacol. 2000;52(3):253–62.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Viana CA, Oliveira JS, Freitas CD, Alencar NM, Carvalho CP, Nishi BC, et al. Thrombin and plasmin-like activities in the latices of Cryptostegia grandiflora and Plumeria rubra. Blood Coagul Fibrinolysis. 2013;24(4):386–92.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Walsh G. Proteins: biochemistry and biotechnology. Hoboken, NJ: John Wiley & Sons; 2002.Google Scholar
  96. Whitley P. Papain-urea-chlorophyllin copper complex sodium debriding ointment to assist with resolution of traumatic leg wound: 634. J Wound Ostomy Cont Nurs. 2005;32(3S):S13.CrossRefGoogle Scholar
  97. Winnick T, Davis AR, Greenberg DM. Physicochemical properties of the proteolytic enzyme from the latex of the milkweed, Asclepias speciosa Torr. some comparisons with other proteases. J Gen Physiol. 1940;23(3):275–88.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yagami T, Sato M, Nakamura A, Komiyama T, Kitagawa K, Akasawa A, et al. Plant defense–related enzymes as latex antigens. J Allergy Clin Immunol. 1998;101(3):379–85.PubMedCrossRefGoogle Scholar
  99. Yariswamy M, Shivaprasad H, Joshi V, Urs AN, Nataraju A, Vishwanath B. Topical application of serine proteases from Wrightia tinctoria R. Br.(Apocyanaceae) latex augments healing of experimentally induced excision wound in mice. J Ethnopharmacol. 2013;149(1):377–83.PubMedCrossRefGoogle Scholar
  100. Yegin S, Dekker P. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Sci Technol. 2013;93(6):565–94.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of BiochemistrySchool of Sciences, Jain (Deemed- to- be) UniversityBangaloreIndia

Personalised recommendations