Advertisement

Heterogeneous Integrations on Silicon Substrates (Bridges)

  • John H. LauEmail author
Chapter

Abstract

Through-silicon via (TSV)-interposer is very expensive [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Silicon bridges are one form of silicon substrates to support heterogeneous integrations. Basically, a bridge is a piece of dummy silicon with RDLs (redistribution-layers) and contact pads, but without TSVs (through-silicon vias), i.e., a TSV-less interposer. Usually, the RDLs and contact pads are fabricated on a dummy silicon wafer and then diced into individual bridges. In this chapter, the fabrication of Intel’s EMIB (embedded multi-die interconnect bridge) [11, 12, 13] will be mentioned. Also, imec’s bridges [14] for the communications of heterogeneous integrations will be briefly discussed. Finally, ITRI’s TSH (through-silicon hole) interposer (bridge) [15, 16, 17, 18] will be presented.

References

  1. 1.
    Hou, S., W. Chen, C. Hu, C. Chiu, K. Ting, T. Lin, W. Wei, W. Chiou, V. Lin, V. Chang, C. Wang, C. Wu, and D. Yu, “Wafer-Level Integration of an Advanced Logic-Memory System Through the Second-Generation CoWoS Technology,” IEEE Transactions on Electron Devices, October 2017, pp. 4071–4077.Google Scholar
  2. 2.
    Lee, J., C. Lee, C. Kim, and S. Kalchuri, “Micro Bump System for 2nd Generation Silicon Interposer with GPU and High Bandwidth Memory (HBM) Concurrent Integration,” Proceedings of IEEE/ECTC, May 2018, pp. 607–612.Google Scholar
  3. 3.
    Xie, J., H. Shi, Y. Li, Z. Li, A. Rahman, K. Chandrasekar, et al., “Enabling the 2.5D integration,” Proceedings of IMAPS International Symposium on Microelectronics, October 2012, pp. 254–267.Google Scholar
  4. 4.
    Shao, S., Y. Niu, J. Wang, R. Liu, S. Park, H. Lee, G. Refai-Ahmed, and L. Yip, “Comprehensive Study on 2.5D Package Design for Board-Level Reliability in Thermal Cycling and Power Cycling,” Proceedings of IEEE/ECTC, May 2018, pp. 1662–1669.Google Scholar
  5. 5.
    McCann, S., H. Lee, G. Refai-Ahmed, T. Lee, and S. Ramalingam, “Warpage and Reliability Challenges for Stacked Silicon Interconnect Technology in Large Packages,” Proceedings of IEEE/ECTC, May 2018, pp. 2339–2344.Google Scholar
  6. 6.
    Lau, J. H., 3D IC Integration and Packaging, McGraw-Hill, New York, 2016.Google Scholar
  7. 7.
    Lau, J. H., Through-Silicon Via (TSV) for 3D Integration, McGraw-Hill, New York, 2013.Google Scholar
  8. 8.
    Lau, J. H., Reliability of RoHS compliant 2D & 3D IC Interconnects, McGraw-Hill, New York, 2011.Google Scholar
  9. 9.
    Lau, J. H., C. K. Lee, C. S. Premachandran, and Yu Aibin, Advanced MEMS Packaging, McGraw-Hill, New York, 2010.Google Scholar
  10. 10.
    Chai, T. C., X. Zhang, J. H. Lau, C. S. Selvanayagam, D. Pinjala, et al., “Development of Large Die Fine-Pitch Cu/low-k FCBGA Package with through Silicon via (TSV) Interposer,” IEEE Transactions on CPMT, Vol. 1, No. 5, May 2011, pp. 660–672.Google Scholar
  11. 11.
    Chiu, C., Z. Qian, and M. Manusharow, “Bridge Interconnect with Air Gap in Package Assembly,” US Patent No. 8,872,349, 2014.Google Scholar
  12. 12.
    Mahajan, R., R. Sankman, N. Patel, D. Kim, K. Aygun, Z. Qian, et al., “Embedded multi-die interconnect bridge (EMIB)—a high-density, high-bandwidth packaging interconnect,” IEEE/ECTC Proceedings, May 2016, pp. 557–565.Google Scholar
  13. 13.
  14. 14.
    Podpod, A., J. Slabbekoorn, A. Phommahaxay, F. Duval, A. Salahouedlhadj, M. Gonzalez, K. Rebibis, R.A. Miller, G. Beyer, and E. Beyne, “A Novel Fan-Out Concept for Ultra-High Chip-to-Chip Interconnect Density with 20-μm Pitch,” IEEE/ECTC Proceedings, May 2018, pp. 370–378.Google Scholar
  15. 15.
    Wu, S., J. H. Lau,, H. Chien, R. Tain, M. Dai, and Y. Chao, “Chip Stacking Structure and Fabricating Method of the Chip Stacking Structure,” US Patent No.: 8,519,524, Date of Patent: August 27, 2013.Google Scholar
  16. 16.
    Wu, S., J. H. Lau, H. Chien, J. Hung, M. Dai, Y. Chao, R. Tain, et al., “Ultra Low-Cost Through-Silicon Holes (TSHs) Interposers for 3D IC Integration SiPs,” IEEE ECTC Proceedings, San Diego, CA, May 2012, pp. 1618–1624.Google Scholar
  17. 17.
    Lau, J. H., C. Lee, C. Zhan, S. Wu, Y. Chao, M. Dai, R. Tain, H. Chien, C. Chien, R. Cheng, Y. Huang, Y. Lee, Z. Hsiao, W. Tsai, P. Chang, H. Fu, Y. Cheng, L. Liao, W. Lo, and M. Kao, “Low-Cost TSH (Through-Silicon Hole) Interposers for 3D IC Integration,” Proceedings of IEEE/ECTC, Orlando, FL, May 2014, pp. 290–296.Google Scholar
  18. 18.
    Lau, J. H., C. Lee, C. Zhan, S. Wu, Y. Chao, M. Dai, R. Tain, et al. 2014. Through-Silicon Hole Interposers for 3D IC Integration. IEEE Transactions on CPMT 4 (9): 1407–1418.Google Scholar
  19. 19.
    Lau, J. H., P. Tzeng, C. Lee, C. Zhan, M. Li, J. Cline, et al. 2014. Redistribution Layers (RDLs) for 2.5D/3D IC Integration, IMAPS Transactions, Journal of Microelectronic Packaging, 11 (1), First Quarter 2014, pp. 16–24.Google Scholar
  20. 20.
    JESD22–B111, Board Level Drop Test Method of Components for Handheld Electronic Products, JEDEC Standard, July 2003.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.ASM Pacific TechnologyHong KongHong Kong

Personalised recommendations