Diagnostic Crying

  • Anjali Prashar


In the years to come, tear diagnostics will hopefully evolve as a new low-cost disruptive technology that will bring about a revolution in healthcare. This chapter deals with precise biomarker panels for specific diseases and how microfluidics as a technology is useful in the analysis of tears. Some recently developed rapid tear tests have also been discussed.

References: Author’s Tears

  1. Aass C, Norheim I, Eriksen EF, Bornick EC et al (2017) Establishment of a tear protein biomarker panel differentiating between Graves’ disease with or without orbitopathy. PLoS One 12:e0175274CrossRefGoogle Scholar
  2. Acera A, Rocha G, Vecino E, Lema I, Duran JA (2008) Inflammatory markers in the tears of patients with ocular surface disease. Ophthalmic Res 40:315–321PubMedGoogle Scholar
  3. Acera A, Suarez T, Rodriguez-Agirretxe I, Vecino E, Duran JA (2011b) Changes in tear protein profile in patients with conjunctivochalasis. Cornea 30:42–49PubMedGoogle Scholar
  4. Agrawal R, Balne PK, Veerappan A, Au VB et al (2016) A distinct cytokines profile in tear film of dry eye disease (DED) patients with HIV infection. Cytokine 88:77–84PubMedGoogle Scholar
  5. Agustini D, Bergamini MF, Marcolino-Junior LH (2017) Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis. Biosens Bioelectron 98:161–167CrossRefGoogle Scholar
  6. Aho VV, Nevalainen TJ, Saari KM (2002b) Group IIA phospholipase A2 content of tears in patients with keratoconjunctivitis sicca. Graefes Arch Clin Exp Ophthalmol 240:521–523PubMedGoogle Scholar
  7. Bender A, Jox RJ, Grill E, Straube A, Lule D (2015) Persistent vegetative state and minimally conscious state: a systematic review and meta-analysis of diagnostic procedures. Dtsch Arztebl Int 112:235–242PubMedPubMedCentralGoogle Scholar
  8. Cancarini A, Fostinelli J, Napoli L, Gilberti ME et al (2017) Trace elements and diabetes: assessment of levels in tears and serum. Exp Eye Res 154:47–52PubMedGoogle Scholar
  9. Csosz E, Boross P, Csutak A, Berta A et al (2012) Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J Proteomics 75:2196–2204PubMedGoogle Scholar
  10. Daniel E, Duriasamy M, Ebenezer GJ, Shobhana, Job CK (2004) Elevated free tear lactoferrin levels in leprosy are associated with Type 2 reactions. Indian J Ophthalmol 52:51–56PubMedGoogle Scholar
  11. Epitropoulos AT, Donnenfeld ED, Shah ZA, Holland EJ et al (2016) Effect of oral re-esterified omega-3 nutritional supplementation on dry eyes. Cornea 35:1185–1191PubMedPubMedCentralGoogle Scholar
  12. Evans V, Vockler C, Friedlander M, Walsh B, Willcox MD (2001) Lacryglobin in human tears, a potential marker for cancer. Clin Exp Ophthalmol 29:161–163PubMedGoogle Scholar
  13. Fisher R (2008) The topography of tears. Bellevue Literary Press, New YorkGoogle Scholar
  14. Giuffrida MC, Cigliana G, Spoto G (2018) Ultrasensitive detection of lysozyme in droplet-based microfluidic devices. Biosens Bioelectron 104:8–14CrossRefGoogle Scholar
  15. Grigor’eva AE, Tamkovich SN, Eremina AV, Tupikin AE et al (2016b) Exosomes in tears of healthy individuals: Isolation, identification, and characterization. Biochem (Moscow) Suppl Ser B: Biomedical Chem 10:165–172CrossRefGoogle Scholar
  16. Grus FH, Podust VN, Bruns K, Lackner K et al (2005) SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci 46:863–876PubMedPubMedCentralGoogle Scholar
  17. Idu FK, Emina MO, Ubaru CO (2013) Tear secretion and tear stability of women on hormonal contraceptives. J Optom 6:45–50Google Scholar
  18. Kallo G, Emri M, Varga Z, Ujhelyi B et al (2016) Changes in the chemical barrier composition of tears in Alzheimer’s disease reveal potential tear diagnostic biomarkers. PLoS One 11:e0158000PubMedPubMedCentralGoogle Scholar
  19. Karns K, Herr AE (2011) Human tear protein analysis enabled by an alkaline microfluidic homogeneous immunoassay. Anal Chem 83:8115–8122CrossRefGoogle Scholar
  20. Khleif SN, Doroshow JH, Hait WN, Collaborative A-F-NCB (2010) AACR-FDA-NCI Cancer Biomarkers Collaborative consensus report: advancing the use of biomarkers in cancer drug development. Clin Cancer Res 16:3299–3318CrossRefGoogle Scholar
  21. Kishazi E, Dor M, Eperon S, Oberic A et al (2017) Thyroid-associated orbitopathy and tears: a proteomics study. J Proteomics 170:110–116PubMedGoogle Scholar
  22. Kishazi E, Dor M, Eperon S, Oberic A et al (2018) Differential profiling of lacrimal cytokines in patients suffering from thyroid-associated orbitopathy. Sci Rep 8:10792PubMedPubMedCentralGoogle Scholar
  23. Lebrecht A, Boehm D, Schmidt M, Koelbl H, Grus FH (2009a) Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry to detect breast cancer markers in tears and serum. Cancer Genomics Proteomics 6:75–83PubMedGoogle Scholar
  24. Lebrecht A, Boehm D, Schmidt M, Koelbl H et al (2009b) Diagnosis of breast cancer by tear proteomic pattern. Cancer Genomics Proteomics 6:177–182PubMedGoogle Scholar
  25. Leivonen SK, Sahlberg KK, Makela R, Due EU et al (2014) High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol 8:93–104CrossRefGoogle Scholar
  26. Leonardi A (2013) Allergy and allergic mediators in tears. Exp Eye Res 117:106–117PubMedPubMedCentralGoogle Scholar
  27. Li K, Liu X, Chen Z, Huang Q, Wu K (2010) Quantification of tear proteins and sPLA2-IIa alteration in patients with allergic conjunctivitis. Mol Vis 16:2084–2091PubMedPubMedCentralGoogle Scholar
  28. Mann AM, Tighe BJ (2007) Tear analysis and lens-tear interactions. Part I. Protein fingerprinting with microfluidic technology. Cont Lens Anterior Eye 30:163–173CrossRefGoogle Scholar
  29. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 46:1318–1320CrossRefGoogle Scholar
  30. Martinez R, Acera A, Soria J, Gonzalez N, Suarez T (2011) Allergic mediators in tear from children with seasonal and perennial allergic conjunctivitis. Arch Soc Esp Oftalmol 86:187–192PubMedGoogle Scholar
  31. Pannebaker C, Chandler HL, Nichols JJ (2010) Tear proteomics in keratoconus. Mol Vis 16:1949–1957PubMedPubMedCentralGoogle Scholar
  32. Pashaei E, Pashaei E, Ahmady M, Ozen M, Aydin N (2017) Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS One 12:e0179543CrossRefGoogle Scholar
  33. Peuravuori H, Kari O, Peltonen S, Aho VV et al (2004) Group IIA phospholipase A2 content of tears in patients with atopic blepharoconjunctivitis. Graefes Arch Clin Exp Ophthalmol 242:986–989PubMedGoogle Scholar
  34. Pinazo-Duran MD, Galbis-Estrada C, Marco-Ramirez C, Gamborino MJ et al (2015) 5th international conference on clinical & experimental ophthalmology, J Clin Exp Ophthalmol, SpainGoogle Scholar
  35. Regnault C, Dheeman DS, Hochstetter A (2018) Microfluidic devices for drug assays. High Throughput 7:18CrossRefGoogle Scholar
  36. Sambursky R, Davitt WF 3rd, Latkany R, Tauber S et al (2013) Sensitivity and specificity of a point-of-care matrix metalloproteinase 9 immunoassay for diagnosing inflammation related to dry eye. JAMA Ophthalmol 131:24–28CrossRefGoogle Scholar
  37. Schmut O, Horwath-Winter J, Zenker A, Trummer G (2002) The effect of sample treatment on separation profiles of tear fluid proteins: qualitative and semi-quantitative protein determination by an automated analysis system. Graefes Arch Clin Exp Ophthalmol 240:900–905CrossRefGoogle Scholar
  38. Shoji J, Kitazawa M, Inada N, Sawa M et al (2003a) Efficacy of tear eosinophil cationic protein level measurement using filter paper for diagnosing allergic conjunctival disorders. Jpn J Ophthalmol 47:64–68PubMedGoogle Scholar
  39. Shoji J, Inada N, Sawa M (2006) Antibody array-generated cytokine profiles of tears of patients with vernal keratoconjunctivitis or giant papillary conjunctivitis. Jpn J Ophthalmol 50:195–204PubMedGoogle Scholar
  40. Soria J, Duran JA, Etxebarria J, Merayo J et al (2013) Tear proteome and protein network analyses reveal a novel pentamarker panel for tear film characterization in dry eye and meibomian gland dysfunction. J Proteomics 78:94–112PubMedGoogle Scholar
  41. Soria J, Acera A, Merayo LJ, Duran JA et al (2017) Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 7:17478PubMedPubMedCentralGoogle Scholar
  42. Tang Q, Zhang C, Wu X, Duan W et al (2018) Comprehensive proteomic profiling of patients’ tears identifies potential biomarkers for the traumatic vegetative state. Neurosci Bull 34:626–638CrossRefGoogle Scholar
  43. Tomlinson A, Pearce EI, Simmons PA, Blades K (2001) Effect of oral contraceptives on tear physiology. Ophthalmic Physiol Opt 21:9–16PubMedGoogle Scholar
  44. Versura P, Bavelloni A, Blalock W, Fresina M, Campos EC (2012) A rapid standardized quantitative microfluidic system approach for evaluating human tear proteins. Mol Vis 18:2526–2537PubMedPubMedCentralGoogle Scholar
  45. Versura P, Bavelloni A, Grillini M, Fresina M, Campos EC (2013a) Diagnostic performance of a tear protein panel in early dry eye. Mol Vis 19:1247–1257PubMedPubMedCentralGoogle Scholar
  46. Versura P, Bavelloni A, Coslovi C, Blalock W et al (2013b) High levels of sIgA and exudated serum albumin in tears of contact lens related dry eye patients three months after discontinuation of lens use. Invest Ophthalmol Vis Sci 54:503–515CrossRefGoogle Scholar
  47. Versura P, Piazzi M, Giannaccare G, Fresina M et al (2016) 8th international conference on the tear film & ocular surface: basic science and clinical relevance, Montpellier, France, p 119Google Scholar
  48. Weber JA, Baxter DH, Zhang S, Huang DY et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741PubMedPubMedCentralGoogle Scholar
  49. Yamada K, Takaki S, Komuro N, Suzuki K, Citterio D (2014) An antibody-free microfluidic paper-based analytical device for the determination of tear fluid lactoferrin by fluorescence sensitization of Tb3+. Analyst 139:1637–1643CrossRefGoogle Scholar
  50. Yetisen AK, Jiang N, Tamayol A, Ruiz-Esparza GU et al (2017) Paper-based microfluidic system for tear electrolyte analysis. Lab Chip 17:1137–1148CrossRefGoogle Scholar
  51. Yoon KC, Park CS, You IC, Choi HJ et al (2010) Expression of CXCL9, -10, -11, and CXCR3 in the tear film and ocular surface of patients with dry eye syndrome. Invest Ophthalmol Vis Sci 51:643–650PubMedPubMedCentralGoogle Scholar
  52. Zhang JF, He ML, Fu WM, Wang H et al (2011b) Primate-specific microRNA-637 inhibits tumorigenesis in hepatocellular carcinoma by disrupting signal transducer and activator of transcription 3 signaling. Hepatology 54:2137–2148CrossRefGoogle Scholar
  53. Zhang S, Lu Z, Unruh AK, Ivan C et al (2015) Clinically relevant microRNAs in ovarian cancer. Mol Cancer Res 13:393–401CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anjali Prashar
    • 1
  1. 1.MumbaiIndia

Personalised recommendations