Advertisement

Hue and Cry

  • Anjali Prashar
Chapter

Abstract

This section covers interesting aspects of tear-based syndromes, artificial tears, those obtained from women in different stages of their lifecycle, babies and twins.Tear chemistry of contact lens users has been discussed in some detail.

References: Author’s Tears

  1. Acera A, Vecino E, Duran JA (2013) Tear MMP-9 levels as a marker of ocular surface inflammation in conjunctivochalasis. Invest Ophthalmol Vis Sci 54:8285–8291PubMedGoogle Scholar
  2. Adams J, Schaaf CP (2018) Diagnosis and genetics of alacrima. Clin Genet 94:54–60CrossRefGoogle Scholar
  3. Aho VV, Paavilainen V, Nevalainen TJ, Peuravuori H, Saari KM (2003a) Diurnal variation in group IIa phospholipase A2 content in tears of contact lens wearers and normal controls. Graefes Arch Clin Exp Ophthalmol 241:85–88PubMedGoogle Scholar
  4. Aho VV, Holopainen JM, Tervo T, Moilanen JA et al (2003b) Group IIA phospholipase A(2) content in tears of patients having photorefractive keratectomy. J Cataract Refract Surg 29:2163–2167PubMedGoogle Scholar
  5. Akar Y, Cira A, Apaydin C, Erman MA, Yilmaz A (2004) The effect of prematurity on tear production. Curr Eye Res 28:145–151CrossRefGoogle Scholar
  6. Alevi D, Perry HD, Wedel A, Rosenberg E et al (2017) Effect of sleep position on the ocular surface. Cornea 36:567–571PubMedGoogle Scholar
  7. Am M, Ra F, El-Naggar AH, Tm A, Akhtar S (2018) Structure and microanalysis of tear film ferning of camel tears, human tears, and Refresh Plus. Mol Vis 24:305–314PubMedPubMedCentralGoogle Scholar
  8. Ananthi S, Santhosh RS, Nila MV, Prajna NV et al (2011) Comparative proteomics of human male and female tears by two-dimensional electrophoresis. Exp Eye Res 92:454–463PubMedGoogle Scholar
  9. Apt L, Cullen BF (1964) Newborns do secrete tears. JAMA 189:951–953CrossRefGoogle Scholar
  10. Baca JT, Finegold DN, Asher SA (2007a) Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul Surf 5:280–293CrossRefGoogle Scholar
  11. Baca JT, Taormina CR, Feingold E, Finegold DN et al (2007b) Mass spectral determination of fasting tear glucose concentrations in nondiabetic volunteers. Clin Chem 53:1370–1372CrossRefGoogle Scholar
  12. Badamchian M, Damavandy AA, Damavandy H, Wadhwa SD et al (2007) Identification and quantification of thymosin beta4 in human saliva and tears. Ann N Y Acad Sci 1112:458–465PubMedPubMedCentralGoogle Scholar
  13. Badugu R, Jeng BH, Reece EA, Lakowicz JR (2018) Contact lens to measure individual ion concentrations in tears and applications to dry eye disease. Anal Biochem 542:84–94PubMedGoogle Scholar
  14. Bae SH, Shin YJ, Kim HK, Hyon JY et al (2016) Vitamin D supplementation for patients with dry eye syndrome refractory to conventional treatment. Sci Rep 6:33083PubMedPubMedCentralGoogle Scholar
  15. Bagheri A, Najmi H, Salim RE, Yazdani S (2015) Tear condition following unilateral ptosis surgery. Orbit 34:66–71Google Scholar
  16. Baker GR, Morton M, Rajapaska RS, Bullock M et al (2006) Altered tear composition in smokers and patients with graves ophthalmopathy. Arch Ophthalmol 124:1451–1456PubMedPubMedCentralGoogle Scholar
  17. Bakhurji S, Yassin SA, Abdulhameed RM (2018) A healthy infant with bloody tears: case report and mini-review of the literature. Saudi J Ophthalmol 32:246–249PubMedPubMedCentralGoogle Scholar
  18. Balasubramanian SA, Pye DC, Willcox MD (2012a) Levels of lactoferrin, secretory IgA and serum albumin in the tear film of people with keratoconus. Exp Eye Res 96:132–137PubMedPubMedCentralGoogle Scholar
  19. Balasubramanian SA, Pye DC, Willcox MD (2013a) Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus. Clin Exp Optom 96:214–218PubMedPubMedCentralGoogle Scholar
  20. Baleriola-Lucas C, Willcox MD (1998) The ability of ocular bacteria to bind to fibronectin. Clin Exp Optom 81:81–87CrossRefGoogle Scholar
  21. Baleriola-Lucas C, Fukuda M, Willcox MD, Sweeney DF, Holden BA (1997) Fibronectin concentration in tears of contact lens wearers. Exp Eye Res 64:37–43CrossRefGoogle Scholar
  22. Barba Gallardo LF, Munoz Ortega MH, Ventura Juarez J, Aldaba Muruato LR et al (2018) Extended low oxygen transmissibility contact lens use induces alterations in the concentration of proinflammatory cytokines, enzymes and electrolytes in tear fluid. Exp Ther Med 15:4291–4297PubMedPubMedCentralGoogle Scholar
  23. Barrett A, Gnehm D, Jones J, Trask BC (2014) alpha1-antitrypsin and C-reactive protein levels in tear fluid after continuous contact lens wear. Clin Exp Optom 97:66–71CrossRefGoogle Scholar
  24. Battat L, Macri A, Dursun D, Pflugfelder SC (2001) Effects of laser in situ keratomileusis on tear production, clearance, and the ocular surface. Ophthalmology 108:1230–1235PubMedPubMedCentralGoogle Scholar
  25. Beden U, Turgut-Coban D, Aygun C, Ulu-Gungor I et al (2008) Tear secretion and ferning patterns among premature and full-term newborns. Turk J Pediatr 50:155–159PubMedPubMedCentralGoogle Scholar
  26. Benito MJ, Gonzalez-Garcia MJ, Teson M, Garcia N et al (2014) Intra- and inter-day variation of cytokines and chemokines in tears of healthy subjects. Exp Eye Res 120:43–49PubMedPubMedCentralGoogle Scholar
  27. Benlloch-Navarro S, Franco I, Sanchez-Vallejo V, Silvestre D et al (2013) Lipid peroxidation is increased in tears from the elderly. Exp Eye Res 115:199–205PubMedPubMedCentralGoogle Scholar
  28. Bitton E, Keech A, Jones L, Simpson T (2008) Subjective and objective variation of the tear film pre- and post-sleep. Optom Vis Sci 85:740–749PubMedGoogle Scholar
  29. Borderie VM, Gineys R, Goldschmidt P, Batellier L et al (2012) Association of anti-herpes simplex virus IgG in tears and serum with clinical presentation in patients with presumed herpetic simplex keratitis. Cornea 31:1251–1256PubMedGoogle Scholar
  30. Butrus SI, Ochsner KI, Abelson MB, Schwartz LB (1990) The level of tryptase in human tears. An indicator of activation of conjunctival mast cells. Ophthalmology 97:1678–1683PubMedGoogle Scholar
  31. Byun YS, Lee HJ, Shin S, Chung SH (2017) Elevation of autophagy markers in Sjogren syndrome dry eye. Sci Rep 7:17280PubMedPubMedCentralGoogle Scholar
  32. Caffery BE (1991) Influence of diet on tear function. Optom Vis Sci 68:58–72PubMedGoogle Scholar
  33. Careba I, Chiva A, Totir M, Ungureanu E, Gradinaru S (2015a) Tear lipocalin, lysozyme and lactoferrin concentrations in postmenopausal women. J Med Life 8(Spec Issue):94–98PubMedPubMedCentralGoogle Scholar
  34. Careba I, Gradinaru D, Chiva A, Totir M et al (2015b) Correlations between eyelid tumors and tear lipocalin, lysozyme and lactoferrin concentrations in postmenopausal women. J Med Life 8:94–98PubMedPubMedCentralGoogle Scholar
  35. Carney LG (1991) Considerations in contact lens use under adverse conditions: proceedings of a symposium. The National Academies Press, Washington, DCGoogle Scholar
  36. Carney LG, Hill RM (1976) Human tear pH. Diurnal variations. Arch Ophthalmol 94:821–824PubMedGoogle Scholar
  37. Carracedo G, Carpena C, Concepcion P, Diaz V et al (2017) Presence of melatonin in human tears. J Optom 10:3–4PubMedGoogle Scholar
  38. Chiva A (2011) Electrophoresis of tear proteins as a new diagnostic tool for two high risk groups for dry eye: computer users and contact lens wearers. J Med Life 4:228–233PubMedPubMedCentralGoogle Scholar
  39. Chong RS, Jiang YZ, Boey PY, Yu SJ et al (2010) Tear cytokine profile in medicated glaucoma patients: effect of monocyte chemoattractant protein 1 on early posttrabeculectomy outcome. Ophthalmology 117:2353–2358PubMedGoogle Scholar
  40. Choy CK, Benzie IF, Cho P (2000) Ascorbic acid concentration and total antioxidant activity of human tear fluid measured using the FRASC assay. Invest Ophthalmol Vis Sci 41:3293–3298PubMedGoogle Scholar
  41. Choy C, Benzie I, Cho P (2003) Antioxidants in tears and plasma: Inter-relationships and effect of vitamin C supplementation. Curr Eye Res 27:55–60PubMedGoogle Scholar
  42. Claustrat B, Leston J (2015) Melatonin: physiological effects in humans. Neurochirurgie 61:77–84PubMedGoogle Scholar
  43. Coles WH, Jaros PA (1984) Dynamics of ocular surface pH. Br J Ophthalmol 68:549–552PubMedPubMedCentralGoogle Scholar
  44. Colligris B, Alkozi HA, Pintor J (2014) Recent developments on dry eye disease treatment compounds. Saudi J Ophthalmol 28:19–30PubMedPubMedCentralGoogle Scholar
  45. Cortes M, Esposito G, Sacco R, Gillet VB et al (2018) NGF and iNOS changes in tears from video display terminal workers. Curr Eye Res 43:1119–1125PubMedGoogle Scholar
  46. Craig JP, Müller A, McGhee CNJ (2005) Comparison of artificial tear supplements on the ocular surface health and tear film in patients with dry eye. Ocul Surf 3:S55CrossRefGoogle Scholar
  47. Cumurcu T, Gunduz A, Cumurcu BE, Gul IG et al (2013) The changes in tear film parameters and impression cytology in heavily drinking men. Cornea 32:237–241PubMedGoogle Scholar
  48. da Silva CM, de Sousa RA, Baptista AM (2013) Assessment of tear amount in subjects under the effect of (inhaled) cocaine. J Psychoactive Drugs 45:195–198PubMedGoogle Scholar
  49. Dahl H, Dahl C (1985) Hydrogen ion concentration of tear fluid in newborn infants. Acta Ophthalmol (Copenh) 63:692–694CrossRefGoogle Scholar
  50. Daniel E, Duriasamy M, Ebenezer GJ, Shobhana, Job CK (2004) Elevated free tear lactoferrin levels in leprosy are associated with Type 2 reactions. Indian J Ophthalmol 52:51–56Google Scholar
  51. de Oliveira D, Gomes-Ferreira PH, Carrasco LC, de Deus CB et al (2016) The importance of correct diagnosis of crocodile tears syndrome. J Craniofac Surg 27:e661–e662CrossRefGoogle Scholar
  52. Deai T, Fukuda M, Tomoda Y, Higaki S et al (2004) Excimer laser photokeratectomy reactivates latent herpes simplex virus. Jpn J Ophthalmol 48:570–572PubMedPubMedCentralGoogle Scholar
  53. Deinema LA, Vingrys AJ, Wong CY, Jackson DC et al (2017) A randomized, double-masked, placebo-controlled clinical trial of two forms of omega-3 supplements for treating dry eye disease. Ophthalmology 124:43–52PubMedGoogle Scholar
  54. Demirci G, Karaman Erdur S, Ozsutcu M, Eliacik M et al (2018) Dry eye assessment in patients with vitamin D deficiency. Eye Contact Lens 44(Suppl 1):S62–S65PubMedGoogle Scholar
  55. Dogru M, Kojima T, Matsumoto Y, Ibrahim O et al (2010) The early effects of alcohol consumption on tear functions and ocular surface. Invest Ophthalmol Vis Sci 51:6257Google Scholar
  56. Dogru M, Ward SK, Wakamatsu T, Ibrahim O et al (2011) The effects of 2 week senofilcon-A silicone hydrogel contact lens daily wear on tear functions and ocular surface health status. Cont Lens Anterior Eye 34:77–82CrossRefGoogle Scholar
  57. Downie LE, Gad A, Wong CY, Gray JHV et al (2018) Modulating contact lens discomfort with anti-inflammatory approaches: a randomized controlled trial. Invest Ophthalmol Vis Sci 59:3755–3766PubMedPubMedCentralGoogle Scholar
  58. Dutta S, Islam MN, Chakroborty S, Mondal A et al (2014) Effect of anti-oxidant on tear film in patients suffering from diabetes mellitus. J Indian Med Assoc 112:108–109PubMedPubMedCentralGoogle Scholar
  59. Ebeigbe JA, Ebeigbe PN (2014) The influence of sex hormone levels on tear production in postmenopausal Nigerian women. Afr J Med Med Sci 43:205–211PubMedGoogle Scholar
  60. Enriquez-de-Salamanca A, Castellanos E, Stern ME, Fernandez I et al (2010) Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol Vis 16:862–873PubMedPubMedCentralGoogle Scholar
  61. Epitropoulos AT, Donnenfeld ED, Shah ZA, Holland EJ et al (2016) Effect of oral re-esterified omega-3 nutritional supplementation on dry eyes. Cornea 35:1185–1191PubMedPubMedCentralGoogle Scholar
  62. Esmaeelpour M, Watts PO, Boulton ME, Cai J, Murphy PJ (2011) Tear film volume and protein analysis in full-term newborn infants. Cornea 30:400–404CrossRefGoogle Scholar
  63. Esmaeli B (2005) Management of excessive tearing as a side effect of docetaxel. Clin Breast Cancer 5:455–457PubMedPubMedCentralGoogle Scholar
  64. Esmaeli B, Ahmadi MA, Rivera E, Valero V et al (2002) Docetaxel secretion in tears: association with lacrimal drainage obstruction. Arch Ophthalmol 120:1180–1182PubMedPubMedCentralGoogle Scholar
  65. Evans KS, North RV, Purslow C (2009) Tear ferning in contact lens wearers. Ophthalmic Physiol Opt 29:199–204CrossRefGoogle Scholar
  66. Fariselli C, Giannaccare G, Fresina M, Versura P (2018) Trehalose/hyaluronate eyedrop effects on ocular surface inflammatory markers and mucin expression in dry eye patients. Clin Ophthalmol 12:1293–1300PubMedPubMedCentralGoogle Scholar
  67. Fenga C, Aragona P, Cacciola A, Spinella R et al (2008) Meibomian gland dysfunction and ocular discomfort in video display terminal workers. Eye (Lond) 22:91–95Google Scholar
  68. Fitzgerald-Hayes A, Reichsman F (2009) DNA and biotechnology. Academic, New YorkGoogle Scholar
  69. Flanagan JL, Willcox MD (2009) Role of lactoferrin in the tear film. Biochimie 91:35–43PubMedGoogle Scholar
  70. Fodor M (2009) Doctoral school in clinical medicine. University of Debrecen, DebrecenGoogle Scholar
  71. Fuchigami A, Huang J, Nakajima K, Kozawa M et al (2015) Impact of a case series of corneal transplant rejection on the kinetics of cytokine concentrations in human tears after keratoplasty. Int J Ophthalmic Res 1:59–65CrossRefGoogle Scholar
  72. Fukuda M, Fullard RJ, Willcox MD, Baleriola-Lucas C et al (1996) Fibronectin in the tear film. Invest Ophthalmol Vis Sci 37:459–467Google Scholar
  73. Fullard RJ, Snyder C (1990) Protein levels in nonstimulated and stimulated tears of normal human subjects. Invest Ophthalmol Vis Sci 31:1119–1126Google Scholar
  74. Fust A, Veres A, Kiszel P, Nagy ZZ et al (2003) Changes in tear protein pattern after photorefractive keratectomy. Eur J Ophthalmol 13:525–531PubMedGoogle Scholar
  75. Gad A, Vingrys AJ, Wong CY, Jackson DC, Downie LE (2018) Tear film inflammatory cytokine upregulation in contact lens discomfort. Ocul Surf.  https://doi.org/10.1016/j.jtos.2018.10.004 CrossRefGoogle Scholar
  76. Gagliano C, Caruso S, Napolitano G, Malaguarnera G et al (2014) Low levels of 17-beta-oestradiol, oestrone and testosterone correlate with severe evaporative dysfunctional tear syndrome in postmenopausal women: a case-control study. Br J Ophthalmol 98:371–376CrossRefGoogle Scholar
  77. Galbis-Estrada C, Pinazo-Duran MD, Martinez-Castillo S, Morales JM et al (2015) A metabolomic approach to dry eye disorders. The role of oral supplements with antioxidants and omega 3 fatty acids. Mol Vis 21:555–567PubMedPubMedCentralGoogle Scholar
  78. Garrett Q, Chatelier RC, Griesser HJ, Milthorpe BK (1998) Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly(HEMA) hydrogels. Biomaterials 19:2175–2186CrossRefGoogle Scholar
  79. Gauba V, Curtis ZJ (2014) Sleep position and the ocular surface in a high airflow environment. Saudi J Ophthalmol 28:66–68PubMedPubMedCentralGoogle Scholar
  80. Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12:348–360PubMedPubMedCentralGoogle Scholar
  81. Gayton JL (2009) Etiology, prevalence, and treatment of dry eye disease. Clin Ophthalmol 3:405–412PubMedPubMedCentralGoogle Scholar
  82. Geroski DH, Edelhauser HF (2000) Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci 41:961–964PubMedGoogle Scholar
  83. Giannaccare G, Blalock W, Fresina M, Vagge A, Versura P (2016) Intolerant contact lens wearers exhibit ocular surface impairment despite 3 months wear discontinuation. Graefes Arch Clin Exp Ophthalmol 254:1825–1831CrossRefGoogle Scholar
  84. Gipson IK, Spurr-Michaud SJ, Senchyna M, Ritter R 3rd, Schaumberg D (2011) Comparison of mucin levels at the ocular surface of postmenopausal women with and without a history of dry eye. Cornea 30:1346–1352CrossRefGoogle Scholar
  85. Girard B, Piaton JM, Keller P, Nguyen TH (2018) Botulinum neurotoxin A injection for the treatment of epiphora with patent lacrymal ducts. J Fr Ophtalmol 41:343–349PubMedGoogle Scholar
  86. Glasgow BJ, Gasymov OK (2011) Focus on molecules: tear lipocalin. Exp Eye Res 92:242–243PubMedGoogle Scholar
  87. Glasson M, Stapleton F, Willcox M (2002) Lipid, lipase and lipocalin differences between tolerant and intolerant contact lens wearers. Curr Eye Res 25:227–235CrossRefGoogle Scholar
  88. Glasson MJ, Stapleton F, Keay L, Sweeney D, Willcox MD (2003) Differences in clinical parameters and tear film of tolerant and intolerant contact lens wearers. Invest Ophthalmol Vis Sci 44:5116–5124CrossRefGoogle Scholar
  89. Grube M, Holler E, Weber D, Holler B et al (2016) Risk factors and outcome of chronic graft-versus-host disease after allogeneic stem cell transplantation-results from a single-center observational study. Biol Blood Marrow Transplant 22:1781–1791PubMedGoogle Scholar
  90. Grumetto L, Cennamo G, Del Prete A, La Rotonda MI, Barbato F (2002) Pharmacokinetics of cetirizine in tear fluid after a single oral dose. Clin Pharmacokinet 41:525–531PubMedGoogle Scholar
  91. Guillon M, Maissa C (2008) Contact lens wear affects tear film evaporation. Eye Contact Lens 34:326–330CrossRefGoogle Scholar
  92. Guillon M, Maissa C (2010) Tear film evaporation – effect of age and gender. Cont Lens Anterior Eye 33:171–175PubMedGoogle Scholar
  93. Hahn SK, Keum DH (2016) Smart contact lens and smart eye glasses. Front Bioeng Biotechnol 4:454–461Google Scholar
  94. Hirayama M, Murat D, Liu Y, Kojima T et al (2013) Efficacy of a novel moist cool air device in office workers with dry eye disease. Acta Ophthalmol 91:756–762PubMedPubMedCentralGoogle Scholar
  95. Holopainen JM, Moilanen JA, Sorsa T, Kivela-Rajamaki M et al (2003) Activation of matrix metalloproteinase-8 by membrane type 1-MMP and their expression in human tears after photorefractive keratectomy. Invest Ophthalmol Vis Sci 44:2550–2556PubMedPubMedCentralGoogle Scholar
  96. Hori Y, Argueso P, Spurr-Michaud S, Gipson IK (2006) Mucins and contact lens wear. Cornea 25:176–181CrossRefGoogle Scholar
  97. Horwitz BL, Christensen GR, Ritzmann SR (1978) Diurnal profiles of tear lysozyme and gamma A globulin. Ann Ophthalmol 10:75–80PubMedPubMedCentralGoogle Scholar
  98. Hume EB, Cole N, Parmar A, Tan ME et al (2004) Secretory phospholipase A2 deposition on contact lenses and its effect on bacterial adhesion. Invest Ophthalmol Vis Sci 45:3161–3164CrossRefGoogle Scholar
  99. Huth SW, Miller MJ, Leopold IH (1981) Calcium and protein in tears: diurnal variation. Arch Ophthalmol 99:1628–1633PubMedGoogle Scholar
  100. Iannella G, Di Nardo G, Plateroti R, Rossi P et al (2015) Investigation of pepsin in tears of children with laryngopharyngeal reflux disease. Int J Pediatr Otorhinolaryngol 79:2312–2315CrossRefGoogle Scholar
  101. Idu FK, Emina MO, Ubaru CO (2013) Tear secretion and tear stability of women on hormonal contraceptives. J Optom 6:45–50Google Scholar
  102. Isenberg SJ, Del Signore M, Chen A, Wei J, Guillon JP (2003) The lipid layer and stability of the preocular tear film in newborns and infants. Ophthalmology 110:1408–1411CrossRefGoogle Scholar
  103. Jee D, Park SH, Kim MS, Kim EC (2014) Antioxidant and inflammatory cytokine in tears of patients with dry eye syndrome treated with preservative-free versus preserved eye drops. Invest Ophthalmol Vis Sci 55:5081–5089CrossRefGoogle Scholar
  104. Jensen OL, Gluud BS, Eriksen HO (1985a) Fibronectin in tears following surgical trauma to the eye. Acta Ophthalmol (Copenh) 63:346–350Google Scholar
  105. Jensen OL, Gluud BS, Eriksen HO, Birgens HS (1985b) In: Peeters H (ed) Protides of the biological fluids. Elsevier, Amsterdam, pp 157–160Google Scholar
  106. Jiang N, Montelongo Y, Butt H, Yetisen AK (2018) Microfluidic Contact Lenses. Small 14:e1704363CrossRefGoogle Scholar
  107. Jung JW, Han SJ, Nam SM, Kim TI et al (2016) Meibomian gland dysfunction and tear cytokines after cataract surgery according to preoperative meibomian gland status. Clin Exp Ophthalmol 44:555–562PubMedPubMedCentralGoogle Scholar
  108. Kangari H, Eftekhari MH, Sardari S, Hashemi H et al (2013) Short-term consumption of oral omega-3 and dry eye syndrome. Ophthalmology 120:2191–2196PubMedGoogle Scholar
  109. Karamitsos A, Kokkas V, Goulas A, Paraskevopoulos P et al (2013) Ocular surface and tear film abnormalities in women under adjuvant chemotherapy for breast cancer with the 5-Fluorouracil, Epirubicin and Cyclophosphamide (FEC) regimen. Hippokratia 17:120–125PubMedPubMedCentralGoogle Scholar
  110. Kawai S, Nakajima T, Hokari S, Komoda T, Kawai K (2002) Apolipoprotein A-I concentration in tears in diabetic retinopathy. Ann Clin Biochem 39:56–61PubMedGoogle Scholar
  111. Kerimoglu H, Ozturk B, Gunduz K, Bozkurt B et al (2010) Effect of altered eating habits and periods during Ramadan fasting on intraocular pressure, tear secretion, corneal and anterior chamber parameters. Eye (Lond) 24:97–100Google Scholar
  112. Khaksari M, Mazzoleni LR, Ruan C, Kennedy RT, Minerick AR (2017) Determination of water-soluble and fat-soluble vitamins in tears and blood serum of infants and parents by liquid chromatography/mass spectrometry. Exp Eye Res 155:54–63CrossRefGoogle Scholar
  113. Khalil HE, Aboud S, Azzab M (2018) Comparative study between smokers and nonsmokers regarding dry eye. Delta J Ophthalmol 19:9–13Google Scholar
  114. Kim JH, Kim JH, Nam WH, Yi K et al (2012) Oral alcohol administration disturbs tear film and ocular surface. Ophthalmology 119:965–971PubMedPubMedCentralGoogle Scholar
  115. Kim N, Kim JW, Baek JH, Kim JS et al (2018) S-1-induced lacrimal drainage obstruction and its association with ingredients/metabolites of S-1 in tears and plasma: a prospective multi-institutional study. Cancer Res Treat 50:30–39PubMedPubMedCentralGoogle Scholar
  116. Kishazi E, Dor M, Eperon S, Oberic A et al (2018) Differential profiling of lacrimal cytokines in patients suffering from thyroid-associated orbitopathy. Sci Rep 8:10792PubMedPubMedCentralGoogle Scholar
  117. Komatsu H, Inui A, Sogo T, Tateno A et al (2012) Tears from children with chronic hepatitis B virus (HBV) infection are infectious vehicles of HBV transmission: experimental transmission of HBV by tears, using mice with chimeric human livers. J Infect Dis 206:478–485CrossRefGoogle Scholar
  118. Kramann C, Boehm N, Lorenz K, Wehrwein N et al (2011) Effect of contact lenses on the protein composition in tear film: a ProteinChip study. Graefes Arch Clin Exp Ophthalmol 249:233–243CrossRefGoogle Scholar
  119. Kumar R, Parmar IP, Chhillar N, Lal H (1997) Tear lactoferrin concentration during postoperative ocular inflammation in cataract surgery. Acta Ophthalmol Scand 75:142–144PubMedPubMedCentralGoogle Scholar
  120. Kumar G, Swarna S, Mahadevan R (2017) The ocular surface and lens comfort. Contact Lens Spectrum 32:38–39Google Scholar
  121. Kurtul BE, Ozer PA, Aydinli MS (2015) The association of vitamin D deficiency with tear break-up time and Schirmer testing in non-Sjogren dry eye. Eye (Lond) 29:1081–1084Google Scholar
  122. Kuscu NK, Toprak AB, Vatansever S, Koyuncu FM, Guler C (2003) Tear function changes of postmenopausal women in response to hormone replacement therapy. Maturitas 44:63–68CrossRefGoogle Scholar
  123. Kyrmizakis DE, Pangalos A, Papadakis CE, Logothetis J et al (2004) The use of botulinum toxin type A in the treatment of Frey and crocodile tears syndromes. J Oral Maxillofac Surg 62:840–844PubMedGoogle Scholar
  124. Lam SM, Tong L, Reux B, Duan X et al (2014b) Lipidomic analysis of human tear fluid reveals structure-specific lipid alterations in dry eye syndrome. J Lipid Res 55:299–306PubMedPubMedCentralGoogle Scholar
  125. Lam-Franco L, Perfecto-Avalos Y, Patino-Ramirez BE, Rodriguez Garcia A (2018) IL-1alpha and MMP-9 tear levels of patients with active ocular rosacea before and after treatment with systemic azithromycin or doxycycline. Ophthalmic Res 60:109–114PubMedGoogle Scholar
  126. Lane JD, Krumholz DM, Sack RA, Morris C (2006) Tear glucose dynamics in diabetes mellitus. Curr Eye Res 31:895–901PubMedGoogle Scholar
  127. Lawrenson JG, Murphy PJ, Esmaeelpour M (2003) The neonatal tear film. Cont Lens Anterior Eye 26:197–202CrossRefGoogle Scholar
  128. Lee JB, Ryu CH, Kim J, Kim EK, Kim HB (2000) Comparison of tear secretion and tear film instability after photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg 26:1326–1331PubMedGoogle Scholar
  129. Lee YB, Koh JW, Hyon JY, Wee WR et al (2014) Sleep deprivation reduces tear secretion and impairs the tear film. Invest Ophthalmol Vis Sci 55:3525–3531PubMedGoogle Scholar
  130. Leonardi A, Abelson MB (2003) Double-masked, randomized, placebo-controlled clinical study of the mast cell-stabilizing effects of treatment with olopatadine in the conjunctival allergen challenge model in humans. Clin Ther 25:2539–2552PubMedGoogle Scholar
  131. Lifshitz M, Weinstein O, Gavrilov V, Rosenthal G, Lifshitz T (1999) Acetaminophen (paracetamol) levels in human tears. Ther Drug Monit 21:544–546PubMedPubMedCentralGoogle Scholar
  132. Liu J, Shi B, He S, Yao X et al (2010a) Changes to tear cytokines of type 2 diabetic patients with or without retinopathy. Mol Vis 16:2931–2938PubMedPubMedCentralGoogle Scholar
  133. Liu Q, Liu J, Ren C, Cai W et al (2017) Proteomic analysis of tears following acupuncture treatment for menopausal dry eye disease by two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry. Int J Nanomedicine 12:1663–1671PubMedPubMedCentralGoogle Scholar
  134. Lopez-Miguel A, Teson M, Martin-Montanez V, Enriquez-de-Salamanca A et al (2014) Dry eye exacerbation in patients exposed to desiccating stress under controlled environmental conditions. Am J Ophthalmol 157:788–798 e782PubMedPubMedCentralGoogle Scholar
  135. Lopez-Miguel A, Teson M, Martin-Montanez V, Enriquez-de-Salamanca A et al (2016) Clinical and molecular inflammatory response in sjogren syndrome-associated dry eye patients under desiccating stress. Am J Ophthalmol 161:133–141. e131-132PubMedGoogle Scholar
  136. Loprinzi CL, Love RR, Garrity JA, Ames MM (1990) Cyclophosphamide, methotrexate, and 5-fluorouracil (CMF)-induced ocular toxicity. Cancer Invest 8:459–465PubMedGoogle Scholar
  137. Luensmann D, Jones L (2008) Albumin adsorption to contact lens materials: a review. Cont Lens Anterior Eye 31:179–187CrossRefGoogle Scholar
  138. Luensmann D, Jones L (2012) Protein deposition on contact lenses: the past, the present, and the future. Cont Lens Anterior Eye 35:53–64Google Scholar
  139. Luevano-Contreras C, Chapman-Novakofski K (2010) Dietary advanced glycation end products and aging. Nutrients 2:1247–1265PubMedPubMedCentralGoogle Scholar
  140. Madej KA (2010) Analysis of meconium, nails and tears for determination of medicines and drugs of abuse. Trends Analy Chem 29:246–259CrossRefGoogle Scholar
  141. Makateb A, Torabifard H (2017) Dry eye signs and symptoms in night-time workers. J Curr Ophthalmol 29:270–273PubMedPubMedCentralGoogle Scholar
  142. Mann A, Tighe B (2013) Contact lens interactions with the tear film. Exp Eye Res 117:88–98CrossRefGoogle Scholar
  143. Mantelli F, Tiberi E, Micera A, Lambiase A et al (2007) MUC5AC overexpression in tear film of neonates. Graefes Arch Clin Exp Ophthalmol 245:1377–1381CrossRefGoogle Scholar
  144. Mantelli F, Lambiase A, Sacchetti M, Orlandi V et al (2015) Cocaine snorting may induce ocular surface damage through corneal sensitivity impairment. Graefes Arch Clin Exp Ophthalmol 253:765–772PubMedGoogle Scholar
  145. Markoulli M, Papas E, Cole N, Holden BA (2012) The diurnal variation of matrix metalloproteinase-9 and its associated factors in human tears. Invest Ophthalmol Vis Sci 53:1479–1484CrossRefGoogle Scholar
  146. Martin XD, Brennan MC (1994) Serotonin in human tears. Eur J Ophthalmol 4:159–165PubMedGoogle Scholar
  147. Martinez R, Acera A, Soria J, Gonzalez N, Suarez T (2011) Allergic mediators in tear from children with seasonal and perennial allergic conjunctivitis. Arch Soc Esp Oftalmol 86:187–192Google Scholar
  148. Martin-Montanez V, Enriquez-de-Salamanca A, Lopez-de la Rosa A, Lopez-Miguel A et al (2016) Effect of environmental conditions on the concentration of tear inflammatory mediators during contact lens wear. Cornea 35:1192–1198PubMedPubMedCentralGoogle Scholar
  149. Masmali AM, Al-Bahlal JM, El-Hiti GA, Akhtar S et al (2015b) Repeatability and diurnal variation of tear ferning test. Eye Contact Lens 41:262–267PubMedPubMedCentralGoogle Scholar
  150. Masmali AM, Al-Shehri A, Alanazi SA, Abusharaha A et al (2016) Assessment of tear film quality among smokers using tear ferning patterns. J Ophthalmol 2016:8154315PubMedPubMedCentralGoogle Scholar
  151. Masoudi S, Stapleton FJ, Willcox MD (2016) Contact lens-induced discomfort and protein changes in tears. Optom Vis Sci 93:955–962CrossRefGoogle Scholar
  152. Matsumoto Y, Dogru M, Goto E, Sasaki Y et al (2008) Alterations of the tear film and ocular surface health in chronic smokers. Eye (Lond) 22:961–968Google Scholar
  153. Maurya RP, Bhushan P, Singh VP, Singh MK et al (2014) Immunoglobulin concentration in tears of contact lens wearers. J Ophthalmic Vis Res 9:320–323PubMedPubMedCentralGoogle Scholar
  154. McDermott AM (2004) Defensins and other antimicrobial peptides at the ocular surface. Ocul Surf 2:229–247PubMedPubMedCentralGoogle Scholar
  155. McGill JI, Liakos GM, Goulding N, Seal DV (1984) Normal tear protein profiles and age-related changes. Br J Ophthalmol 68:316–320PubMedPubMedCentralGoogle Scholar
  156. McMurray DN, Rey H, Casazza LJ, Watson RR (1977) Effect of moderate malnutrition on concentrations of immunoglobulins and enzymes in tears and saliva of young Colombian children. Am J Clin Nutr 30:1944–1948PubMedPubMedCentralGoogle Scholar
  157. Megwas WA, Izuawuba MA (2008) The effect of acetaminophen (Paracetamol) on tear production. J Nigerian Opt Assoc 14:27–29Google Scholar
  158. Micera A, Di Zazzo A, Esposito G, Longo R et al (2018) Age-related changes to human tear composition. Invest Ophthalmol Vis Sci 59:2024–2031PubMedPubMedCentralGoogle Scholar
  159. Modi P, Arsiwalla T (2018) StatPearls. StatPearls Publishing, Treasure IslandGoogle Scholar
  160. Monaco F, Piredda S, Mutani R, Mastropaolo C, Tondi M (1982) The free fraction of valproic acid in tears, saliva, and cerebrospinal fluid. Epilepsia 23:23–26PubMedPubMedCentralGoogle Scholar
  161. Mora P, Ceglarek U, Manzotti F, Zavota L et al (2008) Cyclosporin A in the ocular fluids of uveitis patients following long-term systemic administration. Graefes Arch Clin Exp Ophthalmol 246:1047–1052PubMedPubMedCentralGoogle Scholar
  162. Moshirfar M, Pierson K, Hanamaikai K, Santiago-Caban L et al (2014) Artificial tears potpourri: a literature review. Clin Ophthalmol 8:1419–1433PubMedPubMedCentralGoogle Scholar
  163. Mucci LA, Hjelmborg JB, Harris JR, Czene K et al (2016) Familial risk and heritability of cancer among twins in Nordic countries. JAMA 315:68–76CrossRefGoogle Scholar
  164. Muntz A, Subbaraman LN, Sorbara L, Jones L (2015) Tear exchange and contact lenses: a review. J Optom 8:2–11CrossRefGoogle Scholar
  165. Murube J (2008) REM sleep: tear secretion and dreams. Ocul Surf 6:2–8PubMedGoogle Scholar
  166. Nair S, Vanathi M, Mahapatra M, Seth T et al (2018) Tear inflammatory mediators and protein in eyes of post allogenic hematopoeitic stem cell transplant patients. Ocul Surf 16:352–367PubMedGoogle Scholar
  167. Navascues-Cornago M, Morgan PB, Maldonado-Codina C (2015) Effect of three interventions on contact lens comfort in symptomatic wearers: a randomized clinical trial. PLoS One 10:e0135323CrossRefGoogle Scholar
  168. Nejima R, Miyata K, Tanabe T, Okamoto F et al (2005) Corneal barrier function, tear film stability, and corneal sensation after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol 139:64–71PubMedGoogle Scholar
  169. Nemet AY (2016) The etiology of epiphora: a multifactorial issue. Semin Ophthalmol 31:275–279PubMedGoogle Scholar
  170. Norn M (1985) The effects of drugs on tear flow. Trans Ophthalmol Soc U K 104(Pt 4):410–414PubMedGoogle Scholar
  171. Oh JW, Shin JC, Jang SJ, Lee HB (1999) Expression of ICAM-1 on conjunctival epithelium and ECP in tears and serum from children with allergic conjunctivitis. Ann Allergy Asthma Immunol 82:579–585PubMedGoogle Scholar
  172. Okada E, Matsuda T, Yokoyama T, Okuda K (2006) Lysozyme penetration in group IV soft contact lenses. Eye Contact Lens 32:174–177CrossRefGoogle Scholar
  173. Omali NB, Subbaraman LN, Coles-Brennan C, Fadli Z, Jones LW (2015) Biological and clinical implications of lysozyme deposition on soft contact lenses. Optom Vis Sci 92:750–757PubMedPubMedCentralGoogle Scholar
  174. Osei KA, Ovenseri-Ogbomo G, Kyei S, Ntodie M (2014) The effect of caffeine on tear secretion. Optom Vis Sci 91:171–177PubMedPubMedCentralGoogle Scholar
  175. Otto CS, McMann MA, Parmley VC, Dahlhauser KF et al (2002) Warm balanced salt solution for clearing tear film precipitation during cataract surgery. J Cataract Refract Surg 28:1318–1319PubMedGoogle Scholar
  176. Park S, Lee DY (2018) Materials and applications of smart diagnostic contact lens systems. Adv Exp Med Biol 1078:155–160CrossRefGoogle Scholar
  177. Pastori V, Tavazzi S, Lecchi M (2015) Lactoferrin-loaded contact lenses: eye protection against oxidative stress. Cornea 34:693–697CrossRefGoogle Scholar
  178. Patel S, Perez-Santonja JJ, Alio JL, Murphy PJ (2001) Corneal sensitivity and some properties of the tear film after laser in situ keratomileusis. J Refract Surg 17:17–24PubMedGoogle Scholar
  179. Peponis V, Papathanasiou M, Kapranou A, Magkou C et al (2002) Protective role of oral antioxidant supplementation in ocular surface of diabetic patients. Br J Ophthalmol 86:1369–1373PubMedPubMedCentralGoogle Scholar
  180. Phan CM, Walther H, Gao H, Rossy J et al (2016) Development of an In vitro ocular platform to test contact lenses. J Vis Exp 110:e53907Google Scholar
  181. Pinazo-Duran MD, Galbis-Estrada C, Pons-Vazquez S, Cantu-Dibildox J et al (2013) Effects of a nutraceutical formulation based on the combination of antioxidants and omega-3 essential fatty acids in the expression of inflammation and immune response mediators in tears from patients with dry eye disorders. Clin Interv Aging 8:139–148CrossRefGoogle Scholar
  182. Postnikoff CK, Nichols KK (2017) Neutrophil and T-cell homeostasis in the closed eye. Invest Ophthalmol Vis Sci 58:6212–6220PubMedPubMedCentralGoogle Scholar
  183. Postnikoff CK, Huisingh C, McGwin G, Nichols KK (2018) Leukocyte distribution in the open eye tears of normal and dry eye subjects. Curr Eye Res 43(10):1253–1259PubMedGoogle Scholar
  184. Provine RR (2012) Curious behavior. Belknap Press of Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  185. Pucker AD, Ng SM, Nichols JJ (2016) Over the counter (OTC) artificial tear drops for dry eye syndrome. Cochrane Database Syst Rev 2:CD009729PubMedPubMedCentralGoogle Scholar
  186. Puinhas A, Sampaio P, Castanheira EM, Real Oliveira ME, Lira M (2013) Comparison of IgA, TNF-alpha and surface tension of the tear film in two different times of the day. Cont Lens Anterior Eye 36:140–145PubMedGoogle Scholar
  187. Raines DA, Yusuf A, Jabak MH, Ahmed WS et al (1998) Simultaneous high-performance liquid chromatography analysis of azithromycin and two of its metabolites in human tears and plasma. Ther Drug Monit 20:680–684PubMedGoogle Scholar
  188. Rathi S, Jalali S, Patnaik S, Shahulhameed S et al (2017) Abnormal complement activation and inflammation in the pathogenesis of retinopathy of prematurity. Front Immunol 8:1868CrossRefGoogle Scholar
  189. Ravazzoni L, Ghini C, Macri A, Rolando M (1998) Forecasting of hydrophilic contact lens tolerance by means of tear ferning test. Graefes Arch Clin Exp Ophthalmol 236:354–358CrossRefGoogle Scholar
  190. Rees LW, Munn AD, Maddock J, Robinson PR (2000) The rapid determination of tobramycin in microlitre quantities of human tear fluid using LC-MS-MS. Chromatographia 52:S98–S100Google Scholar
  191. Renom G, Bouquety JC, Lanckriet C, Georges AJ et al (1990) HIV-specific IgA antibodies in tears of children with AIDS or at risk of AIDS. Res Virol 141:355–363CrossRefGoogle Scholar
  192. Resan M, Stanojevic I, Petkovic A, Pajic B, Vojvodic D (2015) Levels of interleukin-6 in tears before and after excimer laser treatment. Vojnosanit Pregl 72:350–355PubMedPubMedCentralGoogle Scholar
  193. Riem MME, van IMH, De Carli P, Vingerhoets A, Bakermans-Kranenburg MJ (2017) As tears go by: baby tears trigger more brain activity than adult tears in nulliparous women. Soc Neurosci 12:633–636PubMedGoogle Scholar
  194. Riemens A, Stoyanova E, Rothova A, Kuiper J (2012) Cytokines in tear fluid of patients with ocular graft-versus-host disease after allogeneic stem cell transplantation. Mol Vis 18:797–802PubMedPubMedCentralGoogle Scholar
  195. Rocha EM, Alves M, Rios JD, Dartt DA (2008) The aging lacrimal gland: changes in structure and function. Ocul Surf 6:162–174PubMedPubMedCentralGoogle Scholar
  196. Rohit A, Willcox M, Stapleton F (2013a) Tear lipid layer and contact lens comfort: a review. Eye Contact Lens 39:247–253Google Scholar
  197. Rohit A, Brown S, Willcox M, Stapleton F (2013b) The effect of tear lipid biochemistry on tear evaporation rate during contact lens wear. Invest Ophth Vis Sci 54:4358–4358CrossRefGoogle Scholar
  198. Rohit A, Willcox MD, Brown SH, Mitchell TW, Stapleton F (2014b) Clinical and biochemical tear lipid parameters in contact lens wearers. Optom Vis Sci 91:1384–1390PubMedGoogle Scholar
  199. Rummenie VT, Matsumoto Y, Dogru M, Wang Y et al (2008) Tear cytokine and ocular surface alterations following brief passive cigarette smoke exposure. Cytokine 43:200–208PubMedGoogle Scholar
  200. Runstrom G, Mann A, Tighe B (2013) The fall and rise of tear albumin levels: a multifactorial phenomenon. Ocul Surf 11:165–180PubMedGoogle Scholar
  201. Rusciano D, Pezzino S, Olivieri M, Cristaldi M et al (2018) Age-related dry eye lactoferrin and lactobionic acid. Ophthalmic Res 60:1–6Google Scholar
  202. Saari KM, Aine E, Posz A, Klockars M (1983) Lysozyme content of tears in normal subjects and in patients with external eye infections. Graefes Arch Clin Exp Ophthalmol 221:86–88PubMedPubMedCentralGoogle Scholar
  203. Saari KM, Aho V, Paavilainen V, Nevalainen TJ (2001) Group II PLA(2) content of tears in normal subjects. Invest Ophthalmol Vis Sci 42:318–320PubMedPubMedCentralGoogle Scholar
  204. Sack RA, Tan KO, Tan A (1992) Diurnal tear cycle: evidence for a nocturnal inflammatory constitutive tear fluid. Invest Ophthalmol Vis Sci 33:626–640PubMedPubMedCentralGoogle Scholar
  205. Safarzadeh M, Azizzadeh P, Akbarshahi P (2017) Comparison of the clinical efficacy of preserved and preservative-free hydroxypropyl methylcellulose-dextran-containing eyedrops. J Optom 10:258–264CrossRefGoogle Scholar
  206. Saijyothi AV, Fowjana J, Madhumathi S, Rajeshwari M et al (2012) Tear fluid small molecular antioxidants profiling shows lowered glutathione in keratoconus. Exp Eye Res 103:41–46PubMedGoogle Scholar
  207. Sand BB, Jensen OL, Eriksen JS, Vinding T (1986) Lysozyme in tears during post-operative inflammation of the eye. Acta Ophthalmol (Copenh) 64:504–508Google Scholar
  208. Sano K, Kawashima M, Ikeura K, Arita R, Tsubota K (2015) Abdominal breathing increases tear secretion in healthy women. Ocul Surf 13:82–87PubMedPubMedCentralGoogle Scholar
  209. Sariri R, Arasteh A, Mahmoodian J (2006) Heavy smoking and tears protein pattern. Asian J Chem 18:8–14Google Scholar
  210. Sariri R, Varasteh A, Sajedi RH (2010) Effect of Ramadan fasting on tear proteins. Acta Medica (Hradec Kralove) 53:147–151CrossRefGoogle Scholar
  211. Satici A, Bitiren M, Ozardali I, Vural H et al (2003) The effects of chronic smoking on the ocular surface and tear characteristics: a clinical, histological and biochemical study. Acta Ophthalmol Scand 81:583–587PubMedPubMedCentralGoogle Scholar
  212. Sayin N, Kara N, Pekel G, Altinkaynak H (2014) Effects of chronic smoking on central corneal thickness, endothelial cell, and dry eye parameters. Cutan Ocul Toxicol 33:201–205PubMedGoogle Scholar
  213. Schultz CL, Kunert KS (2000) Interleukin-6 levels in tears of contact lens wearers. J Interferon Cytokine Res 20:309–310CrossRefGoogle Scholar
  214. Scuderi G, Contestabile MT, Gagliano C, Iacovello D et al (2012) Effects of phytoestrogen supplementation in postmenopausal women with dry eye syndrome: a randomized clinical trial. Can J Ophthalmol 47:489–492PubMedGoogle Scholar
  215. Semeraro F, Costagliola C, Cancarini A, Gilberti E et al (2012) Defining reference values of trace elements in the tear film: diagnostic methods and possible applications. Ecotoxicol Environ Saf 80:190–194CrossRefGoogle Scholar
  216. Service RF (2018) ScienceGoogle Scholar
  217. Sharanjeet-Kaur, Ho CY, Mutalib HA, Ghazali AR (2016) The relationship between tear ferning patterns and non-invasive tear break-up time in normal Asian population. J Optom 9:175–181CrossRefGoogle Scholar
  218. Shetty R, Ghosh A, Lim RR, Subramani M et al (2015) Elevated expression of matrix metalloproteinase-9 and inflammatory cytokines in keratoconus patients is inhibited by cyclosporine A. Invest Ophthalmol Vis Sci 56:738–750PubMedGoogle Scholar
  219. Shigeyasu C, Yamada M, Akune Y (2016) Influence of ophthalmic solutions on tear components. Cornea 35(Suppl 1):S71–S77PubMedGoogle Scholar
  220. Shimazaki J, Shimmura S, Fujishima H, Tsubota K (2000) Association of preoperative tear function with surgical outcome in severe Stevens-Johnson syndrome. Ophthalmology 107:1518–1523PubMedGoogle Scholar
  221. Shiuey Y, Ambati BK, Adamis AP (2000) A randomized, double-masked trial of topical ketorolac versus artificial tears for treatment of viral conjunctivitis. Ophthalmology 107:1512–1517CrossRefGoogle Scholar
  222. Shoji J, Aso H, Inada N (2017) Clinical Usefulness of Simultaneous Measurement of the Tear Levels of CCL17, CCL24, and IL-16 for the Biomarkers of Allergic Conjunctival Disorders. Curr Eye Res 42:677–684PubMedPubMedCentralGoogle Scholar
  223. Shrestha GS, Sujakhu D, Shrestha JB, Shrestha JK (2012) Tear film evaluation in contact lens wearers and non wearers. J Inst Med 34:14–20Google Scholar
  224. Shuaibu AO, Agoreyo F (2016) Tear production in premenopausal women during menstrual cycle. Zimbabwe J Sci Technol 11:126–131Google Scholar
  225. Siddireddy JS, Vijay AK, Tan J, Willcox M (2018) The eyelids and tear film in contact lens discomfort. Cont Lens Anterior Eye 41:144–153CrossRefGoogle Scholar
  226. Siganos DS, Popescu CN, Siganos CS, Pistola G (2000) Tear secretion following spherical and astigmatic excimer laser photorefractive keratectomy. J Cataract Refract Surg 26:1585–1589PubMedPubMedCentralGoogle Scholar
  227. Singh AK, Nagpal S, Tyagi R (2018) A study of tear ferning patterns in elderly individuals with dry eye disorder. J Clin Diagn Res 12:NC01–NC04Google Scholar
  228. Srinivasan S, Joyce E, Jones LW (2007) Tear osmolality and ferning patterns in postmenopausal women. Optom Vis Sci 84:588–592CrossRefGoogle Scholar
  229. Su SB, Lu CW, Sheen JW, Kuo SC, Guo HR (2006) Tear secretion dysfunction among women workers engaged in light-on tests in the TFT-LCD industry. BMC Public Health 6:303PubMedPubMedCentralGoogle Scholar
  230. Symeonidis C, Papakonstantinou E, Galli A, Tsinopoulos I et al (2013) Matrix metalloproteinase (MMP-2, -9) and tissue inhibitor (TIMP-1, -2) activity in tear samples of pediatric type 1 diabetic patients. Graefe’s Arch Clin Exp Ophthalmol 251:741–749CrossRefGoogle Scholar
  231. Tabbara KF (2001) Tear tryptase in vernal keratoconjunctivitis. Arch Ophthalmol 119:338–342PubMedGoogle Scholar
  232. Tan KO, Sack RA, Holden BA, Swarbrick HA (1993) Temporal sequence of changes in tear film composition during sleep. Curr Eye Res 12:1001–1007PubMedGoogle Scholar
  233. Tatlipinar S, Gedik S, Irkec M, Orhan M, Erdener U (2001) Ocular ferning during the menstrual cycle in healthy women. Eur J Ophthalmol 11:15–18CrossRefGoogle Scholar
  234. Tauste A, Ronda E, Baste V, Bratveit M et al (2018) Ocular surface and tear film status among contact lens wearers and non-wearers who use VDT at work: comparing three different lens types. Int Arch Occup Environ Health 91:327–335PubMedGoogle Scholar
  235. Teson M, Gonzalez-Garcia MJ, Lopez-Miguel A, Enriquez-de-Salamanca A et al (2013) Influence of a controlled environment simulating an in-flight airplane cabin on dry eye disease. Invest Ophthalmol Vis Sci 54:2093–2099PubMedGoogle Scholar
  236. Thakur A, Willcox MD, Stapleton F (1998) The proinflammatory cytokines and arachidonic acid metabolites in human overnight tears: homeostatic mechanisms. J Clin Immunol 18:61–70PubMedGoogle Scholar
  237. Thomas J, Jacob GP, Abraham L, Noushad B (2012) The effect of smoking on the ocular surface and the precorneal tear film. Australas Med J 5:221–226PubMedPubMedCentralGoogle Scholar
  238. Tieppo A, Pate KM, Byrne ME (2012) In vitro controlled release of an anti-inflammatory from daily disposable therapeutic contact lenses under physiological ocular tear flow. Eur J Pharm Biopharm 81:170–177CrossRefGoogle Scholar
  239. Toker E, Yenice O, Ogut MS, Akman I, Ozek E (2002) Tear production during the neonatal period. Am J Ophthalmol 133:746–749CrossRefGoogle Scholar
  240. Tomlinson A, Cedarstaff TH (1992) Diurnal variation in human tear evaporation. J Br Contact Lens Assoc 15:77–79Google Scholar
  241. Tomlinson A, Giesbrecht C (1994) Effect of age on human tear film evaporation in normals. Adv Exp Med Biol 350:271–274PubMedGoogle Scholar
  242. Tomlinson A, Pearce EI, Simmons PA, Blades K (2001) Effect of oral contraceptives on tear physiology. Ophthalmic Physiol Opt 21:9–16Google Scholar
  243. Tong L, Htoon HM, Hou A, Acharya RU et al (2018) Acupuncture and herbal formulation compared with artificial tears alone: evaluation of dry eye symptoms and associated tests in randomised clinical trial. BMJ Open Ophthalmol 3:e000150PubMedPubMedCentralGoogle Scholar
  244. Tsalic M, Gilboa M, Visel B, Miller B, Haim N (2006) Epiphora (excessive tearing) and other ocular manifestations related to weekly docetaxel: underestimated dose-limiting toxicity. Med Oncol 23:57–61PubMedPubMedCentralGoogle Scholar
  245. Uchino E, Sonoda S, Kinukawa N, Sakamoto T (2006) Alteration pattern of tear cytokines during the course of a day: diurnal rhythm analyzed by multicytokine assay. Cytokine 33:36–40Google Scholar
  246. Uchino Y, Uchino M, Yokoi N, Dogru M et al (2014) Alteration of tear mucin 5AC in office workers using visual display terminals: the Osaka Study. JAMA Ophthalmol 132:985–992CrossRefGoogle Scholar
  247. Uchino Y, Uchino M, Yokoi N, Dogru M et al (2016) Impact of cigarette smoking on tear function and correlation between conjunctival goblet cells and tear MUC5AC concentration in office workers. Sci Rep 6:27699PubMedPubMedCentralGoogle Scholar
  248. Ullah A, Badshah M, Jamil U (2015) An unusual case of bloody tears. Ann Indian Acad Neurol 18:351–352CrossRefGoogle Scholar
  249. Valentic JP, Leopold IH, Dea FJ (1980) Excretion of salicylic acid into tears following oral administration of aspirin. Ophthalmology 87:815–820PubMedGoogle Scholar
  250. Van Haeringen NJ (1997) Aging and the lacrimal system. Br J Ophthalmol 81:824–826PubMedPubMedCentralGoogle Scholar
  251. Vardhan P, Dhiman KS (2014) Clinical study to assess the efficacy of Keshanjana and Netra Parisheka in the management of Shushkakshipaka (dry eye syndrome). Ayu 35:277–282PubMedPubMedCentralGoogle Scholar
  252. Venkata SJ, Narayanasamy A, Srinivasan V, Iyer GK et al (2009) Tear ascorbic acid levels and the total antioxidant status in contact lens wearers: a pilot study. Indian J Ophthalmol 57:289–292PubMedPubMedCentralGoogle Scholar
  253. Versura P, Fresina M, Campos EC (2007) Ocular surface changes over the menstrual cycle in women with and without dry eye. Gynecol Endocrinol 23:385–390CrossRefGoogle Scholar
  254. Versura P, Bavelloni A, Grillini M, Fresina M, Campos EC (2013a) Diagnostic performance of a tear protein panel in early dry eye. Mol Vis 19:1247–1257PubMedPubMedCentralGoogle Scholar
  255. Versura P, Piazzi M, Giannaccare G, Fresina M et al (2016) 8th international conference on the tear film & ocular surface: basic science and clinical relevance, Montpellier, France, p 119Google Scholar
  256. Virtanen T, Ylatupa S, Mertaniemi P, Partanen P et al (1995) Tear fluid cellular fibronectin levels after photorefractive keratectomy. J Refract Surg 11:106–112PubMedPubMedCentralGoogle Scholar
  257. Wang TJ, Wang IJ, Ho JD, Chou HC et al (2010) Comparison of the clinical effects of carbomer-based lipid-containing gel and hydroxypropyl-guar gel artificial tear formulations in patients with dry eye syndrome: a 4-week, prospective, open-label, randomized, parallel-group, noninferiority study. Clin Ther 32:44–52CrossRefGoogle Scholar
  258. Ward SK, Dogru M, Wakamatsu T, Ibrahim O et al (2010) Passive cigarette smoke exposure and soft contact lens wear. Optom Vis Sci 87:367–372PubMedPubMedCentralGoogle Scholar
  259. Watson RR, McMurray DN, Martin P, Reyes MA (1985) Effect of age, malnutrition and renutrition on free secretory component and IgA in secretions. Am J Clin Nutr 42:281–288PubMedPubMedCentralGoogle Scholar
  260. Weaver J (2011) Women’s tears contain chemical cues. Nat News.  https://doi.org/10.1038/news.2011.2
  261. Wei Y, Gadaria-Rathod N, Epstein S, Asbell P (2013) Tear cytokine profile as a noninvasive biomarker of inflammation for ocular surface diseases: standard operating procedures. Invest Ophthalmol Vis Sci 54:8327–8336CrossRefGoogle Scholar
  262. Willcox MD (2017) Is there a role for inflammation in contact lens discomfort? Eye Contact Lens 43:5–16CrossRefGoogle Scholar
  263. Willcox MD, Morris CA, Thakur A, Sack RA et al (1997) Complement and complement regulatory proteins in human tears. Invest Ophthalmol Vis Sci 38:1–8PubMedGoogle Scholar
  264. Willcox MD, Zhao Z, Naduvilath T, de la Jara Lazon P (2015) Cytokine changes in tears and relationship to contact lens discomfort. Mol Vis 21:293–305PubMedPubMedCentralGoogle Scholar
  265. Willson SA, Middleton PA (2008) Breast cancer in young identical twins. Breast Cancer Res 10:P43CrossRefGoogle Scholar
  266. Wong TT, Zhou L, Li J, Tong L et al (2011) Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Invest Ophthalmol Vis Sci 52:7385–7391PubMedGoogle Scholar
  267. Yamada M, Mochizuki H, Kawashima M, Hata S (2006) Phospholipids and their degrading enzyme in the tears of soft contact lens wearers. Cornea 25:S68–S72Google Scholar
  268. Yang L, Yang Z, Yu H, Song H (2015) Acupuncture therapy is more effective than artificial tears for dry eye syndrome: evidence based on a meta-analysis. Evid Based Complement Alternat Med 2015:143858PubMedPubMedCentralGoogle Scholar
  269. Yasueda S, Yamakawa K, Nakanishi Y, Kinoshita M, Kakehi K (2005) Decreased mucin concentrations in tear fluids of contact lens wearers. J Pharm Biomed Anal 39:187–195PubMedPubMedCentralGoogle Scholar
  270. Yildirim P, Garip Y, Karci AA, Guler T (2016) Dry eye in vitamin D deficiency: more than an incidental association. Int J Rheum Dis 19:49–54PubMedPubMedCentralGoogle Scholar
  271. You YS, Qu NB, Yu XN (2016b) Alcohol consumption and dry eye syndrome: a meta-analysis. Int J Ophthalmol 9:1487–1492PubMedPubMedCentralGoogle Scholar
  272. Young WH, Hill RM (1973) Tear cholesterol levels and contact lens adaptation. Am J Optom Arch Am Acad Optom 50:12–16CrossRefGoogle Scholar
  273. Zhang J, Hodge W, Hutnick C, Wang X (2011a) Noninvasive diagnostic devices for diabetes through measuring tear glucose. J Diabetes Sci Technol 5:166–172PubMedPubMedCentralGoogle Scholar
  274. Zhao Z, Liu J, Shi B, He S et al (2010) Advanced glycation end product (AGE) modified proteins in tears of diabetic patients. Mol Vis 16:1576–1584PubMedPubMedCentralGoogle Scholar
  275. Zhou L, Huang LQ, Beuerman RW, Grigg ME et al (2004) Proteomic analysis of human tears: defensin expression after ocular surface surgery. J Proteome Res 3:410–416PubMedGoogle Scholar
  276. Zwerling CS (2016) Forensic analysis of a contact lens in a murder case. J Forensic Sci 61:534–539CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anjali Prashar
    • 1
  1. 1.MumbaiIndia

Personalised recommendations