Nanoparticle: Significance as Smart Material in Therapeutic Strategies in Drug Delivery in Biological Systems

  • Kamal Dhungel
  • Jyoti Narayan


Nanoparticles have gained tremendous potential as smart materials in various therapeutic strategies in biological and non-biological systems. Due to the small size (less than 100 nm), nanoparticles penetrate into even smaller capillaries, which are taken up within cells, allowing an efficient drug accumulation at the targeted sites in the body. The use of biodegradable materials for nanoparticle preparation allows sustained drug release at the targeted site over a period of days or even weeks after injection. Peptides, proteins, nanogels, and antisense drugs have been synthesized in an effort to combat central nervous system (CNS) diseases. Molecules such as dalargin and loperamide are loaded onto nanoparticlees with the aim to drug delivery. Nanoparticles such as pegylated-poly(hexadecylcyanoacrylate) (PEG-PHDCA) have been investigated for the treatment of several CNS diseases. Liposomes are synthetic and spherical molecules, consisting of single amphiphilic lipid bilayers, which can entrap therapeutic molecules, including drugs, vaccines, nucleic acids, and proteins. Solid lipid nanoparticles are spherical, stable nanocarriers that possess a solid hydrophobic lipid core matrix stabilized by aqueous surfactant. Micelle is utilized for the delivery of curcumin for targeting glioma and treating Alzheimer’s disease as a nanocarrier. Gold, silica, and carbon nanotubes/nanoparticles have been used to deliver specific drug across the blood-brain barrier. Gold nanoparticles functionalized with peptides are utilized for the treatment of Alzheimer’s disease and functionalized with L-DOPA have been reported for the treatment of Parkinson’s disease. Chemically functionalized multi-walled carbon nanotubes and polymer-coated carbon nanotubes have been applied for the delivery of drugs for brain cancer therapy. Various shapes such as nanosphere, nanostar, nanorods, and nanocage are utilized in brain tumor diagnosis. In the noninvasive approach, polymeric nanoparticles, especially PBCA nanoparticles coated with polysorbate 80, have recently received much attention from neuroscientists as an attractive and innovative carrier for brain targeting.


Blood-brain barrier Biocompatible nanoparticle Functionalized nanoparticle Therapeutic strategies 


  1. 1.
    Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI (2018) Blood-brain delivery methods using nanotechnology. Pharmaceutics 10:269PubMedCentralCrossRefGoogle Scholar
  2. 2.
    Beduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28:4947–4967PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Mo X, Liu E, Huang Y (2019) The intra-brain distribution of brain targeting delivery systems. In: Brain targeted drug delivery system. Academic Press, Cambridge, MA, 409–438CrossRefGoogle Scholar
  4. 4.
    Crowe TP, Greenlee MHWE, Kanthasamy AG, Hsu WH (2018) Mechanism of intranasal drug delivery directly to the brain. Life Sci 195:44–52PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Alexander JJ (2018) Blood-brain barrier (bbb) and the complement landscape. Mol Immunol 102:26–31PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Hersh DS, Wadajkar AS, Roberts N, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim A (2016) Evolving drug delivery strategies to overcome the blood brain barrier. J Curr Pharm Res 22:1177–1193CrossRefGoogle Scholar
  7. 7.
    Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochem 2013:1–18CrossRefGoogle Scholar
  8. 8.
    Peng Y, Zhao Y, Chen Y, Yang Z, Zhang L, Xiao W, Yang J, Guo L, Wu Y (2018) Dual-targeting for brain-specific liposomes drug delivery system: synthesis and preliminary evaluation. Bioorg Med Chem 26:4677–4686PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Moscariello P, David YWN, Jansen M, Weil T, Luhmann HJ, Hedrich J (2018) Brain delivery of multifunctional dendrimer protein bioconjugates. Adv Sci 5:1700897CrossRefGoogle Scholar
  10. 10.
    Guo Q, Shen XT, Li YY, Xu SQ (2017) Carbon nanotubes-based drug delivery to cancer and brain. J Huazhong Univ Sci Technol 37(5):635–641Google Scholar
  11. 11.
    Gothwal A, Khan I, Kesharwani P, Chourasia MK, Gupta U (2018) Chapter 11- Micelle-based drug delivery for brain tumors. In: Nanotechnology-based targeted drug delivery systems for brain tumors. Academic press, United states, Cambridge, Massachusetts, pp 307–326CrossRefGoogle Scholar
  12. 12.
    Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: Emerging carriers for drug delivery, Saudi Pharmaceutical Journal 19: 129-14 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    John AA, Priyadharshni A, Muthu S, Vellayappan V, Balaji A, Mohandas H, Jaganathan SK, (2015) Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery International Journal of Nanomedicine 10: 4267–4277 Google Scholar
  14. 14.
    Ehrlich P, (1885) The oxygen demand of the organism: a color analysis study. Berlin: HirschwaldGoogle Scholar
  15. 15.
    Weiss N, Miller F, Cazaubon S, Couraub P (2009) The blood brain barrier in brain homeostasis and neurological diseases, Biochimica et biophysica acta, United states, Salmon Tower Building, New York City 1788: 842-857  Google Scholar
  16. 16.
    Khorkova O, Wahlestedt C (2017) Oligonucleotide therapies for disorders of the nervous system, Nature Biotechnology 35 (3): 249-263PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Olivier JC (2005) Drug transport to brain with targeted nanoparticles, Neuro Rx 2(1): 108-19PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood-brain barrier by nanoparticles. J. Controlled Release 161(2): 264-73PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Joao M, Bárbara G, Susana M, Sarmento MB Nanoparticle functionalization for brain targeting drug delivery and diagnostic, Handbook of Nanoparticles 941–959 Springer (United states, Salmon Tower Building, New York)Google Scholar
  20. 20.
    Banks WA (2009) Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 9 (Suppl 1): S3 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA (1995) Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles) Brain Res. 13: 674 (1) 171-4PubMedCrossRefGoogle Scholar
  22. 22.
    Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J (1997) Delivery of loperamide across the blood–brain barrier with poly-sorbate 80-coated polybutylcyanoacrylate nanoparticles Pharm. Res. 14: 325–328Google Scholar
  23. 23.
    Troster SD, Muller U, Kreuter J (1990) Modification of the body distribution of poly-(methylmethacrylate) nanoparticles in rats by coating with surfactants. Int. J. Pharma. 61: 85-100CrossRefGoogle Scholar
  24. 24.
    Schröder U, Sabel BA (1996) Nanoparticles, a drug carrier system to pass the blood brain barrier, permit central analgesic effects of i.v.dalargin injections, Brain Research 710: (1–2) 121-124PubMedCrossRefGoogle Scholar
  25. 25.
    Olivier JC, Fenart L, Chauvet R, Pariat C, Cecchelli R, Couet W (1999) Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticle is related to toxicity, Pharmaceutical research 16: 12 1836-42PubMedCrossRefGoogle Scholar
  26. 26.
    Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Brandt CK, Alyautdin R (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. Journal of drug targeting 10: (4) 317-325PubMedCrossRefGoogle Scholar
  27. 27.
    Grabrucker AM, Ruozi B, Belletti D, Pederzoli F, Forni F, Vandelli MA, Tosi G (2016) Nanoparticle transport across the blood brain Barrier. Tissue Barriers 4: (1) 1153568PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Friese A, Seiller E, Quack G, Lorenz B, Kreuter JÈ (2000) Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. European Journal of Pharmaceutics and Biopharmaceutics 49: 103-109PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Steiniger SCJ, Kreuter J, Khalansky AS, Sidan IN, Bobruskin AI, Smirnova ZS, Severin SE, Reiner UHL, Kock M, Geiger KD, Gperina SE (2004) Chemotherapy of Glioblastoma in Rats Using Doxorubicin-Loaded Nanoparticles. Int J Cancer 109: 59–767Google Scholar
  30. 30.
    Gelperina SE, Khalansky AS, Skidan IN, Smirnova ZS, Bobruskin AI, Severin SE, Turowski B, Zanella FE, Kreuter J, (2002) Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicology Letters 126: (2) 131-41PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Garcia EG, Andrieux K, Gilb S, Couvreur P (2005) Colloidal carriers and blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain? International Journal of Pharmaceutics 298: 274–292PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Karanath H, Murthy RSR (2008) Nanotechnology in brain targeting. International journal of pharmaceutical sciences and nanotechnology 1: (1) 9-24Google Scholar
  33. 33.
    Calvo P, Gouritin B, Villarroya H, Eclancher FË, Giannavola C, Klein C (2002) Quantification and localization of PEGylatedpolycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. European Journal of Neuroscience 15:1317-1326PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Calvo P, Gouritin B, Brigger I, Lasmezas C, Deslys JP, Williams A, Andreux JP, Dormont D, Couvreur P, (2001) PEGylatedpolycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. Journal of Neuroscience 111: (2) 151-155 PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Garcia-Garciaa E, Gil S, Andrieux K, Desmaële D, Nicolas V, Taran F, Georgin D, Andreux JP, Roux F, Couvreur P (2005) A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Cell. Mol. Life Sci. 62: 1400–1408PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Serguei V, Vinogrado V, Kohli E, Zeman AD (2005) Cross linked Polymeric Nanogel Formulations of 5-Triphosphates of Nucleoside Analogs: Role of the Cellular Membrane in Drug Release. Mol. Pharm. 2(6): 449–461Google Scholar
  37. 37.
    Serguei V, Batrakova E, Kabanov AV (2004) Nanogels for Oligonucleotide Delivery to the Brain. Bioconjug Chem.15: (1) 50–60Google Scholar
  38. 38.
    Wang X, Liu P, Yang W, Li L, Li P, Liu Z, Zhuo ZX, Gao Y (2014) Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier. International Journal of Nanomedicine 9: 4899–4909Google Scholar
  39. 39.
    Lakkadwala S, Singh J, (2018) Dual functionalized 5-Fluorouracil liposomes as highly efficient nanomedicine for glioblastoma treatment as assessed in an in vitro brain tumor model. Journal of Pharmaceutical Sciences 107: (11) 2902-2913PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Liu Y, Ran R, Chen J, Kuang Q, Tang J, Mei L, Zhang Q, Gao H, Zhang Z, He Q (2014) Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials 35: 4835-4847PubMedCrossRefGoogle Scholar
  41. 41.
    Ashley JD, Quinlan CJ, Schroeder VA, Suckow MA, Pizzuti VJ, Kiziltepe T, Bilgicer B (2016) Dual Carfilzomib and Doxorubicin–Loaded Liposomal Nanoparticles for Synergistic efficacy in multiple myeloma. Mol Cancer Ther 15: (7) 1452-9PubMedCrossRefGoogle Scholar
  42. 42.
    Hui XZ, Shi TKH (2018) Development of nanoliposomal formulation of erlotinib for lung cancer and invitro/in vivo antitumoral evaluation. Drug design, development and therapy 12: 1–8Google Scholar
  43. 43.
    Webb MS, Harasym TO, Masin D, Bally MB, Mayer LD (1995) Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br. J. Cancer 72: (4) 896-904 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ciani L, Ristori S, Salvati A, Calamai L, Martini G, (2004) DOTAP/DOPE and DC-Chol/DOPE lipoplexes for gene delivery: zeta potential measurements and electron spin resonance spectra. Biochim Biophys Acta 1664: (1) 70-79CrossRefGoogle Scholar
  45. 45.
    Pedroso de Lima MC, Neves S, Filipe A, Duzgunes N, Simoes S (2003) Cationic liposomes for gene delivery: from biophysics to biological applications. Curr Med Chem 10: (14) 1221-31CrossRefGoogle Scholar
  46. 46.
    Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm 50: (1) 161-77 Google Scholar
  47. 47.
    Manjunath K, Venkateswarlu V (2005) Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Controlled Release, 107: (2) 215-28PubMedCrossRefGoogle Scholar
  48. 48.
    Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomed 6: (1) 9-24CrossRefGoogle Scholar
  49. 49.
    Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RR (2004) Etoposide-incorporated tripalmitin nanoparticles with different surface charge: Formulation, characterization, radiolabeling, and biodistribution studies. The American Association Pharmaceutical Scientist Journal 6: (3) 55-64PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Xu W, Ling P, Zhang T, (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. Journal of Drug Delivery 2013Google Scholar
  51. 51.
    Ahmad Z, Shah A, Siddiq M, Kraatz HB (2014) Polymeric micelles as drug delivery vehicles. RSC Adv 4: 17028CrossRefGoogle Scholar
  52. 52.
    Keshari P, Sonar Y, Mahajan H (2019) Curcumin loaded TPGS micelles for nose to brain drug delivery: in vitro and in vivo studies. Advanced Performance Materials 34 (7) 423-432CrossRefGoogle Scholar
  53. 53.
    Pokale A (2007) Inorganic and organic hybrid nanocapsules based anticancer drug delivery MSC clinical research article 18: 21-26Google Scholar
  54. 54.
    Lai F, Fadda AM, Sinic C (2013) Liposomes for brain delivery, Expert Opin Drug Deliv 10: (7)PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Sela H, Cohen H, Elia P, Zach R, Karpas Z, Zeiri Y (2015) Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J Nanobiotechnol 13: (71) 1-9Google Scholar
  56. 56.
    Ruff J, Hüwel S, Kogan MJ, Simon U, Galla HJ (2017) The effects of gold nanoparticles functionalized with ß-amyloid specific peptides on an in vitro model of blood-brain barrier Nanomedicine 13: (5) 1645–1652Google Scholar
  57. 57.
    Gonzalez-Carter DA, Ong ZY, McGilvery CM, Dunlop IE, Dexter DT, Porter AE (2019) L-dopa functionalized, multi-branched gold nanoparticles as brain-targeted nano-vehicles Nanomedicine 15: (1) 1–11Google Scholar
  58. 58.
    Chen Y, Dai Q, Morshed R, Fan X, Wegscheid ML, Wainwright DA, Han Y, Zhang L, Auffinger B, Tobias AL, Rincón E, Thaci B, Ahmed AU, Warnke P, Chuan H, Lesniak MS (2014) Blood-Brain Barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small 29: 10 (24) 5137–5150Google Scholar
  59. 59.
    Subramani K, Mehta M (2018) Chapter 19—Nanodiagnostics in microbiology and dentistry. In: Subramani K, Ahmed W (eds) Emerging nanotechnologies in dentistry, 2nd edn. William Andrew Publishing, Norwich, pp 391–419CrossRefGoogle Scholar
  60. 60.
    Liu Y, Yuan H, Fales AM, Register JK, Dinh TV (2015) Multifunctional gold nanostars for molecular imaging and cancer therapy. Frontiers in Chemistry 3:51Google Scholar
  61. 61.
    Tamba BI, Streinu V, Foltea G, Neagu AN, Dodi G, Zlei M, Tijani A, Sefanescu C (2018) Tailored surface silica nanoparticles for blood-brain barrier penetration: Preparation and in vivo investigation. Arab J Chem 11:1–990CrossRefGoogle Scholar
  62. 62.
    Jampilek J, Zaruba K, Oravec M, Kunes M, Babula P, Ulbrich P, Brezaniova I, Opatrilova R, Triska J, Suchy P (2015) Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier. BioMed Res. Int. 812673Google Scholar
  63. 63.
    Mendiratta S, Hussein M, Nasser HA, Ali AAA (2019) Multidisciplinary role of mesoporous silica nanoparticles in brain regeneration and cancers: from crossing the blood–brain barrier to treatment. Particle Particle System Characterization 1900195: 1-22.Google Scholar
  64. 64.
    Kafa H, Wang JTW, Rubio N, Klippstein R, Costa PM, Hassan HAFM, Sosabowski JK, Bansal SS, Preston JE, Abbott NJ, Al-Jamal KT (2016) Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood–brain barrier in vitro and in vivo. J Control Release 225:217–229PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kafa H, Wang JTW, Rubio N, Venner K, Anderson G, Pach E, Ballesteros B, Preston JE, Abbott NJ, Al-Jamal KT (2015) The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 53:437–452PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Rautio J, Laine K, Gynther M, Savolainen J (2008) Prodrug approaches for CNS delivery. AAPS J 10(1):92–102PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Singh Y, Palombo M, Sinko PJ (2008) Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem 15(18):1802–1826PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Rais R, Jančařík A, Tenora L, Nedelcovych M, Alt J, Englert J, Rojas C, Le A, Elgogary A, Tan J, Monincová L, Pate K, Adams R, Ferraris D, Powell J, Majer P, Slusher BS (2016) Discovery of 6-Diazo-5-oxo--norleucine (DON) prodrugs with enhanced CSF delivery in monkeys: a potential treatment for glioblastoma. J Med Chem 59(18):8621–8633PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kamal Dhungel
    • 1
  • Jyoti Narayan
    • 1
  1. 1.Department of Basic Sciences and Social Sciences (Chemistry Division), School of TechnologyNorth Eastern Hill UniversityShillongIndia

Personalised recommendations