Linear Rule Based Ensemble Methods for the Prediction of Number of Faults

  • Santosh Singh RathoreEmail author
  • Sandeep Kumar
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


Software fault prediction models are highly influenced by the use of learning techniques and characteristics of fault datasets.


  1. 1.
    Aldave, R., Dussault, J.P.: Systematic ensemble learning for regression (2014). arXiv preprint arXiv:1403.7267
  2. 2.
    Boetticher, G.: The PROMISE repository of empirical software engineering data. (2007)
  3. 3.
    Brown, G.: Diversity in neural network ensembles. Ph.D. thesis, University of Birmingham (2004)Google Scholar
  4. 4.
    Challagulla, U.V., Bastani, F.B., Yen, I.L.: A unified framework for defect data analysis using the mbr technique. In: Proceeding of 18th IEEE International Conference on Tools with Artificial Intelligence, pp. 39–46 (2006)Google Scholar
  5. 5.
    Dietterich, T.G.: Ensemble methods in machine learning. International workshop on multiple classifier systems, pp. 1–15. Springer, Berlin, Heidelberg (2000)Google Scholar
  6. 6.
    Fenton, N.E., Neil, M.: A critique of software defect prediction models. IEEE Trans. Softw. Eng. 25(5), 675–689 (1999)CrossRefGoogle Scholar
  7. 7.
    Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992)CrossRefGoogle Scholar
  8. 8.
    Holmes, G., Donkin A., Witten, I.H.: Weka: a machine learning workbench. In: Proceedings of the 2nd Australian and New Zealand Conference on Intelligent Information Systems, pp. 357–361 (1994)Google Scholar
  9. 9.
    Jiang, Y., Cukic, B., Ma, Y.: Techniques for evaluating fault prediction models. Empir. Softw. Eng. 13(5), 561–595 (2008)CrossRefGoogle Scholar
  10. 10.
    Khoshgoftaar, T.M., Geleyn, E., Nguyen, L.: Empirical case studies of combining software quality classification models. In: Proceedings of 3rd International Conference on Quality Software, pp. 40–49 (2003)Google Scholar
  11. 11.
    LeBlanc, M., Tibshirani, R.: Combining estimates in regression and classification. J. Am. Stat. Assoc. 91(436), 1641–1650 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for software defect prediction: a proposed framework and novel findings. IEEE Trans. Softw. Eng. 34(4), 485–496 (2008)CrossRefGoogle Scholar
  13. 13.
    Mendes-Moreira, J., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches for regression: a survey. ACM Comput. Surv. (CSUR) 45(1), 1–40 (2012)CrossRefGoogle Scholar
  14. 14.
    Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener, A.: Defect prediction from static code features: current results, limitations, new approaches. Autom. Softw. Eng. 17(4), 375–407 (2010)CrossRefGoogle Scholar
  15. 15.
    Merz, C.J.: Classification and regression by combining models. Ph.D. thesis, University of California, Irvine (1998)Google Scholar
  16. 16.
    Podgurski, A., Yang, C.: Partition testing, stratified sampling, and cluster analysis. Proc. ACM SIGSOFT Softw. Eng. Notes 18, 169–181 (1993)CrossRefGoogle Scholar
  17. 17.
    Rathore, S.S., Kumar, S.: Linear and non-linear heterogeneous ensemble methods to predict the number of faults in software systems. Knowl. Based Syst. 119, 232–256 (2017)CrossRefGoogle Scholar
  18. 18.
    Sun, Z., Song, Q., Zhu, X.: Using coding-based ensemble learning to improve software defect prediction. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 1806–1817 (2012)CrossRefGoogle Scholar
  19. 19.
    Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M., Haesen, R.: Mining software repositories for comprehensible software fault prediction models. J. Syst. Softw. 81(5), 823–839 (2008)CrossRefGoogle Scholar
  20. 20.
    Wang, T., Zhang, Z., Jing, X., Zhang, L.: Multiple kernel ensemble learning for software defect prediction. Autom. Softw. Eng., 1–22 (2015)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringABV-Indian Institute of Information Technology and Management GwaliorGwaliorIndia
  2. 2.Department of Computer Science and EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations