Medium-Extended-Range Weather Forecast Based on Big Data Application

  • Yong Li
  • Wei HuangEmail author
  • Zhengguang Hu
  • Huafeng Qin
  • Menglei Xu
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 550)


The National Meteorological Center initially completed the construction of the Medium-Extended-Range Weather Forecast (MERWF) operational system in 2018. The system uses browser/server system architecture to support concurrent operation of hundreds of terabyte real-time and historical data, through the introduction of large data core technologies such as distributed storage and distributed computing. The key technical problem of MERWF, which is the fusion of real-time data and historical data, is solved. It greatly improves the efficiency of data access and display, and realizes the development of MERWF technology products based on the big data analysis and the effective extraction of predictable information. Based on big data analyses, an application technology system of MERWF is then established for the first time in national business department, to meet the objective and intelligent needs of modern meteorological business.


Big data Medium-Extended-Range Forecast Application 


  1. 1.
    Wang, R., Huang, X., Zhang, B., et al.: Design and implementation of a real time parsing and storage system for massive meteorological data. Comput. Eng. Sci. 37(11), 58–64 (2015)Google Scholar
  2. 2.
    Wang, R., Wang, J., Huang, X., et al.: The architecture design of MICAPS4 server system. J. Appl. Meteorol. Sci. 29(1), 1–12 (2018)Google Scholar
  3. 3.
    Hu, Z., Gao, S., Xue, F., et al.: Design and implementation of MICAPS4 web platform. J. Appl. Meteorol. Sci. 29(1), 45–56 (2018)Google Scholar
  4. 4.
    STORM Documentation 1.1.0. Accessed 30 June 2016
  5. 5.
    Sun, D.W., Zhang, G.Y., Zheng, W.M.: Big data stream computing: technologies and instances. J. Softw. 25(4), 839–862 (2014)Google Scholar
  6. 6.
    Lang, H., Ren, Y.: a fast search algorithm based on redis emory database. Comput. Appl. Softw. 33(5), 40–43 (2016)Google Scholar
  7. 7.
    Wu, L., Zhang, F.: A study on WebGIS client based on HTML canvas. Geomat. World 7(3), 78–82 (2009)Google Scholar
  8. 8.
    Li, Y., Jin, R., Zhou, N., et al.: An analysis on characteristics of heavy rainfall processes during the Meiyu season in Jianghuai region. Acta Meteorologica Sinica 75(5), 717–728 (2017)Google Scholar
  9. 9.
    Li, Y., Jin, R., Lin, Y.: The forecast of dekad temperature abnormal of china in winter. Meteorol. Mon. 25(7), 41–45 (1999)Google Scholar
  10. 10.
    Huang, W., Zhang, H., Bao, Y., et al.: Objective forecast of medium-term average temperature anomalies based on EOF technique. J. Meteorol. Sci. 37(4), 461–566 (2017)Google Scholar
  11. 11.
    Zhang, F., Cao, Y., Xu, J., et al.: Application of the logistic discriminant model in heavy rain forecasting. Meteorol. Mon. 42(4), 398–405 (2016)Google Scholar
  12. 12.
    Dai, K., Cao, Y., Qian, Q., et al.: Situation and tendency of operational technologies in short- and medium-range weather forecast. Meteorol. Mon. 42(12), 1445–1455 (2016)Google Scholar
  13. 13.
    Chen, B., Dai, K., Guo, Y., et al.: Precipitation verification and analysis of ECMWF ensemble statistic products in 2013 flooding season. Torrential Rain Disasters 34(1), 64–73 (2015)Google Scholar
  14. 14.
    Du, J., Chen, J.: The corner stone in facilitating the transition from deterministic to probabilistic forecasts-ensemble forecasting and its impact on numerical weather prediction. Meteorol. Mon. 36(11), 1–11 (2010)Google Scholar
  15. 15.
    Yang, Q.: Prospects and progresses in the research of the methods for 10–30 days extended-range weather forecast. Adv. Earth Sci. 30(9), 970–984 (2015)Google Scholar
  16. 16.
    He, W., Kong, M., Zhao, H.: Research on meteorological prediction with Bayesian classifier. Comput. Eng. Des. 28(15), 3780–3782 (2007)Google Scholar
  17. 17.
    Ma, X.-K., Cai, X.-N., Yang, G.-M., et al.: Study on fog synoptic characteristics and fog forecast method in Chongqing. Clim. Environ. Res. 12(6), 795–803 (2007)Google Scholar
  18. 18.
    Huang, W., Niu, R.: The medium-term multi-model integration forecast experimentation for heavy rain based on support vector machine. Meteorol. Mon. 43(9), 1130–1137 (2017)Google Scholar
  19. 19.
    Roushangar, K., Alizadeh, F.: A multiscale spatio-temporal framework to regionalize annual precipitation using k-means and self-organizing map technique. J. Mt. Sci. 15(7), 1481–1497 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yong Li
    • 1
  • Wei Huang
    • 1
    Email author
  • Zhengguang Hu
    • 1
  • Huafeng Qin
    • 1
  • Menglei Xu
    • 1
  1. 1.National Meteorological CenterBeijingChina

Personalised recommendations