Advertisement

Black Phosphorus

  • Kazuto AkibaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we firstly introduce basic properties and related literatures of black phosphorus, and then show experimental results obtained in this study. In semimetallic state above 1.4 GPa, we observed clear Shubnikov-de Haas oscillation and large magnetoresistance effect. From the analysis of Shubnikov-de Haas oscillations, we identified the light cyclotron mass and small carrier density near semiconductor-semimetal transition, which is comparable to bismuth and graphite. Fermi surfaces become monotonically larger as pressure increases, which indicates that the carrier density is tunable by hydrostatic pressure. Also, we quantitatively determined the carrier densities and mobilities of electrons and holes based on the two-carrier model, which confirmed the nearly compensated nature in the semimetallic state, and large mobility difference between electrons and holes. The large magnetoresistance observed in the semimetallic phase cannot be reproduced by conventional two-carrier model, which suggests additional mechanisms beyond the semiclassical framework.

Keywords

Black phosphorus Semiconductor-semimetal transition High pressure Shubnikov-de Haas effect Two-carrier model 

References

  1. 1.
    Bridgmann PW (1914) J Am Chem Soc 36: 1344.  https://doi.org/10.1021/ja02184a002
  2. 2.
    Brown A, Rundqvist S (1965) Acta Cryst 19: 684.  https://doi.org/10.1107/S0365110X65004140
  3. 3.
    Hultgren R, Gingrich NS, Warren BE (1935) J Chem Phys 3: 351.  https://doi.org/10.1063/1.1749671
  4. 4.
    Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Nat Nanotechnol 9: 372.  https://doi.org/10.1038/nnano.2014.35
  5. 5.
    Morita A (1986) Appl Phys A 39: 227.  https://doi.org/10.1007/BF00617267
  6. 6.
    Fukuoka S, Taen T, Osada T (2015) J Phys Soc Jpn 84: 121004.  https://doi.org/10.7566/JPSJ.84.121004
  7. 7.
    Li L, Kim J, Jin C, Ye GJ, Qiu DY, da Jornada FH, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie SG, Chen XH, Zhang Y, Wang F (2017) Nat Nanotechnol 12: 21.  https://doi.org/10.1038/nnano.2016.171
  8. 8.
    Takao Y, Asahina H, Morita A (1981) J Phys Soc Jpn 50: 3362.  https://doi.org/10.1143/JPSJ.50.3362
  9. 9.
    Asahina H, Shindo K, Morita A (1982) J Phys Soc Jpn 51: 1193.  https://doi.org/10.1143/JPSJ.51.1193
  10. 10.
    Yaguchi H, Singleton J (2009) J Phys Condens Matter 21: 344207. http://stacks.iop.org/0953-8984/21/i=34/a=344207
  11. 11.
    Keyes RW (1953) Phys Rev 92: 580.  https://doi.org/10.1103/PhysRev.92.580
  12. 12.
    Warschauer D (1963) J Appl Phys 34: 1853.  https://doi.org/10.1063/1.1729699
  13. 13.
    Maruyama Y, Suzuki S, Kobayashi K, Tanuma S (1981) Physica B&C 105: 99. http://www.sciencedirect.com/science/article/pii/0378436381902230
  14. 14.
    Shirotani I, Maniwa R, Sato H, Fukizawa A, Sato N, Maruyama Y, Kajiwara T, Inokuchi H, Akimoto S (1981) Nihon Kagakukai Shi. J Chem Soc Jpn 1981: 1604.  https://doi.org/10.1246/nikkashi.1981.1604 (In Japanese)
  15. 15.
    Endo S, Akahama Y, Terada S, Narita S (1982) J Appl Phys 21: L482. http://stacks.iop.org/1347-4065/21/i=8A/a=L482
  16. 16.
    Akahama Y, Endo S, Narita S (1983) J Phys Soc Jpn 52: 2148.  https://doi.org/10.1143/JPSJ.52.2148
  17. 17.
    Brown DM, Bray R (1962) Phys Rev 127: 1593.  https://doi.org/10.1103/PhysRev.127.1593
  18. 18.
    Narita S, Terada S, Mori S, Muro K, Akahama Y, Endo S (1983) J Phys Soc Jpn 52: 3544.  https://doi.org/10.1143/JPSJ.52.3544
  19. 19.
    Takeyama S, Miura N, Akahama Y, Endo S (1990) J Phys Soc Jpn 59: 2400.  https://doi.org/10.1143/JPSJ.59.2400
  20. 20.
    Sugai S, Ueda T, Murase K (1981) J Phys Soc Jpn 50: 3356.  https://doi.org/10.1143/JPSJ.50.3356
  21. 21.
    Sugai S, Shirotani I (1985) Solid State Commun 53: 753. http://www.sciencedirect.com/science/article/pii/0038109885902133
  22. 22.
    Kaneta C, Yoshida HK, Morita A (1986) J Phys Soc Jpn 55: 1213.  https://doi.org/10.1143/JPSJ.55.1213
  23. 23.
    Kaneta C, Morita A (1986) J Phys Soc Jpn 55: 1224.  https://doi.org/10.1143/JPSJ.55.1224
  24. 24.
    Jamieson JC (1963) Science 139: 1291. http://science.sciencemag.org/content/139/3561/1291
  25. 25.
    Cohen MH, Falicov LM, Golin S (1964) IBM J Res Dev 8: 215. http://ieeexplore.ieee.org/document/5392227/
  26. 26.
    Akahama Y, Kobayashi M, Kawamura H (1999) Phys Rev B 59: 8520.  https://doi.org/10.1103/PhysRevB.59.8520
  27. 27.
    Kawamura H, Shirotani I, Tachikawa K (1984) Solid State Commun 49: 879. http://www.sciencedirect.com/science/article/pii/0038109884904447
  28. 28.
    Cartz L, Strinivasa SR, Riedner RJ, Jorgensen JD, Worlton TG (1979) J Chem Phys 71: 1718.  https://doi.org/10.1063/1.438523
  29. 29.
    Kikegawa T, Iwasaki H (1983) Acta Cryst B39: 158.  https://doi.org/10.1107/S0108768183002220
  30. 30.
    Okajima M, Endo S, Akahama Y, Narita S (1984) Jpn J Appl Phys 23: 15. http://stacks.iop.org/1347-4065/23/i=1R/a=15
  31. 31.
    Akahama Y, Endo S, Narita S (1986) Physica B+C 139–140: 397. http://www.sciencedirect.com/science/article/pii/0378436386906066
  32. 32.
    Akahama Y, Kawamura H (2001) Phys Status Solidi B 223: 349.  https://doi.org/10.1002/1521-3951(200101)223:1<349::AID-PSSB349>3.0.CO;2-F
  33. 33.
    Vanderborgh CA, Schiferl D (1989) Phys Rev B 40: 9595.  https://doi.org/10.1103/PhysRevB.40.9595
  34. 34.
    Akiba K, Miyake A, Akahama Y, Matsubayashi K, Uwatoko Y, Arai H, Fuseya Y, Tokunaga M (2015) J Phys Soc Jpn 84: 073708.  https://doi.org/10.7566/JPSJ.84.073708
  35. 35.
    Akiba K, Miyake A, Akahama Y, Matsubayashi K, Uwatoko Y, Tokunaga M (2017) Phys Rev B 95: 115126.  https://doi.org/10.1103/PhysRevB.95.115126
  36. 36.
    Xiang ZJ, Ye GJ, Shang C, Lei B, Wang NZ, Yang KS, Liu DY, Meng FB, Luo XG, Zou LJ, Sun Z, Zhang Y, Chen XH (2015) Phys Rev Lett 115: 186403.  https://doi.org/10.1103/PhysRevLett.115.186403
  37. 37.
    Li CH, Long YJ, Zhao LX, Shan L, Ren ZA, Zhao JZ, Weng HM, Dai X, Fang Z, Ren C, Chen GF (2017) Phys Rev B 95: 125417.  https://doi.org/10.1103/PhysRevB.95.125417
  38. 38.
    Strutz T, Miura N, Akahama Y (1994) Physica B 201: 387. http://www.sciencedirect.com/science/article/pii/0921452694911215
  39. 39.
    Nicholas RJ (1985) Prog Quantum Electron 10: 1. http://www.sciencedirect.com/science/article/pii/0079672785900047
  40. 40.
    Kapitza P (1928) Proc R Soc A 119: 358. http://rspa.royalsocietypublishing.org/content/119/782/358
  41. 41.
    McClure JW, Spry WJ (1968) Phys Rev 165: 809.  https://doi.org/10.1103/PhysRev.165.809
  42. 42.
    Ali MN, Xiong J, Flynn S, Tao J, Gibson QD, Schoop LM, Liang T, Haldolaarachchige N, Hirschberger M, Ong NP, Cava RJ (2014) Nature (London) 514: 205.  https://doi.org/10.1038/nature13763
  43. 43.
    Shoenberg D (1984) Magnetic oscillations in metals. Cambridge University Press, CambridgeGoogle Scholar
  44. 44.
    Woollam JA (1970) Phys Rev Lett 25: 810.  https://doi.org/10.1103/PhysRevLett.25.810
  45. 45.
    Ando Y (2013) J Phys Soc Jpn 82: 102001.  https://doi.org/10.7566/JPSJ.82.102001
  46. 46.
    Brandt NB, Chudinov SM (1972) J Low Temp Phys 8: 339.  https://doi.org/10.1007/BF00655088
  47. 47.
    Küchler R, Steinke L, Daou R, Brando M, Behnia K, Steglich F (2014) Nat Mater 13: 461.  https://doi.org/10.1038/nmat3909
  48. 48.
    Tanuma S, Inada R, Furukawa A, Takahashi O, Iye Y, Onuki Y (1981) Electrical properties of layered materials at high magnetic fields. In: Chikazumi S, Miura N (eds) Physics in high magnetic fields. Springer, BerlinGoogle Scholar
  49. 49.
    Iye Y, Tedrow PM, Timp G, Shayegan M, Dresselhaus MS, Dresselhaus G, Furukawa A, Tanuma S (1982) Phys Rev B 25: 5478.  https://doi.org/10.1103/PhysRevB.25.5478
  50. 50.
    Yaguchi H, Singleton J (1998) Phys Rev Lett 81: 5193.  https://doi.org/10.1103/PhysRevLett.81.5193
  51. 51.
    Fauqué B, LeBoeuf D, Vignolle B, Nardone M, Proust C, Behnia K (2013) Phys Rev Lett 110: 266601.  https://doi.org/10.1103/PhysRevLett.110.266601
  52. 52.
    Akiba K, Miyake A, Yaguchi H, Matsuo A, Kindo K, Tokunaga M (2015) J Phys Soc Jpn 84: 054709.  https://doi.org/10.7566/JPSJ.84.054709
  53. 53.
    For the OpenMX package, code, pseudo-atomic basis functions, and pseudopotentials. http://www.openmx-square.org/
  54. 54.
    Qiao J, Kong X, Hu ZX, Yang F, Ji Q (2014) Nat Commun 5: 4475.  https://doi.org/10.1038/ncomms5475
  55. 55.
    Fuseya Y, private communicationGoogle Scholar
  56. 56.
    Gong P-L, Liu D-Y, Yang K-S, Xiang Z-J, Chen X-H, Zeng Z, Shen S-Q, Zou L-J (2016) Phys Rev B 93: 195434.  https://doi.org/10.1103/PhysRevB.93.195434
  57. 57.
    Zhao J, Yu R, Weng H, Fang Z (2016) Phys Rev B 94: 195104.  https://doi.org/10.1103/PhysRevB.94.195104
  58. 58.
    Baba M, Izumida F, Takeda Y, Shibata K, Morita A, Koike Y, Fukase T (1991) J Phys Soc Jpn 60: 3777.  https://doi.org/10.1143/JPSJ.60.3777
  59. 59.
    Hou Z, Yang B, Wang Y, Ding B, Zhang X, Yao Y, Liu E, Xi X, Wu G, Zeng Z, Liu Z, Wang W (2016) Sci Rep 6: 23807.  https://doi.org/10.1038/srep23807
  60. 60.
    Soule DE (1958) Phys Rev 112: 698.  https://doi.org/10.1103/PhysRev.112.698
  61. 61.
    Eguchi G, Kuroda K, Shirai K, Ando Y, Shinjo T, Kimura A, Shiraishi M (2015) Phys Rev B 91: 235117.  https://doi.org/10.1103/PhysRevB.91.235117
  62. 62.
  63. 63.
    Fei R, Tran V, Yang L (2015) Phys Rev B 91: 195319.  https://doi.org/10.1103/PhysRevB.91.195319
  64. 64.
    Liang T, Gibson Q, Ali MN, Liu M, Cava RJ, Ong NP (2015) Nat Mater 14: 280.  https://doi.org/10.1038/nmat4143
  65. 65.
    Sun S, Wang Q, Guo P-J, Liu K, Lei H (2016) New J Phys 18: 082002. http://stacks.iop.org/1367-2630/18/i=8/a=082002
  66. 66.
    Du X, Tsai S-W, Maslov D-L, Hebard AF (2005) Phys Rev Lett 94: 166601.  https://doi.org/10.1103/PhysRevLett.94.166601
  67. 67.
    Ziman JM (1972) Principles of the theory of solids, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  68. 68.
    Roth LM, Argyres PN (1966) Magnetic quantum effects, In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 1, Academic Press, New YorkGoogle Scholar
  69. 69.
    Nagahama T, Kobayashi M, Akahama Y, Endo S, Narita S (1985) J Phys Soc Jpn 54: 2096 (1985).  https://doi.org/10.1143/JPSJ.54.2096
  70. 70.
    Yafet Y, Keyes RW, Adams EN (1956) J Phys Chem Solids 1: 137. http://www.sciencedirect.com/science/article/pii/0022369756900208

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan

Personalised recommendations