Advertisement

Nano-SiO2-Engineered Cementitious Composites

  • Baoguo HanEmail author
  • Siqi Ding
  • Jialiang Wang
  • Jinping Ou
Chapter

Abstract

Nano-SiO2 particles with pozzolanic activity are introduced into different types of cementitious composites to reinforce/modify their properties/performances. The effects and their mechanisms of nano-SiO2 on the rheology, mechanical properties/performances, and durability of cementitious composites are investigated through performance, thermogravimetry, X-ray diffraction, nuclear magnetic resonance, scanning electron microscope, and electrical resistivity tests. Experimental results show that the inclusion of nano-SiO2 brings obvious impact on the properties/performances of fresh and hardened cementitious composites due to its pozzolanic activity in combination with small-size, nucleation, and filling effects.

Keywords

Nano-SiO2 Cementitious composites Rheology, mechanical properties Durability Mechanisms 

References

  1. 1.
    L.Q. Zhang, S.Q. Ding, S.W. Sun, B.G. Han, X. Yu, J.P. Ou, Chapter 2: Nano-scale behavior and nano-modification of cement and concrete materials, in Book: Advanced Research on Nanotechnology for Civil Engineering Applications, ed. by A. Khitab, W. Anwar (Publisher: IGI Global, 2016), pp. 28–79Google Scholar
  2. 2.
    X. Wang, L. Xu, J. Ouyang, L.Q. Zhang, B.G. Han, Rheology and mechanical strength of cementitious composite with nano-particles. J. Mater. Appl. 5(2), 43–48 (2016)Google Scholar
  3. 3.
    A. Peschard, A. Govin, P. Grosseau, B. Guilhot, R. Guyonnet, Effect of polysaccharides on the hydration of cement paste at early ages. Cem. Concr. Res. 34, 2153–2158 (2004)CrossRefGoogle Scholar
  4. 4.
    R. Yu, P. Spiesz, H.J.H. Brouwers, Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Constr. Build. Mater. 65, 140–150 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Madani, A. Bagheri, T. Parhizkar, The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement. Cem. Concr. Res. 42, 1563–1570 (2012)CrossRefGoogle Scholar
  6. 6.
    P.K. Mehta, R.M. Monteiro, Concrete: Structure, Properties and Materials, 3 edn. (Prentice Hall, USA, 2006)Google Scholar
  7. 7.
    Q. Ye, Z. Zhang, D. Kong, R. Chen, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 21, 539–545 (2007)CrossRefGoogle Scholar
  8. 8.
    B. Han, L. Zhang, S. Zeng, S. Dong, X. Yu, R. Yang, J. Ou, Nano-core effect in nano-engineered cementitious composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRefGoogle Scholar
  9. 9.
    S.F. Dong, B.G. Han, X. Yu, J.P. Ou, Dynamic impact behaviors and constitutive model of super-fine stainless wire reinforced reactive powder concrete. Constr. Build. Mater. 184, 602–616 (2018)CrossRefGoogle Scholar
  10. 10.
    T. Ji, Preliminary study on the water permeability and micro-structure of concrete incorporating nano-SiO2. Cem. Concr. Res. 35(10), 1943–1947 (2005)CrossRefGoogle Scholar
  11. 11.
    G.H. Li, B. Gao, Effect of level SiO2 and level CaCO3 on concrete performance. J. China Railway Soc. 28(2), 131–136 (2006)MathSciNetGoogle Scholar
  12. 12.
    W.G. Li, Z.Y. Luo, C. Long, L. Huang, Experimental study on the dynamic mechanical performance of nanomodified recycled aggregate concrete. J. Hunan Univ. (Nat. Sci). 44(9), 92–99 (2017)Google Scholar
  13. 13.
    D. Zheng, Q. Li, An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity. Eng. Fract. Mech. 71(16–17), 2319–2327 (2004)CrossRefGoogle Scholar
  14. 14.
    S.A. Kaplan, Factors affecting the relationship between rate of loading and measured compressive strength of concrete. Mag. Concr. Res. 32(111), 79–88 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Jiang, D. Zhou, L.Q. Zhang, J. Ouyang, X. Yu, X. Cui, B.G. Han, Comparison of compressive strength and electrical resistivity of cementitious composites with different nano-and micro-fillers. Arch. Civil Mech. Eng. 18(1), 60–68 (2018)CrossRefGoogle Scholar
  16. 16.
    L.Q. Zhang, N. Ma, Y.Y. Wang, B.G. Han, X. Cui, X. Yu, J.P. Ou, Study on the reinforcing mechanisms of nano silica to cement-based materials with theoretical calculation and experimental evidence. J. Compos. Mater. 50(29), 4135–4146 (2016)CrossRefGoogle Scholar
  17. 17.
    Z. Li, B.G. Han, X. Yu, S.F. Dong, L.Q. Zhang, X.F. Dong, J.P. Ou, Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete. Mater. Res. Expr. 4(9), 095008 (2017)CrossRefGoogle Scholar
  18. 18.
    B.G. Han, Z. Li, L.Q. Zhang, S.Z. Zeng, X. Yu, B.G. Han, J.P. Ou, Reactive powder concrete reinforced with nano SiO2-coated TiO2. Constr. Build. Mater. 148, 104–112 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Li, S.Q. Ding, X. Yu, B.G. Han, J.P. Ou, Multifunctional cementitious composites modified with nano titanium dioxide: A review. Compos. A Appl. Sci. Manuf. 111, 115–137 (2018)CrossRefGoogle Scholar
  20. 20.
    P. Hosseini, A. Booshehrian, A. Madari, Developing concrete recycling strategies by utilization of nano-SiO2 particles. Waste Biomass Valorizat. 2(3), 347–355 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Baoguo Han
    • 1
    Email author
  • Siqi Ding
    • 2
  • Jialiang Wang
    • 1
  • Jinping Ou
    • 1
  1. 1.School of Civil EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations