Advertisement

Current Progress of Nano-Engineered Cementitious Composites

  • Baoguo HanEmail author
  • Siqi Ding
  • Jialiang Wang
  • Jinping Ou
Chapter

Abstract

The application of nano science and technology in cementitious composites is reported in the late 1980s and gets into an active period in nearly two decades. The different strategies including manufacturing nano-cement and mineral admixtures as well as incorporating nanomaterials have been proposed to develop nano-engineered cementitious composites. Thanks to the nanoscale-induced reinforcing/modifying mechanisms, the nano-engineered cementitious composites have the improved structures. Thus, they feature enhanced mechanical properties/performances and durability as well as unique multi-functional/smart properties/performances, which are closely relative to the compositions and fabrication/processing of nano-engineered cementitious composites.

Keywords

Cementitious composites Nano-engineered Current progress Nano-cement Nano-mineral admixtures Nanomaterials 

References

  1. 1.
    B.G. Han, X. Yu. J.P. Ou, Self-sensing Concrete in Smart Structures (Elsevier, 2014)Google Scholar
  2. 2.
    P.K. Mehta, P.J.M. Monteiro, Concrete: Microstructure, Properties and Materials (McGraw-Hill, 2006)Google Scholar
  3. 3.
    B.G. Han, L.Q. Zhang, J.P. Ou, Smart and Multifunctional Concrete toward Sustainable Infrastructures (Springer, 2017)Google Scholar
  4. 4.
    B.G. Han, S.Q. Ding, S.W. Sun, L.Q. Zhang, J.P. Ou, Chapter 33: Chemical modification of carbon nanotubes/nanofibers for application in cement and concrete field, in Book: Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications, ed. by V.K. Thakur (Taylor & Francis CRC, 2016), pp. 748–773Google Scholar
  5. 5.
    L.Q. Zhang, S.Q. Ding, S.W. Sun, B.G. Han, X. Yu, J.P. Ou, Chapter 2: Nano-scale behavior and nano-modification of cement and concrete materials, in Book: Advanced Research on Nanotechnology for Civil Engineering Applications, ed. by A. Khitab, W. Anwar (IGI Global, 2016), pp. 28–79Google Scholar
  6. 6.
    F.A. Chyad, The effects of metastable zirconia on the properties of ordinary Portland cement. Dissertation for the Doctoral Degree, University of Bradford, England, 1989Google Scholar
  7. 7.
    G.C. Bye, Portland Cement: Composition, Production and Properties, 2nd edn. (Thomas Telford Publishing, 1999)Google Scholar
  8. 8.
    J. Bensted, P. Barnes, Structure and Performance of Cements, 2nd edn. (Taylor and Francis, 2008)Google Scholar
  9. 9.
    P.C. Hewlett, Lea’s Chemistry of Cement and Concrete, 4th edn. (Elsevier, 1988)Google Scholar
  10. 10.
    W. Kurdowski, Cement and Concrete Chemistry (Springer, 2014)Google Scholar
  11. 11.
    L.Q. Zhang, N. Ma, Y.Y. Wang, B.G. Han, X. Cui, X. Yu, J.P. Ou, Study on the reinforcing mechanisms of nano silica to cement-based materials with theoretical calculation and experimental evidence. J. Compos. Mater. 50(29), 4135–4146 (2016)CrossRefGoogle Scholar
  12. 12.
    D.N. Wang, W. Zhang, Y.F. Ruan, X. Yu, B.G. Han, Enhancements and mechanisms of nanoparticles on wear resistance and chloride penetration resistance of reactive powder concrete. Constr. Build. Mater. 189, 487–497 (2018)CrossRefGoogle Scholar
  13. 13.
    Y.F. Ruan, B.G. Han, X. Yu, Z. Li, J.L. Wang, S.F. Dong, J.P. Ou, Mechanical behaviors of nano-zirconia filled reactive powder concrete under compression and flexture. Constr. Build. Mater. 162, 663–673 (2018)CrossRefGoogle Scholar
  14. 14.
    B.G. Han, Z. Wang, S.Z. Zeng, D.C. Zhou, X. Yu, X. Cui, J.P. Ou, Properties and modification mechanisms of nano-zirconia filled reactive powder concrete. Constr. Build. Mater. 141, 426–434 (2017)CrossRefGoogle Scholar
  15. 15.
    B.G. Han, Z. Li, L.Q. Zhang, S.Z. Zeng, X. Yu, B. Han, J.P. Ou, Reactive powder concrete reinforced with nano SiO2-coated TiO2. Constr. Build. Mater. 148, 104–112 (2017)CrossRefGoogle Scholar
  16. 16.
    Z. Li, S.Q. Ding, X. Yu, B.G. Han, J.P. Ou, Multifunctional cementitious composites modified with nano titanium dioxide: a review. Compos. A Appl. Sci. Manuf. 111, 115–137 (2018)CrossRefGoogle Scholar
  17. 17.
    B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, X. Yu, J.P. Ou, Review of nanocarbon-engineered multifunctional cementitious composites. Compos. A Appl. Sci. Manuf. 70, 69–81 (2015)CrossRefGoogle Scholar
  18. 18.
    S.W. Sun, S.Q. Ding, B.G. Han, S.F. Dong, X. Yu, D.B. Zhou, J.P. Ou, Multi-layer graphene-engineered cementitious composites with multifunctionality/intelligence. Compos. B Eng. 129, 221–232 (2017)CrossRefGoogle Scholar
  19. 19.
    Y.F. Ruan, D.C. Zhou, S.W. Sun, X.Y. Wu, X. Yu, J.L. Hou, X.F. Dong, B.G. Han, Self-damping cementitious composites with multi-layer graphene. Mater. Res. Express 4(7), 075605 (2017)CrossRefGoogle Scholar
  20. 20.
    B.G. Han, Q.F. Zheng, S.W. Sun, S.F. Dong, L.Q. Zhang, X. Yu, J.P. Ou, Enhancing mechanisms of multi-layer graphenes to cementitious composites. Compos. A Appl. Sci. Manuf. 101, 143–150 (2017)CrossRefGoogle Scholar
  21. 21.
    S.W. Sun, B.G. Han, S. Jiang, X. Yu, Y.L. Wang, H.Y. Li, J.P. Ou, Nano graphite platelets-enabled piezoresistive cementitious composites for structural health monitoring. Constr. Build. Mater. 136, 314–328 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Cui, S.W. Sun, B.G. Han, X. Yu, J. Ouyang, S.Z. Zeng, J.P. Ou, Mechanical, thermal and electromagenetic properties of nano graphite platelets modified cementitious composites. Compos. A Appl. Sci. Manuf. 93, 49–58 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Cui, B.G. Han, Q.F. Zheng, X. Yu, S.F. Dong, L.Q. Zhang, J.P. Ou, Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes. Compos. A Appl. Sci. Manuf. 103, 131–147 (2017)CrossRefGoogle Scholar
  24. 24.
    B.G. Han, Z.X. Yang, X.M. Shi, X. Yu, Transport properties of carbon-nanotube/cement composites. J. Mater. Eng. Perform. 22(1), 184–189 (2013)CrossRefGoogle Scholar
  25. 25.
    Q.F. Zheng, B.G. Han, X. Cui, X. Yu, J.P. Ou, Graphene-engineered cementitious composites: small makes a big impact. Nanomater. Nanotechnol. 7, 1–18 (2017)Google Scholar
  26. 26.
    B.G. Han, X. Yu, E. Kwon, A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology 20, 445501 (2009)CrossRefGoogle Scholar
  27. 27.
    B.G. Han, L.Q. Zhang, S.Z. Zeng, S.F. Dong, X. Yu, R.W. Yang, J.P. Ou, Nano-core effect in nano-engineered cementitous composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRefGoogle Scholar
  28. 28.
    X. Wang, Z. Li, B. Han, B.G. Han, X. Yu, S.Z. Zeng, J.P. Ou, Intelligent concrete with self-x capabilities for smart cities. J. Smart Cities 2(2), 1–39 (2016)Google Scholar
  29. 29.
    B.G. Han, Y.Y. Wang, S.F. Dong, L.Q. Zhang, S.Q. Ding, X. Yu, J.P. Ou, Smart concrete and structures: a review. J. Intell. Mater. Syst. Struct. 26(1), 1303–1345 (2015)CrossRefGoogle Scholar
  30. 30.
    B.G. Han, S.Q. Ding, X. Yu, Intrinsic self-sensing concrete and structures: a review. Measurement 59, 110–128 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Jiang, B.H. Shan, J. Ouyang, W. Zhang, X. Yu, P.G. Li, B.G. Han, Rheological properties of cementitious composites with nano/fiber fillers. Constr. Build. Mater. 158, 786–800 (2018)CrossRefGoogle Scholar
  32. 32.
    S.W. Sun, X. Yu, B.G. Han, J.P. Ou, In situ growth of carbon nanotubes/carbon naonfiber on cement/mineral admixture particles: a review. Constr. Build. Mater. 49, 835–840 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Gupta, J.G. Gonzalez, K.J. Loh, Self-sensing concrete enabled by nano-engineered cement-aggregate interfaces. Struct. Health Monit. 16(3), 309–323 (2017)CrossRefGoogle Scholar
  34. 34.
    B.G. Han, L.Q. Zhang, S.W. Sun, X. Yu, X.F. Dong, T.J. Wu, J.P. Ou, Electrostatic self-assembly carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Compos. A Appl. Sci. Manuf. 79, 103–115 (2015)CrossRefGoogle Scholar
  35. 35.
    L.Q. Zhang, S.Q. Ding, L.W. Li, S.F. Dong, D.N. Wang, X. Yu, B.G. Han, Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials. Compos. A Appl. Sci. Manuf. 109, 303–320 (2018)CrossRefGoogle Scholar
  36. 36.
    W. Meng, K.H. Khayat, Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers. Compos. B Eng. 107, 113–122 (2016)CrossRefGoogle Scholar
  37. 37.
    B.G. Han, X. Yu, J.P. Ou, Chapter 1: Multifunctional and smart carbon nanotube reinforced cement-based materials, in Book: Nanotechnology in Civil Infrastructure: A Paradigm Shift, ed. by K. Gopalakrishnan, B. Birgisson, P. Taylor, N.O. Attoh-Okine (Springer, 2011), pp. 1–47Google Scholar
  38. 38.
    C.M. Jemimah, P.G. Arulraj, Influence of nano materials on consistency, setting time and compressive strength of cement mortar. Eng. Sci. Technol. 2(1), 158–162 (2012)Google Scholar
  39. 39.
    P. Sabdono, F. Sustiawan, D.A. Fadlillah, The effect of nano-cement content to the compressive strength of mortar. Procedia Eng. 95, 386–395 (2014)CrossRefGoogle Scholar
  40. 40.
    P.G. Arulraj, J.M. Carmichael, Effect of nano fly ash on strength of concrete. Int. J. Civil Struct. Eng. 2(2), 475–482 (2011)Google Scholar
  41. 41.
    S. Tudjono, X.X.X. Purwanto, K.T. Apsari, Study the effect of adding nano fly ash and nano lime to compressive strength of mortar. Procedia Eng. 95, 426–432 (2014)CrossRefGoogle Scholar
  42. 42.
    S. Praveen, S.S. Janagan, Partial replacement of cement with nano fly ash (class c) and nano GGBS. Int. Res. J. Eng. Technol. 8(2), 979–983 (2015)Google Scholar
  43. 43.
    A. Sithara, A.D. Sunitha, Comparative study of nano fly ash concrete and nano metakaolin concrete with normal cement concrete. Int. J. Eng. Sci. Invent. Res. Dev. 3(3), 156–163 (2016)Google Scholar
  44. 44.
    A.P. Parida, Study of compressive strength of blended nano flyash PPC cement mortar. Indian J. Med. Res. 14(2), 46–51 (2017)MathSciNetGoogle Scholar
  45. 45.
    C. Mohanaselvan, P. Ravichandran, An experimental study on strength and durability characteristics of nano engineered concrete. Int. J. Sci. Eng. Res. 3(4), 3221–3226 (2015)Google Scholar
  46. 46.
    J. Carmichael, P. Arulraj, S. Shajan, R. Nivash, Influence of nano fly ash on flexural strength of concrete. Intern. J. Innov. Res. Sci. Eng. 1(2), 77–82 (2016)Google Scholar
  47. 47.
    M. Harihanandh, M. Sivaraja, Strength and mechanical properties of nano fly ash concrete. Int. J. Adv. Eng. Technol. 2(7), 596–598 (2016)Google Scholar
  48. 48.
    I.N. Murthy, D.V. Rao, J.B. Rao, Microstructure and mechanical properties of aluminum-fly ash nano composites made by ultrasonic method. Mater. Des. 35, 55–65 (2012)CrossRefGoogle Scholar
  49. 49.
    X. Long, Research on pressure-sensitivity of compound material of carbon black filled cement. Dissertation for the Master Degree in Engineering, Wuhan University of Technology, 2007Google Scholar
  50. 50.
    Y. Dai, M. Sun, C. Liu, Z. Li, Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cem. Concr. Compos. 32(7), 508–513 (2010)CrossRefGoogle Scholar
  51. 51.
    Y. Wang, X. Zhao, J. Du, S. Lan, Study on improving mechanical property and pressure sensibility of cement-based composites with nano-sized carbon black. New Build. Mater. 12, 6–9 (2008)Google Scholar
  52. 52.
    Z. Li, Study on long-term mechanical properties and pressure-sensitivity of concrete containing nano-sized carbon black or carbon fibers. Dissertation for the Master Degree in Engineering, Shantou University, 2009Google Scholar
  53. 53.
    V.W.J. Lin, L. Mo, J.P. Lynch, V.C. Li, Mechanical and electrical characterization of self-sensing carbon black ECC. Int. Soc. Opt. Eng. 7983(16), 1–12 (2011)Google Scholar
  54. 54.
    Y.S.D. Ibarra, J.J. Gaitero, E. Erkizia, I. Campillo, Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Phys. Stat. Solidi 203(6), 1076–1081 (2006)CrossRefGoogle Scholar
  55. 55.
    J.M. Makar, J.C. Margeson, J. Luh, Carbon nanotube/cement composites-early results and potential applications, in 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications (Vancouver, B.C., Canada, 2005), pp. 1–10Google Scholar
  56. 56.
    R.K. Abu Al-Rub, A.I. Ashour, B.M. Tyson, On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Constr. Build. Mater. 35, 647–655 (2012)CrossRefGoogle Scholar
  57. 57.
    A. Cwirzen, K. Habermehl-Cwirzen, V. Penttala, Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 20(2), 65–73 (2008)CrossRefGoogle Scholar
  58. 58.
    M.O. Mohsen, R. Taha, A.A. Taqa, N. Al-Nuaimi, R.A. Al-Rub, K.A. Bani-Hani, Effect of nanotube geometry on the strength and dispersion of CNT-cement composites. J. Nanomater. (2017)Google Scholar
  59. 59.
    W. Li, W. Ji, Y. Liu, F. Xing, Y. Liu, Damping property of a cement-based material containing carbon nanotube. J. Nanomater. 2015, 1–7 (2015)Google Scholar
  60. 60.
    F. Collins, J. Lambert, W.H. Duan, The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cem. Concr. Compos. 34(2), 201–207 (2012)CrossRefGoogle Scholar
  61. 61.
    F. Azhari, N. Banthia, Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem. Concr. Compos. 34(7), 866–873 (2012)CrossRefGoogle Scholar
  62. 62.
    S.H. Lee, B. Balasubramanian, G.V.T. Gopalakrishna, S.J. Kwon, S.P. Karthick, V. Saraswathy, Durability performance of CNT and nanosilica admixed cement mortar. Constr. Build. Mater. 159, 463–472 (2018)CrossRefGoogle Scholar
  63. 63.
    A.M. Hunashyal, S.V. Tippa, S.S. Quadri, N.R. Banapurmath, Experimental investigation on effect of carbon nanotubes and carbon fibers on the behavior of plain cement mortar composite round bars under direct tension. ISRN Nanotechnol. 2011, 1–6 (2011)CrossRefGoogle Scholar
  64. 64.
    G.Y. Li, P.M. Wang, X. Zhao, Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43(6), 1239–1245 (2005)CrossRefGoogle Scholar
  65. 65.
    J. Kerienė, M. Kligys, A. Laukaitis, G. Yakovlev, A. Špokauskas, M. Aleknevičius, The influence of multi-walled carbon nanotubes additive on properties of non-autoclaved and autoclaved aerated concretes. Constr. Build. Mater. 49, 527–535 (2013)CrossRefGoogle Scholar
  66. 66.
    Y.F. Ruan, B.G. Han, X. Yu, W. Zhang, D.N. Wang, Carbon nanotubes reinforced reactive powder concrete. Compos. A Appl. Sci. Manuf. 112, 371–382 (2018)CrossRefGoogle Scholar
  67. 67.
    S. Musso, J.M. Tulliani, G. Ferro, A. Tagliaferro, Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos Sci Technol 69(11–12), 1985–1990 (2009)CrossRefGoogle Scholar
  68. 68.
    J. Luo, Z. Duan, G. Xian, Q. Li, T. Zhao, Damping performances of carbon nanotube reinforced cement composite. Mech. Compos. Mater. Struct. 22(3), 224–232 (2015)CrossRefGoogle Scholar
  69. 69.
    S.T. Kang, J.Y. Seo, S.H. Park, The characteristics of CNT/cement composites with acid-treated MWCNTs. Adv. Mater. Sci. Eng. 2015(6), 1–9 (2015)CrossRefGoogle Scholar
  70. 70.
    Duan LZ, Li H (2010) The influence of surfactants on the processing of multi‐walled carbon nanotubes in reinforced cement matrix composites. Phys. Stat. Solidi 206(12), 2783–2790Google Scholar
  71. 71.
    H.K. Kim, I.W. Nam, H.K. Lee, Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Compos. Struct. 107, 60–69 (2014)CrossRefGoogle Scholar
  72. 72.
    T. Kowald, R. Trettin, Chapter 3: Improvement of cementitious binders by multi-walled carbon nanotubes, in Book: Nanotechnology in Construction, ed. by Z. Bittnar, P.J.M. Bartos, J. Nemecek, V. Smilauer, J. Zeman (Springer, Berlin, Heidelberg, 2009), pp. 261–266CrossRefGoogle Scholar
  73. 73.
    A.P. Singh, B.K. Gupta, M. Mishra, Govind, A. Chandra, R.B. Mathur, S.K. Dhawan, Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties. Carbon 56(5), 86–96 (2013)CrossRefGoogle Scholar
  74. 74.
    M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 32(2), 110–115 (2010)CrossRefGoogle Scholar
  75. 75.
    M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 40(7), 1052–1059 (2010)CrossRefGoogle Scholar
  76. 76.
    T. Manzur, N. Yazdani, M.A.B. Emon, Effect of carbon nanotube size on compressive strengths of nanotube reinforced cementitious composites. J. Mater. 2014, 1–8 (2014)CrossRefGoogle Scholar
  77. 77.
    T. Nochaiya, A. Chaipanich, Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl. Surf. Sci. 257(6), 1941–1945 (2011)CrossRefGoogle Scholar
  78. 78.
    B. Wang, Y. Han, B. Pan, T. Zhang, Mechanical and morphological properties of highly dispersed carbon nanotubes reinforced cement based materials. J. Wuhan Univ. Technol. Mater. Sci. Ed. 28(1), 82–87 (2013)CrossRefGoogle Scholar
  79. 79.
    Y.F. Zhu, C. Zhang, L. Shi, J. Liang, Influence of AC electric field on dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 27(7), 935–940 (2006)CrossRefGoogle Scholar
  80. 80.
    W. Li, Y. Jia, R. Shen, F. Xing, J. Zheng, Compressive strength of cement mortar containing carbon nanotubes (CNTs) under sulfate attack and dry-wet cycling environment. Adv. Eng. Res. 146, 219–223 (2018)Google Scholar
  81. 81.
    A. Chaipanich, T. Nochaiya, W. Wongkeo, P. Torkittikul, Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Mater. Sci. Eng. A 527(4–5), 1063–1067 (2010)CrossRefGoogle Scholar
  82. 82.
    R.K.A. Al-Rub, A.I. Ashour, B.M. Tyson, On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Constr. Build. Mater. 35(10), 647–655 (2012)CrossRefGoogle Scholar
  83. 83.
    B. Balasubramaniam, K. Mondal, K. Ramasamy, G.S. Palani, N.R. Iyer, Hydration phenomena of functionalized carbon nanotubes (CNT)/cement composites. Fibers 5(4), 39 (2017)CrossRefGoogle Scholar
  84. 84.
    J. Luo, Fabrication and functional properties of multi-walled carbon nanotube/cement composites. Dissertation for the Doctor Degree, Harbin Institute of Technology, 2009Google Scholar
  85. 85.
    G. Yakovlev, J. Keriene, A. Gailius, I. Girniene, Cement based foam concrete reinforced by carbon nanotubes. Mater. Sci. 12(2), 147–151 (2006)Google Scholar
  86. 86.
    J.M. Makar, G.W. Chan, Growth of cement hydration products on single walled carbon nanotubes. J. Am. Ceram. Soc. 92(6), 1303–1310 (2010)CrossRefGoogle Scholar
  87. 87.
    J.L. Luo, Z. Duan, G. Xian, Q. Li, T. Zhao, Fabrication and fracture toughness properties of carbon nanotube-reinforced cement composite. Eur. Phys. J. Appl. Phys. 53(3), 30402 (2011)CrossRefGoogle Scholar
  88. 88.
    A. Cwirzen, Controlling physical properties of cementitious matrixes by nanomaterials. Adv. Mater. Res. 123–125, 639–642 (2010)CrossRefGoogle Scholar
  89. 89.
    H. Gong, Y. Zhang, Q. Jing, S. Che, Preparation and properties of cement based piezoelectric composites modified by CNTs. Curr. Appl. Phys. 11(3), 653–656 (2011)CrossRefGoogle Scholar
  90. 90.
    M. Saafi, Wireless and embedded carbon nanotube networks for damage detection in concrete structures. Nanotechnology 20(39), 395502 (2009)CrossRefGoogle Scholar
  91. 91.
    P.T. Dalla, P. Alafogianni, I.K. Tragazikis, D.A. Exarchos, K. Dassios, N.M. Barkoula, T.E. Matikas, The effect of different surfactants/plasticizers on the electrical behavior of CNT nano-modified cement mortars, in Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2015. International Society for Optics and Photonics, vol. 9436, pp. 94360W (2015)Google Scholar
  92. 92.
    G.Y. Li, P.M. Wang, X. Zhao, Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 29(5), 377–382 (2007)CrossRefGoogle Scholar
  93. 93.
    X. Yu, E. Kwon, A carbon nanotube/cement composite with piezoresistive properties. Smart Mater. Struct. 18(5), 55010 (2009)CrossRefGoogle Scholar
  94. 94.
    B.G. Han, K. Zhang, T. Burnham, E. Kwon, X. Yu, Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection. Smart Mater. Struct. 22, 015020 (2013)CrossRefGoogle Scholar
  95. 95.
    I.W. Nam, H.K. Lee, J.B. Sim, S.M. Choi, Electromagnetic characteristics of cement matrix materials with carbon nanotubes. ACI Mater. J. 109(3), 363–370 (2012)Google Scholar
  96. 96.
    I.W. Nam, H.K. Kim, H.K. Lee, Influence of silica fume additions on electromagnetic interference shielding effectiveness of multi-walled carbon nanotube/cement composites. Constr. Build. Mater. 30(5), 480–487 (2012)CrossRefGoogle Scholar
  97. 97.
    D. Micheli, R. Pastore, A. Vricella, R.B. Morles, M. Marchetti, A. Delfini, F. Moglie, V.M. Primiani, Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band. Mater. Sci. Eng. B 188(10), 119–129 (2014)CrossRefGoogle Scholar
  98. 98.
    Z.Q. Guo, Study on the electromagnetic wave absorbing properties of multi-walled carbon nanotube/cement composites. Dissertation for the Master Degree, Dalian University of Technology, 2013)Google Scholar
  99. 99.
    K.M. Liew, M.F. Kai, L.W. Zhang, Mechanical and damping properties of CNT-reinforced cementitious composites. Compos. Struct. 160, 81–88 (2017)CrossRefGoogle Scholar
  100. 100.
    M.K. Hassanzadeh-Aghdam, R. Ansari, M.J. Mahmoodi, A. Darvizeh, A. Hajati-Modaraei, A comprehensive study on thermal conductivities of wavy carbon nanotube-reinforced cementitious nanocomposites. Cem. Concr. Compos. 90, 108–118 (2018)CrossRefGoogle Scholar
  101. 101.
    V.P. Veedu, Multifunctional cementitious nanocomposite materials and methods of making the same: U.S. Patent 7,875,211 (2011)Google Scholar
  102. 102.
    P. Shukla, V. Bhatia, V. Gaur, R.K. Basniwal, B.K. Singh, V.K. Jain, Multiwalled carbon nanotubes reinforced portland cement composites for smoke detection. Solid State Phenom. 185, 21–24 (2012)CrossRefGoogle Scholar
  103. 103.
    F. Baeza, O. Galao, E. Zornoza, P. Garcés, Multifunctional cement composites strain and damage sensors applied on reinforced concrete (RC) structural elements. Materials 6(3), 841–855 (2013)CrossRefGoogle Scholar
  104. 104.
    O. Galao, F.J. Baeza, E. Zornoza, P. Garcés, Self-heating function of carbon nanofiber cement pastes. Mater. Constr. 64(314), 1–11 (2014)Google Scholar
  105. 105.
    N. Yazdani, V. Mohanam, Strength, bleeding and setting time of cement mortar with carbon nanotubes and nanofibers. Adv. Sci. Eng. Med. 8(6), 490–495 (2016)CrossRefGoogle Scholar
  106. 106.
    W. Meng, K.H. Khayat, Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC. Cem. Concr. Res. 105, 64–71 (2018)CrossRefGoogle Scholar
  107. 107.
    S. Jiang, D.C. Zhou, L.Q. Zhang, J. Ouyang, X. Yu, X. Cui, B.G. Han, Comparison of compressive strength and electrical resistivity of cementitious composites with different nano- and micro-fillers. Arch. Civil Mech. Eng. 18, 60–68 (2018)CrossRefGoogle Scholar
  108. 108.
    C. Gay, F. Sanchez, Performance of carbon nanofiber-cement composites with a high-range water reducer. Transp. Res. Rec. J. Transp. Res. Board 2142(1), 109–113 (2010)CrossRefGoogle Scholar
  109. 109.
    M.S. Konsta-Gdoutos, C.A. Aza, Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Compos. 53, 162–169 (2014)CrossRefGoogle Scholar
  110. 110.
    D. Gao, Y.L. Mo, L.M. Peng, Mechanical and electrical properties of carbon-nanofiber self-consolidating concrete, in The Workshop on Biennial International Conference on Engineering, pp. 2577–2585 (2010)Google Scholar
  111. 111.
    O. Galao, F.J. Baeza, E. Zornoza, P. Garcés, Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cem. Concr. Compos. 46, 90–98 (2014)CrossRefGoogle Scholar
  112. 112.
    Z.S. Metaxa, M.S. Konsta-Gdoutos, S.P. Shah, Carbon nanofiber-reinforced cement-based materials. Transp. Res. Rec. J. Transp. Res. Board 2142(1), 114–118 (2018)CrossRefGoogle Scholar
  113. 113.
    L.I. Nasibulina, I.V. Anoshkin, A.V. Semencha, O.V. Tolochko, J.E.M. Malm, M.J. Karppinen, A.G. Nasibulin, E.I. Kauppinen, Carbon nanofiber/clinker hybrid material as a highly efficient modificator of mortar mechanical properties. Mater. Phys. Mech. 13, 77–84 (2012)Google Scholar
  114. 114.
    E.E. Gdoutos, M.S. Konsta-Gdoutos, P.A. Danoglidis, Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: a fracture mechanics experimental study. Cem. Concr. Compos. 70, 110–118 (2016)CrossRefGoogle Scholar
  115. 115.
    L. Brown, F. Sanchez, Influence of carbon nanofiber clustering in cement pastes exposed to sulfate attack. Constr. Build. Mater. 166, 181–187 (2018)CrossRefGoogle Scholar
  116. 116.
    O. Galao, E. Zornoza, F.J. Baeza, A. Bernabeu, P. Garcés, Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials. Mater. Constr. 62(307), 343–357 (2012)CrossRefGoogle Scholar
  117. 117.
    A. Ślosarczyk, W. Pichór, M. Frąc, Thermal and electrical characterization of the carbon nanofibers based cement composites. Mater. Sci. 23(2), 156–160 (2017)Google Scholar
  118. 118.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRefGoogle Scholar
  119. 119.
    C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene. Carbon 48(8), 2127–2150 (2010)CrossRefGoogle Scholar
  120. 120.
    S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)CrossRefGoogle Scholar
  121. 121.
    T. Tong, Z. Fan, Q. Liu, S. Wang, S. Tan, Q. Yu, Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro- and macro-properties of cementitious materials. Constr. Build. Mater. 106, 102–114 (2016)CrossRefGoogle Scholar
  122. 122.
    J. Le, H. Du, S.D. Pang, Use of 2D graphene nanoplatelets (GNP) in cement composites for structural health evaluation. Compos. B Eng. 67, 555–563 (2014)CrossRefGoogle Scholar
  123. 123.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G. Dommett, Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)CrossRefGoogle Scholar
  124. 124.
    M.E. Abrishami, V. Zahabi, Reinforcing graphene oxide/cement composite with NH2 functionalizing group. Bull. Mater. Sci. 39(4), 1073–1078 (2016)CrossRefGoogle Scholar
  125. 125.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)CrossRefGoogle Scholar
  126. 126.
    M. Jin, L. Jiang, M. Lu, S. Bai, Monitoring chloride ion penetration in concrete structure based on the conductivity of graphene/cement composite. Constr. Build. Mater. 136, 394–404 (2017)CrossRefGoogle Scholar
  127. 127.
    L. Zhao, S.S. Chen, Preparation of graphene-cement paste anode for chloride extraction from marine reinforced concrete structures. Int. J. Electrochem. Sci. 11, 9245–9253 (2016)CrossRefGoogle Scholar
  128. 128.
    A. D’Alessandro, A.L. Pisello, S. Sambuco, F. Ubertini, F. Asdrubali, A.L. Materazzi, F. Cotanaet, Self-sensing and thermal energy experimental characterization of multifunctional cement-matrix composites with carbon nano-inclusions. Proc. SPIE 9800, 98000Z-1 (2016)Google Scholar
  129. 129.
    X. Li, A.H. Korayem, C. Li, Y. Liu, H. He, J.G. Sanjayan, W.H. Duan, Incorporation of graphene oxide and silica fume into cement paste: a study of dispersion and compressive strength. Constr. Build. Mater. 123, 327–335 (2016)CrossRefGoogle Scholar
  130. 130.
    C. Lin, W. Wei, Y.H. Hu, Catalytic behavior of graphene oxide for cement hydration process. J. Phys. Chem. Solids 89, 128–133 (2016)CrossRefGoogle Scholar
  131. 131.
    S. Sharma, N.C. Kothiyal, Influence of graphene oxide as dispersed phase in cement mortar matrix in defining the crystal patterns of cement hydrates and its effect on mechanical, microstructural and crystallization properties. RSC Adv. 5(65), 52642–52657 (2015)CrossRefGoogle Scholar
  132. 132.
    A. Mohammed, J.G. Sanjayan, W.H. Duan, A. Nazari, Incorporating graphene oxide in cement composites: a study of transport properties. Constr. Build. Mater. 84, 341–347 (2015)CrossRefGoogle Scholar
  133. 133.
    C. Zhou, F. Li, J. Hu, M. Ren, J. Wei, Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Constr. Build. Mater. 134, 336–345 (2017)CrossRefGoogle Scholar
  134. 134.
    Y. Shang, D. Zhang, C. Yang, Y. Liu, Effect of graphene oxide on the rheological properties of cement pastes. Constr. Build. Mater. 96, 20–28 (2015)CrossRefGoogle Scholar
  135. 135.
    Z. Pan, L. He, L. Qiu, A.H. Korayem, G. Li, Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Compos. 58, 140–147 (2015)CrossRefGoogle Scholar
  136. 136.
    Z. Pan, W.H. Duan, D. Li, F. Collins, Graphene oxide reinforced cement and concrete. Patent PCT/AU2012/001, 582, Australia (2012)Google Scholar
  137. 137.
    R. Swamy, The technology of steel fibre reinforced concrete for practical applications, in ICE Proceedings of ICE Virtual Library (1994)Google Scholar
  138. 138.
    S. Chuah, Z. Pan, J.G. Sanjayan, C.M. Wang, W.H. Duan, Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater. 73, 113–124 (2014)CrossRefGoogle Scholar
  139. 139.
    M.X. Wang, Z.H. Huang, M. Lv, Q.H. Yang, F. Kang, Water vapor adsorption on low-temperature exfoliated graphene nanosheets. J. Phys. Chem. Solids 73, 1440–1443 (2012)CrossRefGoogle Scholar
  140. 140.
    D. Fiat, M. Lazar, V. Baciu, G. Hubca, Superplasticizer polymeric additives used in concrete. Mater. Plast. 49, 62–67 (2012)Google Scholar
  141. 141.
    F. Babak, H. Abolfazl, R. Alimorad, G. Parviz, Preparation and mechanical properties of graphene oxide: cement nanocomposites. Sci. World J. 2014, 1–10 (2014)CrossRefGoogle Scholar
  142. 142.
    W. Li, X. Li, S.J. Chen, Y.M. Liu, W.H. Duan, Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste. Constr. Build. Mater. 136, 506–514 (2017)CrossRefGoogle Scholar
  143. 143.
    A. Sedaghat, M.K. Ram, A. Zayed, R. Kamal, N. Shanahan, Investigation of physical properties of graphene-cement composite for structural applications. Open J. Compos. Mater. 4(1), 12–21 (2014)CrossRefGoogle Scholar
  144. 144.
    I. Rhee, J.S. Lee, Y.A. Kim, J.H. Kim, Electrically conductive cement mortar: incorporating rice husk-derived high-surface-area graphene. Constr. Build. Mater. 125, 632–642 (2016)CrossRefGoogle Scholar
  145. 145.
    N. Zohhadi, N. Aich, F. Matta, N.B. Saleh, P. Ziehl, Graphene nanoreinforcement for cement composites. Nanotechnol. Constr. 265–270 (2015)Google Scholar
  146. 146.
    S. Lv, Y. Ma, C. Qiu, T. Sun, J. Liu, Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 49, 121–127 (2013)CrossRefGoogle Scholar
  147. 147.
    N.C. Kothiyal, S. Sharma, S. Mahajan, S. Sethi, Characterization of reactive graphene oxide synthesized from ball–milled graphite: its enhanced reinforcing effects on cement nanocomposites. J. Adhes. Sci. Technol. 30(9), 915–933 (2016)CrossRefGoogle Scholar
  148. 148.
    Z. Fan, Investigation on properties of cementitious materials reinforced by graphene. Dissertation for the Master Degree in Engineering. University of Pittsburgh, 2014Google Scholar
  149. 149.
    S. Huang, Multifunctional graphite nanoplatelets (MLG) reinforced cementitious composites. Dissertation for the Master Degree in Engineering National University of Singapore, 2012Google Scholar
  150. 150.
    H. Alkhateb, A. Al-Ostaz, H.D. Cheng, X. Li, Materials genome for graphene-cement nanocomposites. J. Nanomech. Micromech. 3, 67–77 (2013)CrossRefGoogle Scholar
  151. 151.
    E. Horszczaruk, E. Mijowska, R.J. Kalenczuk, M. Aleksandrzak, S. Mijowska, Nanocomposite of cement/graphene oxide—impact on hydration kinetics and Young’s modulus. Constr. Build. Mater. 78, 234–242 (2015)CrossRefGoogle Scholar
  152. 152.
    D. Hou, Z. Lu, X. Li, H. Ma, Z. Li, Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms. Carbon 115, 188–208 (2017)CrossRefGoogle Scholar
  153. 153.
    C. Lu, Z. Lu, Z. Li, C.K.Y. Leung, Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites. Constr. Build. Mater. 120, 457–464 (2016)CrossRefGoogle Scholar
  154. 154.
    V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Prog. Mater. Sci. 56(8), 1178–1271 (2011)CrossRefGoogle Scholar
  155. 155.
    D. Kang, S.S. Kang, H.Y. Lee, W. Chung, Experimental study on mechanical strength of GO-cement composites. Constr. Build. Mater. 131, 303–308 (2017)CrossRefGoogle Scholar
  156. 156.
    Callister WD, Rethwisch DG (2011) Fundamentals of materials science and engineering. WileyGoogle Scholar
  157. 157.
    B.A.A. Muhit, Investigation on the mechanical, microstructural, and electrical properties of graphene oxide-cement composite. Dissertation for the Master Degree in Engineering. University of Central Florida, 2015Google Scholar
  158. 158.
    S. Mindess, J.F. Young, D. Darwin, Concrete, 2nd edn. (Prentice Hall, 2002)Google Scholar
  159. 159.
    A.P. Singh, M. Mishra, A. Chandra, S.K. Dhawan, Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application. Nanotechnology 22, 465701 (2011)CrossRefGoogle Scholar
  160. 160.
    J. Chen, D. Zhao, H. Ge, J. Wang, Graphene oxide-deposited carbon fiber/cement composites for electromagnetic interference shielding application. Constr. Build. Mater. 84, 66–72 (2015)CrossRefGoogle Scholar
  161. 161.
    H. Du, S.T. Quek, S.D. Pang, Smart multifunctional cement mortar containing graphite nanoplatelet. Proc. SPIE 8692, 869238 (2013)CrossRefGoogle Scholar
  162. 162.
    S.D. Pang, H.J. Gao, C. Xu, S.T. Quek, H. Du, Strain and damage self-sensing cement composites with conductive graphene nanoplatelet. Proc. SPIE 9061, 906126 (2014)CrossRefGoogle Scholar
  163. 163.
    A. Peyvandi, P. Soroushian, A.M. Balachandra, K. Sobolev, Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets. Constr. Build. Mater. 47, 111–117 (2013)CrossRefGoogle Scholar
  164. 164.
    M. Saafi, G. Piukovics, J. Ye, Hybrid graphene/geopolymeric cement as a superionic conductor for structural health monitoring applications. Smart Mater. Struct. 25(10), 105018 (2016)CrossRefGoogle Scholar
  165. 165.
    H. Zhang, Research on the adsorption performance of graphene reinforced cement-based composites. Dissertation for the Master Degree in Engineering, Dalian University of Technology, China, 2015Google Scholar
  166. 166.
    A.R. Khaloo, A.G. Vayghan, M. Bolhassani, Mechanical and microstructural properties of cement paste incorporating nano silica particles with various specific surface areas. Key Eng. Mater. 478, 19–24 (2011)CrossRefGoogle Scholar
  167. 167.
    J.J. Kim, M.K. Rahman, A.A. Al-Majed, M.M. Al-Zahrani, M.M. Reda Taha, Nanosilica effects on composition and silicate polymerization in hardened cement paste cured under high temperature and pressure. Cem. Concr. Compos. 43, 78–85 (2013)CrossRefGoogle Scholar
  168. 168.
    M. Zhang, J. Islam, S. Peethamparan, Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cem. Concr. Compos. 34(5), 650–662 (2012)CrossRefGoogle Scholar
  169. 169.
    M. Liu, Z. Zhou, X. Zhang, X. Yang, X. Cheng, The synergistic effect of nano-silica with blast furnace slag in cement based materials. Constr. Build. Mater. 126, 624–631 (2016)CrossRefGoogle Scholar
  170. 170.
    Y. Cai, P. Hou, X. Cheng, P. Du, Z. Ye, The effects of nano SiO2 on the properties of fresh and hardened cement-based materials through its dispersion with silica fume. Constr. Build. Mater. 148, 770–780 (2017)CrossRefGoogle Scholar
  171. 171.
    D.F. Lin, M.C. Tsai, The effects of nanomaterials on microstructures of sludge ash cement paste. J. Air Waste Manag. Assoc. 56(8), 1146–1154 (2006)CrossRefGoogle Scholar
  172. 172.
    K.L. Lin, W.C. Chang, D.F. Lin, H.L. Luo, M.C. Tsai, Effects of nano-SiO2 and different ash particle sizes on sludge ash-cement mortar. J. Environ. Manag. 88(4), 708–714 (2008)CrossRefGoogle Scholar
  173. 173.
    G.Y. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem. Concr. Res. 34(6), 1043–1049 (2004)CrossRefGoogle Scholar
  174. 174.
    M. Zhang, Life-cycle performance of nano-pavement concrete. Dissertation for the Doctoral Degree in Engineering. Harbin Institute of Technology, 2007Google Scholar
  175. 175.
    S. Haruehansapong, T. Pulngern, S. Chucheepsakul, Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2. Constr. Build. Mater. 50, 471–477 (2014)CrossRefGoogle Scholar
  176. 176.
    M. Zhang, J. Islam, Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Constr. Build. Mater. 29, 573–580 (2012)CrossRefGoogle Scholar
  177. 177.
    M. Oltulu, R. Şahin, Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: a comparative study. Energy Build. 58, 292–301 (2013)CrossRefGoogle Scholar
  178. 178.
    M. Oltulu, R. Şahin, Pore structure analysis of hardened cement mortars containing silica fume and different nano-powders. Constr. Build. Mater. 53, 658–664 (2014)CrossRefGoogle Scholar
  179. 179.
    J. Ouyang, B.G. Han, G.Z. Chen, L.Z. Zhao, J.P. Ou, A viscosity prediction model for cement paste with nano-SiO2 particles. Constr. Build. Mater. 185, 293–301 (2018)CrossRefGoogle Scholar
  180. 180.
    H. Du, S. Du, X. Liu, Durability performances of concrete with nano-silica. Constr. Build. Mater. 73, 705–712 (2014)CrossRefGoogle Scholar
  181. 181.
    J.J. Gaitero, I. Campillo, A. Guerrero, Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cem. Concr. Res. 38(8–9), 1112–1118 (2008)CrossRefGoogle Scholar
  182. 182.
    L. Senff, D. Hotza, S. Lucas, V.M. Ferreira, J.A. Labrincha, Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Mater. Sci. Eng. A 532, 354–361 (2012)CrossRefGoogle Scholar
  183. 183.
    G.R. Babu, Effect of nano-silica on properties of blended cement. Int. J. Comput. Eng. Res. 3(5), 50–55 (2013)Google Scholar
  184. 184.
    G. Collodetti, P.J.P. Gleize, P.J.M. Monteiro, Exploring the potential of siloxane surface modified nano-SiO2 to improve the Portland cement pastes hydration properties. Constr. Build. Mater. 54, 99–105 (2014)CrossRefGoogle Scholar
  185. 185.
    N. Farzadnia, H. Noorvand, A.M. Yasin, F.N.A. Aziz, The effect of nano silica on short term drying shrinkage of POFA cement mortars. Constr. Build. Mater. 95, 636–646 (2015)CrossRefGoogle Scholar
  186. 186.
    J. Mei, B. Ma, H. Tan, H. Li, X. Liu, W. Jiang, T. Zhang, Y. Guo, Influence of steam curing and nano silica on hydration and microstructure characteristics of high volume fly ash cement system. Constr. Build. Mater. 171, 83–95 (2018)CrossRefGoogle Scholar
  187. 187.
    A.N. Givi, S.A. Rashid, F.N.A. Aziz, M.A.M. Salleh, Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Compos. B Eng. 41(8), 673–677 (2010)CrossRefGoogle Scholar
  188. 188.
    A. Nazari, S. Riahi, Splitting tensile strength of concrete using ground granulated blast furnace slag and SiO2 nanoparticles as binder. Energy Build. 43(4), 864–872 (2011)CrossRefGoogle Scholar
  189. 189.
    A. Najigivi, A. Khaloo, A. Iraji Zad, S. Abdul Rashid, Investigating the effects of using different types of SiO2 nanoparticles on the mechanical properties of binary blended concrete. Compos. Part B Eng. 54, 52–58 (2013)CrossRefGoogle Scholar
  190. 190.
    H.G. Xiao, Study on the processing technology and multifunctional properites of smart concrete with super fine particles. Dissertation for the Master Degree in Engineering, Harbin Institute of Technology, 2002Google Scholar
  191. 191.
    T. Ji, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem. Concr. Res. 35(10), 1943–1947 (2005)CrossRefGoogle Scholar
  192. 192.
    M.H. Beigi, J. Berenjian, O. Lotfi Omran, A. Sadeghi Nik, I.M. Nikbin, An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater. Des. 50, 1019–1029 (2013)CrossRefGoogle Scholar
  193. 193.
    B. Wang, L. Wang, F. Lai, Freezing resistance of HPC with nano-SiO2. J. Wuhan Univ. Technol. 23(1), 85–88 (2008)CrossRefGoogle Scholar
  194. 194.
    K. Behfarnia, N. Salemi, The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr. Build. Mater. 48, 580–584 (2013)CrossRefGoogle Scholar
  195. 195.
    L.E. Zapata, G. Portela, O.M. Suárez, O. Carrasquillo, Rheological performance and compressive strength of superplasticized cementitious mixtures with micro/nano-SiO2 additions. Constr. Build. Mater. 41, 708–716 (2013)CrossRefGoogle Scholar
  196. 196.
    P. Zhang, N. Xie, X. Cheng, L. Feng, P. Hou, Y. Wu, Low dosage nano-silica modification on lightweight aggregate concrete. Nanomater. Nanotechnol. 8, 1515968864 (2018)CrossRefGoogle Scholar
  197. 197.
    B. Jo, C. Kim, G. Tae, J. Park, Characteristics of cement mortar with nano-SiO2 particles. Constr. Build. Mater. 21(6), 1351–1355 (2007)CrossRefGoogle Scholar
  198. 198.
    J. Björnström, A. Martinelli, A. Matic, L. Börjesson, I. Panas, Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chem Phys Lett 392(1–3), 242–248 (2004)CrossRefGoogle Scholar
  199. 199.
    M. Aly, M.S.J. Hashmi, A.G. Olabi, M. Messeiry, E.F. Abadir, A.I. Hussain, Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar. Mater. Des. 33, 127–135 (2012)CrossRefGoogle Scholar
  200. 200.
    M. Rupasinghe, R. San Nicolas, P. Mendis, M. Sofi, T. Ngo, Investigation of strength and hydration characteristics in nano-silica incorporated cement paste. Cem. Concr. Compos. 80, 17–30 (2017)CrossRefGoogle Scholar
  201. 201.
    M. Rupasinghe, P. Mendis, T. Ngo, T.N. Nguyen, M. Sofi, Compressive strength prediction of nano-silica incorporated cement systems based on a multiscale approach. Mater. Des. 115, 379–392 (2017)CrossRefGoogle Scholar
  202. 202.
    B.B. Mukharjee, S.V. Barai, Assessment of the influence of nano-silica on the behavior of mortar using factorial design of experiments. Constr. Build. Mater. 68, 416–425 (2014)CrossRefGoogle Scholar
  203. 203.
    D. Kong, D.J. Corr, P. Hou, Y. Yang, S.P. Shah, Influence of colloidal silica sol on fresh properties of cement paste as compared to nano-silica powder with agglomerates in micron-scale. Cem. Concr. Compos. 63, 30–41 (2015)CrossRefGoogle Scholar
  204. 204.
    L. Senff, J.A. Labrincha, V.M. Ferreira, D. Hotza, W.L. Repette, Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr. Build. Mater. 23(7), 2487–2491 (2009)CrossRefGoogle Scholar
  205. 205.
    L. Senff, D. Hotza, W.L. Repette, V.M. Ferreira, J.A. Labrincha, Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Constr. Build. Mater. 24(8), 1432–1437 (2010)CrossRefGoogle Scholar
  206. 206.
    G.A. Ltifi, P. Mounanga, A. Khelidj, Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars. Procedia Eng. 10, 900–905 (2011)CrossRefGoogle Scholar
  207. 207.
    M. Berra, F. Carassiti, T. Mangialardi, A.E. Paolini, M. Sebastiani, Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Constr. Build. Mater. 35, 666–675 (2012)CrossRefGoogle Scholar
  208. 208.
    P. Hou, S. Kawashima, K. Wang, D.J. Corr, J. Qian, S.P. Shah, Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar. Cem. Concr. Compos. 35(1), 12–22 (2013)CrossRefGoogle Scholar
  209. 209.
    H. Bahadori, P. Hosseini, Reduction of cement consumption by the aid of silica nano-particles (investigation on concrete properties). J. Civil. Eng. Manag. 18(3), 416–425 (2012)CrossRefGoogle Scholar
  210. 210.
    N. Zabihi, M.H. Ozkul, The fresh properties of nano silica incorporating polymer-modified cement pastes. Constr. Build. Mater. 168, 570–579 (2018)CrossRefGoogle Scholar
  211. 211.
    M. Collepardi, J. Olagot, U. Skarp, R. Troli, Influence of amorphous colloidal silica on the properties of self-compacting concretes, in Proceedings of the International Conference in Concrete Constructions, pp. 473–483 (2012)Google Scholar
  212. 212.
    J. Shih, T. Chang, T. Hsiao, Effect of nanosilica on characterization of Portland cement composite. Mater. Sci. Eng. A 424(1–2), 266–274 (2006)CrossRefGoogle Scholar
  213. 213.
    K. Kim, Y. Heo, S. Kang, J. Lee, Effect of sodium silicate- and ethyl silicate-based nano-silica on pore structure of cement composites. Cem. Concr. Compos. 49, 84–91 (2014)CrossRefGoogle Scholar
  214. 214.
    A.M. Said, M.S. Zeidan, M.T. Bassuoni, Y. Tian, Properties of concrete incorporating nano-silica. Constr. Build. Mater. 36, 838–844 (2012)CrossRefGoogle Scholar
  215. 215.
    P. Hosseini, A. Booshehrian, A. Madari, Developing concrete recycling strategies by utilization of nano-SiO2 particles. Waste Biomass Valoriz. 2(3), 347–355 (2011)CrossRefGoogle Scholar
  216. 216.
    A. Sadrmomtazi, A. Barzegar, Assessment of the effect of nano-SiO2 on physical and mechanical properties of self-compacting concrete containing rice husk ash, in Proceedings Second International Conference on Sustainable Construction Materials and Technologies, pp. 1–9 (2010)Google Scholar
  217. 217.
    Q. Ye, Z. Zhang, D. Kong, R. Chen, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 21(3), 539–545 (2007)CrossRefGoogle Scholar
  218. 218.
    S.S. Shebl, L. Allie, M.S. Morsy, H.A. Aglan, Mechanical behavior of activated nano silicate filled cement binders. J. Mater. Sci. 44(6), 1600–1606 (2009)CrossRefGoogle Scholar
  219. 219.
    G. Quercia, H.J.H. Brouwers, A. Garnier, K. Luke, Influence of olivine nano-silica on hydration and performance of oil-well cement slurries. Mater. Des. 96, 162–170 (2016)CrossRefGoogle Scholar
  220. 220.
    A. Hanif, P. Parthasarathy, H. Ma, T. Fan, Z. Li, Properties improvement of fly ash cenosphere modified cement pastes using nano silica. Cem. Concr. Compos. 81, 35–48 (2017)CrossRefGoogle Scholar
  221. 221.
    D.F. Lin, K.L. Lin, W.C. Chang, H.L. Luo, M.Q. Cai, Improvements of nano-SiO2 on sludge/fly ash mortar. Waste Manag 28(6), 1081–1087 (2008)CrossRefGoogle Scholar
  222. 222.
    X. He, X. Shi, Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials. Transp. Res. Rec. J. Transp. Res. Board 2070, 13–21 (2008)CrossRefGoogle Scholar
  223. 223.
    R. Roychand, S. De Silva, D. Law, S. Setunge, High volume fly ash cement composite modified with nano silica, hydrated lime and set accelerator. Mater. Struct. 49(5), 1997–2008 (2016)CrossRefGoogle Scholar
  224. 224.
    A. Nazari, S. Riahi, Abrasion resistance of concrete containing SiO2 and Al2O3 nanoparticles in different curing media. Energy Build. 43(10), 2939–2946 (2011)CrossRefGoogle Scholar
  225. 225.
    A. Heidari, D. Tavakoli, A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiO2 particles. Constr. Build. Mater. 38, 255–264 (2013)CrossRefGoogle Scholar
  226. 226.
    M. Jalal, E. Mansouri, M. Sharifipour, A.R. Pouladkhan, Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater. Des. 34, 389–400 (2012)CrossRefGoogle Scholar
  227. 227.
    J. Esmaeili, K. Andalibi, Investigation of the effects of nano-silica on the properties of concrete in comparison with micro-silica. Int. J. Nano Dimens. 3(4), 321–328 (2013)Google Scholar
  228. 228.
    L.P. Singh, S.R. Karade, S.K. Bhattacharyya, M.M. Yousuf, S. Ahalawat, Beneficial role of nanosilica in cement based materials-a review. Constr. Build. Mater. 47, 1069–1077 (2013)CrossRefGoogle Scholar
  229. 229.
    A. Booshehrian, P. Hosseini, Effect of nano-SiO2 particles on properties of cement mortar applicable for ferrocement elements. Concr. Res. Lett. 2(1), 167–180 (2011)Google Scholar
  230. 230.
    E. Ghafari, H. Costa, E. Júlio, A. Portugal, L. Durães, The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Mater. Des. 59, 1–9 (2014)CrossRefGoogle Scholar
  231. 231.
    A. Nazari, S. Riahi, The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete. Compos. B Eng. 42(3), 570–578 (2011)CrossRefGoogle Scholar
  232. 232.
    G. Land, D. Stephan, The influence of nano-silica on the hydration of ordinary Portland cement. J. Mater. Sci. 47(2), 1011–1017 (2012)CrossRefGoogle Scholar
  233. 233.
    A.M. Rashad, A comprehensive overview about the effect of nano-SiO2 on some properties of traditional cementitious materials and alkali-activated fly ash. Constr. Build. Mater. 52, 437–464 (2014)CrossRefGoogle Scholar
  234. 234.
    P. Hou, S. Kawashima, D. Kong, D.J. Corr, J. Qian, S.P. Shah, Modification effects of colloidal nanoSiO2 on cement hydration and its gel property. Compos. B Eng. 45(1), 440–448 (2013)CrossRefGoogle Scholar
  235. 235.
    A.N. Givi, S. Abdul Rashid, F.N.A. Aziz, M.A.M. Salleh, The effects of lime solution on the properties of SiO2 nanoparticles binary blended concrete. Compos. Part B Eng. 42(3), 562–569 (2011)Google Scholar
  236. 236.
    A. Sadrmomtazi, A. Fasihi, F. Balalaei, A.K. Haghi, Investigation of mechanical and physical properties of mortars containing silica fume and nano-SiO2, pp. 27–29 (2009)Google Scholar
  237. 237.
    S. Abd. El. Aleem, M. Heikal, W.M. Morsi, Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Constr. Build. Mater. 59, 151–160 (2014)Google Scholar
  238. 238.
    G. Quercia, P. Spiesz, G. Husken, J. Brouwers, Effects of amorphous nano-silica additions on mechanical and durability performance of SCC mixtures, in Proceedings of the International Congress on Durability of Concrete, pp. 18–21 (2012)Google Scholar
  239. 239.
    S. Riahi, A. Nazari, Compressive strength and abrasion resistance of concrete containing SiO2 and CuO nanoparticles in different curing media. Sci. China Technol. Sci. 54(9), 2349–2357 (2011)CrossRefGoogle Scholar
  240. 240.
    R.K. Ibrahim, R. Hamid, M.R. Taha, Fire resistance of high-volume fly ash mortars with nanosilica addition. Constr. Build. Mater. 36, 779–786 (2012)CrossRefGoogle Scholar
  241. 241.
    A.H. Shah, U.K. Sharma, D.A.B. Roy, P. Bhargava, Spalling behaviour of nano SiO2 high strength concrete at elevated temperature, in MATEC Web of Conferences, vol. 6, pp. 1009 (8 pp) (2013)CrossRefGoogle Scholar
  242. 242.
    D. Kong, X. Du, S. Wei, H. Zhang, Y. Yang, S.P. Shah, Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Constr. Build. Mater. 37, 707–715 (2012)CrossRefGoogle Scholar
  243. 243.
    Jiang S (2018) Properties and mechanisms of cement-based composites with new types of nano-fillers. Master dissertation, Dalian University of TechnologyGoogle Scholar
  244. 244.
    A. Rahim, S.R. Nair, Influence of nano-materials in high strength concrete. J. Chem. Pharm. Sci. 974, 15–21 (2016)Google Scholar
  245. 245.
    M.M. Salman, K.M. Eweed, A.M. Hameed, Influence of partial replacement TiO2 nanoparticles on the compressive and flexural strength of ordinary cement mortar. Al-Nahrain J. Eng. Sci. 19(2), 265–270 (2017)Google Scholar
  246. 246.
    A.H. Shekari, M.S. Razzaghi, Influence of nano particles on durability and mechanical properties of high performance concrete. Proc. Eng. 14, 3036–3041 (2011)CrossRefGoogle Scholar
  247. 247.
    H. Noorvand, A.A.A. Ali, R. Demirboga, N. Farzadnia, H. Noorvand, Incorporation of nano TiO2 in black rice husk ash mortars. Constr. Build. Mater. 47(5), 1350–1361 (2013)CrossRefGoogle Scholar
  248. 248.
    N. Salemi, K. Behfarnia, S.A. Zaree, Effect of nanoparticles on frost durability of concrete. Asian J. Civil Eng. 15(3), 411–420 (2014)Google Scholar
  249. 249.
    A. Nazari, S. Riahi, The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete. Mater. Sci. Eng. A 528(2), 756–763 (2010)CrossRefGoogle Scholar
  250. 250.
    A. Nazari, S. Riahi, TiO2 nanoparticles effects on physical, thermal and mechanical properties of self compacting concrete with ground granulated blast furnace slag as binder. Energy Build. 43(4), 995–1002 (2011)CrossRefGoogle Scholar
  251. 251.
    A. Nazari, S. Riahi, The effects of TiO2 nanoparticles on flexural damage of self-compacting concrete. Int. J. Damage Mech. 20(7), 1049–1072 (2011)CrossRefGoogle Scholar
  252. 252.
    M. Jalal, M. Fathi, M. Farzad, Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete. Mech. Mater. 61, 11–27 (2013)CrossRefGoogle Scholar
  253. 253.
    E. Mohseni, M. Mehrinejad, H. Azar, B. Mehdizadeh, S. Hosseiny, Effectiveness of nano-TiO2 and fly ash in concrete. Tech. J. Eng. Appl. Sci. 5, 101–107 (2015)Google Scholar
  254. 254.
    J. Chen, S.C. Kou, C.S. Poon, Hydration and properties of nano-TiO2 blended cement composites. Cem. Concr. Compos. 34(5), 642–649 (2012)CrossRefGoogle Scholar
  255. 255.
    Y.L. Bo, A.R. Jayapalan, K.E. Kurtis, Effects of nano-TiO2 on properties of cement-based materials. Mag. Concr. Res. 65(21), 1293–1302 (2013)CrossRefGoogle Scholar
  256. 256.
    B. Ma, H. Li, J. Mei, X. Li, F. Chen, Effects of nano-TiO2 on the toughness and durability of cement-based material. Adv. Mater. Sci. Eng. 583106 (2015)Google Scholar
  257. 257.
    R. Zhang, X. Cheng, P. Hou, Z. Ye, Influences of nano-TiO2 on the properties of cement-based materials: hydration and drying shrinkage. Constr. Build. Mater. 81, 35–41 (2015)CrossRefGoogle Scholar
  258. 258.
    L.C. Feng, C.W. Gong, Y.P. Wu, D.C. Feng, N. Xie, The study on mechanical properties and microstructure of cement paste with nano-TiO2. Adv. Mater. Res. 629, 477–481 (2013)CrossRefGoogle Scholar
  259. 259.
    E. Mohseni, F. Naseri, R. Amjadi, M.M. Khotbehsara, M.M. Ranjbar, Microstructure and durability properties of cement mortars containing nano-TiO2 and rice husk ash. Constr. Build. Mater. 114, 656–664 (2016)CrossRefGoogle Scholar
  260. 260.
    K. Behfarnia.A. Keivan, A. Keivan, The effects of TiO2 and ZnO nanoparticles on physical and mechanical properties of normal concrete. Asian J. Civil Eng. 14(4), 517–531 (2013)Google Scholar
  261. 261.
    A. Nazari, S. Riahi, TiO2 nanoparticles’ effects on properties of concrete using ground granulated blast furnace slag as binder. Sci. China Technol. Sci. 54(11), 3109–3118 (2011)CrossRefGoogle Scholar
  262. 262.
    F. Soleymani, Assessments of the effects of limewater on water permeability of TiO2 nanoparticles binary blended palm oil clinker aggregate-based concrete. J. Am. Sci. 8(5), 698–702 (2012)Google Scholar
  263. 263.
    Y.A. Fawzy, Effect of nano-titanium on properties of concrete made with various cement types. J. Am. Sci. 12(4), 116–126 (2016)Google Scholar
  264. 264.
    D. Feng, N. X, C. Gong, L. Zhen, H. Xiao, H. Li, X. Shi, Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective. Ind. Eng. Chem. Res. 52(33), 11575–11582 (2013)CrossRefGoogle Scholar
  265. 265.
    Z. Li, B. Han, X. Yu, S. Dong, L. Zhang, X. Dong, J. Ou, Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete. Mater. Res. Express 4(9), 095008 (2017)CrossRefGoogle Scholar
  266. 266.
    T. Meng, Y. Yu, X. Qian, S. Zhan, K. Qian, Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr. Build. Mater. 29(3), 241–245 (2012)CrossRefGoogle Scholar
  267. 267.
    S. Zhao, W. Sun, Nano-mechanical behavior of a green ultra-high performance concrete. Constr. Build. Mater. 63(8), 150–160 (2014)CrossRefGoogle Scholar
  268. 268.
    E. Mohseni, B.M. Miyandehi, J. Yang, M.A. Yazdi, Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash. Constr. Build. Mater. 84(1), 331–340 (2015)CrossRefGoogle Scholar
  269. 269.
    B. Birgisson, A.K. Mukhopadhyay, G. Geary, M. Khan, A.K. Sobolev, A. Medicine, Nanotechnology in concrete materials: a synopsis. Transp. Res. E-Circ. (E-C170), 1–44 (2012)Google Scholar
  270. 270.
    A.R. Jayapalan, B.Y. Lee, K.E. Kurtis, Effect of nano-sized titanium dioxide on early age hydration of portland cement. Nanotechnol. Constr. 267–273 (2009)Google Scholar
  271. 271.
    R. Kurihara, I. Maruyama, Influences of nano-TiO2 particles on alteration of microstructure of hardened cement, https://www.researchgate.net/publication/304755102. Accessed 8 April 2018
  272. 272.
    A. Folli, I. Pochard, A. Nonat, U.H. Jakobsen, A.M. Shepherd, D.E. Macphee, Engineering photocatalytic cements: understanding TiO2 surface chemistry to control and modulate photocatalytic performances. J. Am. Ceram. Soc. 93(10), 3360–3369 (2010)CrossRefGoogle Scholar
  273. 273.
    J. Liu, Q. Li, S. Xu, Influence of nanoparticles on fluidity and mechanical properties of cement mortar. Constr. Build. Mater. 101, 892–901 (2015)CrossRefGoogle Scholar
  274. 274.
    N. Li, W. Wang, J. Ye, F. Tao, X. Chi, Short age direct shear behavior of seashore soft soil reinforced by cement and nano-titanium dioxide. Electron. J. Geotech. Eng. 20(3), 1087–1094 (2015)Google Scholar
  275. 275.
    P. Lawrence, M. Cyr, E. Ringot, Mineral admixtures in mortars: Effect of inert materials on short-term hydration. Cem. Concr. Res. 33(12), 1939–1947 (2003)CrossRefGoogle Scholar
  276. 276.
    M. Hasebe, H. Edahiro, Experimental studies on strength, durability and antifouling properties of concrete using TiO2 as admixture. Cem. Sci. Concr. Technol. 67(1), 507–513 (2013)CrossRefGoogle Scholar
  277. 277.
    M. Palacios, F. Puertas, Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 37(5), 691–702 (2007)CrossRefGoogle Scholar
  278. 278.
    F. Collins, J.G. Sanjayan, Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cem. Concr. Res. 29(4), 607–610 (1999)CrossRefGoogle Scholar
  279. 279.
    ACI Committee 222, Protection of metals in concrete against corrosion. ACI 222R-01 (2001)Google Scholar
  280. 280.
    D.D. Bui, J. Hu, P. Stroeven, Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete. Cem. Concr. Compos. 27(3), 357–366 (2005)CrossRefGoogle Scholar
  281. 281.
    G.H. Tattersall, P.H. Baker, An instigation of the effect of vibration on the workability of fresh concrete using a vertical pipe apparatus. Mag. Concr. Res. 14(146), 3–9 (1989)CrossRefGoogle Scholar
  282. 282.
    S. Shen, M. Burton, B. Jobson, L. Haselbach, Pervious concrete with titanium dioxide as a photocatalyst compound for a greener urban road environment. Constr. Build. Mater. 35(10), 874–883 (2012)CrossRefGoogle Scholar
  283. 283.
    F. Sanchez, K. Sobolev, Nanotechnology in concrete-a review. Constr. Build. Mater. 24(11), 2060–2071 (2010)CrossRefGoogle Scholar
  284. 284.
    L. Senff, G. Ascensão, D. Hotza, V.M. Ferreira, J.A. Labrincha, Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars. Energy Build. 127, 980–990 (2016)CrossRefGoogle Scholar
  285. 285.
    J. Chen, C.S. Poon, Photocatalytic construction and building materials: from fundamentals to applications. Build. Environ. 44(9), 1899–1906 (2009)CrossRefGoogle Scholar
  286. 286.
    M.Z. Guo, A. Maury-Ramirez, C.S. Poon, Self-cleaning ability of titanium dioxide clear paint coated architectural mortar and its potential in field application. J. Clean Prod. 112, 3583–3588 (2016)CrossRefGoogle Scholar
  287. 287.
    M. Hunger, H.J.H. Brouwers, M.D.L.M. Bailari, Photocatalytic degradation ability of cementitious materials: A modeling approach, in Proceedings of 1st International Conference on Microstructure Related Durability of Cementitious Composites, Nanjing, China (2008)Google Scholar
  288. 288.
    C.S. Poon, E. Cheung, NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Constr. Build. Mater. 21(8), 1746–1753 (2007)CrossRefGoogle Scholar
  289. 289.
    K. Demeestere, J. Dewulf, B.D. Witte, A. Beeldens, H.V. Langenhove, Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Build. Environ. 43(4), 406–414 (2008)CrossRefGoogle Scholar
  290. 290.
    C. Hu, Y. Lan, J. Qu, X.X. Hu, A. Wang, Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J. Phys. Chem. B 110(9), 4066–4072 (2006)CrossRefGoogle Scholar
  291. 291.
    E. Boonen, A. Beeldens, Recent photocatalytic applications for air purification in belgium. Coatings 4(3), 553–573 (2014)CrossRefGoogle Scholar
  292. 292.
    C.A. Linkous, G.J. Carter, B.L. David, J.O. Anthony, L.A. Smitha, Photocatalytic inhibition of algae growth using TiO2, WO3 and cocatalyst modifications. Environ. Sci. Technol. 34(22), 4754–4758 (2000)CrossRefGoogle Scholar
  293. 293.
    G.L. Guerrini, E. Peccati, Photocatalytic cementitious roads for depollution. Newsletter (2016)Google Scholar
  294. 294.
    A. Fujishima, X. Zhang, Titanium dioxide photocatalysis: present situation and future approaches. C. R. Chim. 9(5), 750–760 (2006)CrossRefGoogle Scholar
  295. 295.
    W.S. Tung, W.A. Daoud, Self-cleaning fibers via nanotechnology: a virtual reality. J. Mater. Chem. 21(22), 7858–7869 (2011)CrossRefGoogle Scholar
  296. 296.
    G.X. Xiong, M. Deng, L.L. Xu, M.S. Tang, Properties of cement-based composites by doping nano-TiO2. J. Chin. Ceram. Soc. 9, 1158–1161 (2006)Google Scholar
  297. 297.
    B. Ping, Preparation and performance investigation of electromagnetic. Dissertation for the Master Degree in Engineering, Wuhan University of Technology, 2015Google Scholar
  298. 298.
    G.X. Xiong, Cement-based composite materials for microwave absorbing. Dissertation for the Doctor Degree in Engineering, Nanjing University of Technology, 2005Google Scholar
  299. 299.
    H. Xiao, Piezoresistivity of cement-based composite filled with nanophase materials and self-sensing smart structural system. Dissertation for the Doctoral Degree in Engineering, Harbin Institute of Technology, Harbin, China, 2006Google Scholar
  300. 300.
    R. Wang, N. Sakai, A. Fujishima, A.T. Watanabe, K. Hashimoto, Studies of surface wettability conversion on TiO2 single-crystal surfaces. J. Phys. Chem. B 103(12), 2188–2194 (1999)CrossRefGoogle Scholar
  301. 301.
    R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces. Nature 388(6641), 431–432 (1997)CrossRefGoogle Scholar
  302. 302.
    R. Gammampila, P. Mendis, T. Ngo, L. Aye, A.S. Jayalath, R.A.M. Rupasinghe, Application of nanomaterials in the sustainable built environment, in International Conference on Sustainable Built Environment (Kandy, 2010)Google Scholar
  303. 303.
    T. Maggos, A. Plassais, J.G. Bartzis, C. Vasilakos, N. Moussiopoulos, L. Bonafous, Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environ. Monit. Assess. 136(1–3), 35–44 (2008)Google Scholar
  304. 304.
    L. Cassar, Photocatalysis of cementitious materials: clean buildings and clear air. MRS Bull. 29(5), 328–331 (2004)CrossRefGoogle Scholar
  305. 305.
    H. Irie, Recent development in TiO2 photocatalysis: novel applications to interior ecology materials and energy saving systems. Electrochemistry 72, 807–812 (2004)Google Scholar
  306. 306.
    J. He, A. Hoyano, A numerical simulation method for analyzing the thermal improvement effect of super-hydrophilic photocatalyst-coated building surfaces with water film on the urban/built environment. Energy Build. 40(6), 968–978 (2008)CrossRefGoogle Scholar
  307. 307.
    A. Nazari, S. Riahi, An investigation on the strength and workability of cement based concrete performance by using TiO2 nanoparticles. J. Am. Sci. 6(4), 29–33 (2010)Google Scholar
  308. 308.
    F. Soleymani, The effects of ZrO2 nano powders on compressive damage and pore structure properties of concrete specimens. J. Am. Sci. 8(3), 738–744 (2012)Google Scholar
  309. 309.
    F. Soleymani, Pore structure and flexural strength of ZrO2 nano powders palm oil clinker aggregate-based binary blended concrete. J. Am. Sci. 8, 6 (2012)Google Scholar
  310. 310.
    A. Nazari, S. Riahi, The effects of ZrO2 nanoparticles on physical and mechanical properties of high strength self compacting concrete. Mater. Res. 13(4), 551–556 (2010)CrossRefGoogle Scholar
  311. 311.
    A. Nazari, S. Riahi, The effects of ZrO2 nanoparticles on properties of concrete using ground granulated blast furnace slag as binder. J. Compos. Mater. 46(9), 1079–1090 (2012)CrossRefGoogle Scholar
  312. 312.
    A. Nazari, S. Riahi, The effects of ZrO2 nanoparticles on strength assessments and water permeability of concrete in different curing media. Mater. Sci. Eng. A 528(3), 1173–1182 (2011)CrossRefGoogle Scholar
  313. 313.
    M.H. Rafieipour, A. Nazari, M.A. Mohandesi, Improvement compressive strength of cementitious composites in different curing media by incorporating ZrO2 nanoparticles. Mater. Res. 15(2), 177–184 (2012)CrossRefGoogle Scholar
  314. 314.
    A. Nazari, S. Riahi, Limewater effects on properties of ZrO2 nanoparticle blended cementitious composite. J. Compos. Mater. 45(6), 639–644 (2011)CrossRefGoogle Scholar
  315. 315.
    M. Negahdary, A. Habibi, Synthesis of zirconia nanoparticles and their ameliorative roles as additives concrete structures. J. Chem. 2013, 41–63Google Scholar
  316. 316.
    G.F. Silva, R. Bosso, R.V Ferino, Microparticulated and nanoparticulated zirconium oxide added to calcium silicate cement: Evaluation of physicochemical and biological properties. J. Biomed. Mater. Res. Part A. 102(12), 4336–4345 (2014)Google Scholar
  317. 317.
    P. Jaishankar, K.S.R. Mohan, Experimental investigation on nano particles in high performance concrete. Int. J. Chem. Res. 8(4), 1666–1670 (2015)Google Scholar
  318. 318.
    Umarajyadav, M. Vahini, Study of mechanical properties of concrete with nano zirconia. Int. Res. J. Eng. Technol. 4(8), 90–94 (2017)Google Scholar
  319. 319.
    Q. Li, A.D. Deacon, N.J. Coleman, The impact of zirconium oxide nanoparticles on the hydration chemistry and biocompatibility of white Portland cement. Dent. Mater. J. 32(5), 808–815 (2013)CrossRefGoogle Scholar
  320. 320.
    C. Gogtas, Development of nano-ZrO2 reinforced self-flowing low and ultra low cement refractory castables. Doctor dissertation, The University of Wisconsin-Milwaukee, 2012Google Scholar
  321. 321.
    Q. Ye, The study and development of the nano-composite cement structure materials. New Build. Mater. 1, 4–6 (2011)Google Scholar
  322. 322.
    J. Bensted. Hydration of Portland cement. Adv. Cem. Technol. 307–347 (1983)Google Scholar
  323. 323.
    W.T. Kuo, K.L. Lin, W.C. Chang, H.L. Luo, Effects of nano-materials on properties of waterworks sludge ash cement paste. J. Ind. Eng. Chem. 12(5), 702–709 (2006)Google Scholar
  324. 324.
    Z.H. Li, H.F. Wang, S. He, Y. Lu, M. Wang, Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett. 60(3), 356–359 (2006)CrossRefGoogle Scholar
  325. 325.
    M.R. Arefi, M.R. Javeri, E. Mollaahmadi, To study the effect of adding Al2O3 nanoparticles on the mechanical properties and microstructure of cement mortar. Life Sci. J. 8(4), 613–617 (2011)Google Scholar
  326. 326.
    M. Oltulu, R. Şahin, Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Mater. Sci. Eng. A 528, 7012–7019 (2011)CrossRefGoogle Scholar
  327. 327.
    S. Barbhuiya, S. Mukherjee, H. Nikraz, Effects of nano-Al2O3 on early-age microstructural properties of cement paste. Constr. Build. Mater. 52, 189–193 (2014)CrossRefGoogle Scholar
  328. 328.
    G. Gurumurthy, A.M. Hunashyal, S.S. Quadri, N.R. Banapurmath, A.S. Shetter, R.K. Hiremath, S.A. Hallad, Effect of multiwalled carbon nanotubes and nano aluminium oxide on flexural and compressive strength of cement composites. Int. J. Adv. Res. Sci. Eng. 3(8), 215–223 (2014)Google Scholar
  329. 329.
    B.M. Miyandehi, B. Behforouz, E.M. Khotbehsara, H.A. Balgouri, S. Fathi, M.M. Khotbehsara, An experimental investigation on nano-Al2O3 based self-compacting mortar. J. Am. Sci. 10(11), 229–233 (2014)Google Scholar
  330. 330.
    M. Murugan, M. Santhanam, Influence of r-GO, n-Al2O3 and n-SiO2 nanomaterials on the microstructure of OPC paste immersed in 0.5 M HNO3 solution, in 4th International Conference on Sustainable Construction Materials and Technologies, pp. 7–11 (2016)Google Scholar
  331. 331.
    A. Nazari, S. Riahi, S. Riahi, S.F. Shamekhi, A. Khademno, Mechanical properties of cement mortar with Al2O3 nanoparticles. J. Am. Sci. 6(4), 94–97 (2010)Google Scholar
  332. 332.
    A. Nazari, S. Riahi, Improvement compressive strength of concrete indifferent curing media by Al2O3 nanoparticles. Mater. Sci. Eng. A 528(3), 1183–1191 (2011)CrossRefGoogle Scholar
  333. 333.
    A. Nazari, S. Riahi, Effects of Al2O3 nanoparticles on properties of self compacting concrete with ground granulated blast furnace slag (GGBFS) as binder. Technol. Sci. 54(9), 2327–2338 (2011)Google Scholar
  334. 334.
    S.V. Agarkar, M.M. Joshi, Study of effect of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. Int. J. Curr. Res. 4(12), 382–384 (2012)Google Scholar
  335. 335.
    S. Sanju, S. Sharadha, J. Revathy, Performance on the study of nano materials for the development of sustainable concrete. Int. J. Earth Sci. Eng. 9(3), 294–300 (2016)Google Scholar
  336. 336.
    R.U. Karthikeya, G.S. Kumar, An experimental study on strength parameters of nano alumina and GGBS on concrete. Int. J. Res. Emerg. Sci. Technol. 3(4), 14–18 (2016)Google Scholar
  337. 337.
    S.M. Sheikhaleslamzadeh, M. Raofi, The effect of nano-Al2O3 on the fiber-reinforced concrete. Res. J. Appl. Sci. Eng. Technol. 13(10), 784–786 (2016)CrossRefGoogle Scholar
  338. 338.
    P. Jaishankar, C. Karthikeyan, Characteristics of cement concrete with nano aluminaparticles. Earth Environ. Sci. 80, 1–10 (2017)Google Scholar
  339. 339.
    I. Campillo, A. Guerrero, J.S. Dolado, A. Porro, J.A. Ibanez, S. Goni, Improvement of initial mechanical strength by nanoalumina in belite cements. Mater. Lett. 61(8), 1889–1892 (2007)CrossRefGoogle Scholar
  340. 340.
    B.A. Hase, V.R. Rathi, Properties of high strength concrete incorporating colloidal nano-Al2O3. Int. J. Innov. Res. Sci. Eng. Technol. 4(3), 959–963 (2015)CrossRefGoogle Scholar
  341. 341.
    M.R. Sharbaf, T. Davoudzadeh, M.R. Eftekhar, M. Kamali. An investigation on the effects of Al2O3 nano-particles on durability and mechanical properties of high performance concrete, in 4th International Conference on Sustainable Construction Concrete and Development, pp. 1–8 (2013)Google Scholar
  342. 342.
    R. Polat, R. Demirboğa, W.H. Khushefati, Effects of nano and micro size of CaO and MgO, nano-clay and expanded perlite aggregate on the autogenous shrinkage of mortar. Constr. Build. Mater. 81, 268–275 (2015)CrossRefGoogle Scholar
  343. 343.
    Q. Ye, K. Yu, Z. Zhang, Expansion of ordinary Portland cement paste varied with nano-MgO. Constr. Build. Mater. 78, 189–193 (2015)CrossRefGoogle Scholar
  344. 344.
    S.H.T. Ahmed, K.P. Kumari, Experimental study on MEPS concrete and brick using nano materials. Int. J. Innov. Res. Sci. Eng. Technol. 6(6), 11941–11950 (2017)Google Scholar
  345. 345.
    F. Li, Y. Chen, S. Long, Influence of MgO expansive agent on behavior of cement pastes and concrete. Arab. J. Forence Eng. 35, 125–139 (2010)Google Scholar
  346. 346.
    L. Mo, M. Deng, M. Tang, Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials. Cem. Concr. Res. 40, 437–446 (2010)CrossRefGoogle Scholar
  347. 347.
    L. Mo, M. Deng, A. Wang, Effects of MgO-based expansive additive on compensating the shrinkage of cement paste under non-wet curing conditions. Cem. Concr. Compos. 34(3), 377–383 (2012)CrossRefGoogle Scholar
  348. 348.
    A.M. Reza, R.Z. Saeed, Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites. Int. J. Mol. Sci. 13(4), 40–43 (2012)Google Scholar
  349. 349.
    M.H. Albashir, G.H. Alseed, R. Abdalmajed, Mechanical properties of cementitious composite by using ZnO nanoparticles. Int. J. Res. Appl. Sci. Eng. Technol. 4(10), 274–276 (2016)Google Scholar
  350. 350.
    D. Nivethitha, S. Dharmar, Influence of zinc oxide nanoparticle on strength and durability of cement mortar. Int. J. Earth Sci. Eng. 9(3), 175–181 (2016)Google Scholar
  351. 351.
    Tiwari, Effect of zinc oxide nanoparticle on compressive strength and durability of cement mortar. Int. J. Res. Appl. Sci. Eng. Technol. 5(7), 1668–1674 (2017)Google Scholar
  352. 352.
    S. Ghahari, The effect of ZnO nanoparticles on thermoelectric behavior and fresh properties of cement paste. 85, 1024–1197 (2016)Google Scholar
  353. 353.
    N. Duraipandian, Effect of zinc oxide nanoparticle on strength of cement mortar. Int. J. Sci. Technol. Eng. 3(5), 123–127 (2016)Google Scholar
  354. 354.
    A. Nazari, S. Riahi, S.F. Shamekhi, A. Khademno, The effects of incorporation Fe2O3 nanoparticles on tensile and flexural strength of concrete. J. Am. Sci. 6(4), 90–93 (2010)Google Scholar
  355. 355.
    Q. Ye, Z. Zhang, L. Sheng, R. Chen, A comparative study on the pozzolanic activity between nano-SiO2 and silica fume. J. Wuhan Univ. Technol. (Mater. Sci.) 21, 153–157 (2008)Google Scholar
  356. 356.
    S. Riahi, A. Nazari, Physical, mechanical and thermal properties of concrete in different curing media containing ZnO2 nanoparticles. Energy Build. 43(8), 1977–1984 (2011)CrossRefGoogle Scholar
  357. 357.
    A. Nazari, S. Riahi, The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete. Compos. B Eng. 42(2), 167–175 (2011)CrossRefGoogle Scholar
  358. 358.
    A. Nazari, S. Riahi, The effects of ZnO2 nanoparticles on strength assessments and water permeability of concrete in different curing media. Mater. Res. 14(2), 178–188 (2011)CrossRefGoogle Scholar
  359. 359.
    M.M. Kaykha, F. Soleymani, Benefits of ZnO2 nanoparticles on improving damage resistance of concrete specimens. J. Am. Sci. 8(2), 1–6 (2012)Google Scholar
  360. 360.
    S. Riahi, A. Nazari, The effects of ZnO2 nanoparticles on properties of concrete using ground granulated blast furnace slag as binder. Mater. Res. 14(3), 299–306 (2011)CrossRefGoogle Scholar
  361. 361.
    A. Nazari, S. Riahi, The effects of ZnO2 nanoparticles on split tensile strength of self-compacting concrete. J. Exp. Nanosci. 7(5), 491–512 (2012)CrossRefGoogle Scholar
  362. 362.
    N.Y. Mostafa, P.W. Brown, Heat of hydration of high reactive pozzolans in blended cements: isothermal conduction calorimetry. Thermochim. Acta 435(2), 162–167 (2005)CrossRefGoogle Scholar
  363. 363.
    J.W. Zhu, D. Li, X.J. Yang, L.D. Lu, X. Wang, Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Mater. Lett. 58(26), 3324–3327 (2004)CrossRefGoogle Scholar
  364. 364.
    R.J. Wu, Z.Y. Ma, Z.G. Gu, Y. Yang, Preparation and characterization of CuO nanoparticles with different morphology through a simple quick-precipitation method in DMAC-water mixed solvent. J. Alloy. Compd. 504(1), 45–49 (2010)CrossRefGoogle Scholar
  365. 365.
    A. Nazari, S. Riahi, Effects of CuO nanoparticles on compressive strength of self-compacting concrete. Sadhana 36(3), 371–391 (2011)CrossRefGoogle Scholar
  366. 366.
    A. Nazari, M.H. Rafieipour, S. Riahi, The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder. Mater. Res. 14(3), 307–316 (2011)CrossRefGoogle Scholar
  367. 367.
    R. Madandoust, E. Mohseni, S.Y. Mousavi, M. Namnevis, An experimental investigation on the durability of self-compacting mortar containing nano-SiO2, nano-Fe2O3, and nano-CuO. Constr. Build. Mater. 86, 44–50 (2015)CrossRefGoogle Scholar
  368. 368.
    M.M. Khotbehsara, E. Mohseni, M.A. Yazdi, P.K. Sarker, M.M. Ranjbar, Effect of nano-CuO and fly ash on the properties of self-compacting mortar. Constr. Build. Mater. 94, 758–766 (2015)CrossRefGoogle Scholar
  369. 369.
    B.M. Miyandehi, A. Feizbakhsh, M.A. Yazdi, Q.F. Liu, J. Yang, P. Alipour, Performance and properties of mortar mixed with nano-CuO and rice husk ash. Cem. Concr. Compos. 74, 225–235 (2016)CrossRefGoogle Scholar
  370. 370.
    S. Riahi, A. Nazari, Compressive strength and abrasion resistance of concrete containing SiO2, and CuO nanoparticles in different curing media. Sci. China Technol. Sci. 54(9), 2349–2357 (2011)CrossRefGoogle Scholar
  371. 371.
    F. Massazza, The role of the additions to cement in the concrete durability. Cemento 84, 359–382 (1987)Google Scholar
  372. 372.
    A. Nazari, S. Riahi, Effects of CuO nanoparticleson microstructure, physical, mechanical and thermal properties of self-compacting cementitious composites. J. Mater. Sci. Technol. 27(1), 81–92 (2011)CrossRefGoogle Scholar
  373. 373.
    H.G. Xiao, Piezoresistivity of cement-based composite filled with nano phase materials and self-sensing smart structural system. Dissertation for the Doctoral Degree in Engineering, Harbin Institute of Technology, 2006Google Scholar
  374. 374.
    A. Nazari, S. Riahi, S. Riahi, S.F. Shamekhi, A. Khademno, Benefits of Fe2O3 nanoparticles in concrete mixing matrix. J. Am. Sci. 6(4), 102–106 (2010)Google Scholar
  375. 375.
    S.M. Sheikhaleslamzadeh, M. Raofi, The effect of nano Fe2O3 on the fiber reinforced concrete. Res. J. Appl. Sci. Eng. Technol. 13(10), 781–783 (2016)CrossRefGoogle Scholar
  376. 376.
    R. Sikora, E. Horszczaruk, K. Cendrowski, E. Mijowska, The influence of nano-Fe3O4 on the microstructure and mechanical properties of cementitious composites. Nanoscale Res. Lett. 11(1), 1–9 (2016)Google Scholar
  377. 377.
    M.D.O.G.P. Braganca, K.F. Portella, C.M. Gobi, E. de Mesquita Silva, E. Alberti, The use of 1% nano-Fe3O4 and 1% nano-TiO2 as partial replacement of cement to enhance the chemical performance of reinforced concrete structures. Athens J. Technol. Eng. 4(2), 97–107 (2017)Google Scholar
  378. 378.
    P. Jaishankar, K.S.R. Mohan, Influence of nano particles in high performance concrete (HPC). Int. J. ChemTech Res. 8(6), 278–284 (2015)Google Scholar
  379. 379.
    E.E. Etman, A.M. Atta, M.H. Taman, N.A. Ali, A.M. Wahba, Modified properties of cementitious materials with Cr2O3 and Al2O3 nanoparticles. Int. Conf. Adv. Struct. Geotech. Eng. 15, 6–9 (2015)Google Scholar
  380. 380.
    A. Nazari, S. Riahi, Optimization mechanical properties of Cr2O3 nanoparticle binary blended cementitious composite. J. Compos. Mater. 45(8), 943–948 (2011)CrossRefGoogle Scholar
  381. 381.
    A. Bahari, A.S. Nik, M. Roodbari, Synthesis and strength study of cement mortars containing SiC nano particles. Digest J. Nanomater. Biostruct. 7(4), 1427–1435 (2012)Google Scholar
  382. 382.
    H. Yin, J. Zhu, X. Guan, Z. Yang, Y. Zhu, H. Zhao, D. Li, Effect of MXene (nano-Ti3C2) on early-age hydration of cement paste. J. Nanomater. 16(1), 147–155 (2015)Google Scholar
  383. 383.
    M.A. Rafiee, T.N. Narayanan, D.P. Hashim, Hexagonal boron nitride and graphite oxide reinforced multifunctional porous cement composites. Adv. Func. Mater. 23(45), 5624–5630 (2013)CrossRefGoogle Scholar
  384. 384.
    C. Donnet, A. Erdemir, Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 180, 76–84 (2004)CrossRefGoogle Scholar
  385. 385.
    C. Wang, Y. Huang, Q. Zan, Control of composition and structure in laminated silicon nitride/boron nitride composites. J. Am. Ceram. Soc. 85(10), 2457–2461 (2002)CrossRefGoogle Scholar
  386. 386.
    Z. Ge, K. Wang, R. Sun, D. Huang, Y. Hu, Properties of self-consolidating concrete containing nano-CaCO3. J. Sustain. Cem-Based Mater. 3(3–4), 191–200 (2014)Google Scholar
  387. 387.
    X. Liu, L. Chen, A. Liu, X. Wang, Effect of nano-CaCO3 on properties of cement paste. Energy Proc. 16, 991–996 (2012)CrossRefGoogle Scholar
  388. 388.
    J. Camiletti, A.M. Soliman, M.L. Nehdi, Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete. Mater. Struct. 46(6), 881–898 (2013)CrossRefGoogle Scholar
  389. 389.
    S. Kawashima, P. Hou, D.J. Corr, S.P. Shah, Modification of cement-based materials with nanoparticles. Cem. Concr. Compos. 36, 8–15 (2013)CrossRefGoogle Scholar
  390. 390.
    S. Kawashima, J.T. Seo, D. Corr, M.C. Hersam, S.P. Shah, Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash-cement systems. Mater. Struct. 47(6), 1011–1023 (2014)CrossRefGoogle Scholar
  391. 391.
    S.W.M. Supit, F.U.A. Shaikh, Effect of nano-CaCO3 on compressive strength development of high volume fly ash mortars and concretes. J. Adv. Concr. Technol. 12, 178–186 (2014)CrossRefGoogle Scholar
  392. 392.
    W.M.S. Steve, U.A.S. Faiz, Effect of nano-CaCO3 on compressive strength development of high volume fly ash mortars and concretes. J. Adv. Concr. Technol. 12(6), 178–186 (2014)CrossRefGoogle Scholar
  393. 393.
    P. Jinchang, L. Ronggui, Improvement of performance of ultra-high performance concrete based composite material added with nano materials. Frattura ed Integr. Strutt. 10(36), 130–138 (2016)CrossRefGoogle Scholar
  394. 394.
    F.U.A. Shaikh, S.W.M. Supit, Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr. Build. Mater. 70, 309–321 (2014)CrossRefGoogle Scholar
  395. 395.
    Y. Cai, P. Hou, Z. Zhou, X. Cheng, Effects of nano-CaCO3 on the properties of cement paste: hardening process and shrinkage at different humidity levels, in 5th International Conference on Durability of Concrete Structures, pp. 207–230 (2016)Google Scholar
  396. 396.
    U. Sudha, V. Vishwakarma, D. Ramachandran, R.P. George, K. Kumari, R. Preetha, U.K. Mudali, C.S. Pillai, Nanophase modification of fly ash concrete for enhanced corrosion resistance, durability and antibacterial activity in marine environment. Masterbuild Construct. Mag. 17, 64–70 (2015)Google Scholar
  397. 397.
    T. Sato, J.J. Beaudoin, The effect of nano-sized CaCO3 addition on the hydration of OPC containing high volumes of ground granulated blast-furnace slag, in Proceedings of the Second International RILEM Symposium on Advances in Concrete Through Science and Engineering, Quebec City, pp. 355–366 (2006)Google Scholar
  398. 398.
    T. Sato, F. Diallo, Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. Transp. Res. Rec. J. Transp. Res. Board 2141(1), 61–67 (2010)CrossRefGoogle Scholar
  399. 399.
    M.J. Ramos, C.W. Swan, The strength characteristics of mortar concretes containing synthetic lightweight aggregate and calcium carbonate, in 2017 World of Coal Ash (WOCA) Conference in Lexington (2017)Google Scholar
  400. 400.
    K.L. Qian, T. Meng, X.Q. Qian, S.L. Zhan, Research on some properties of fly ash concrete with nano-CaCO3 middle slurry. Key Eng. Mater. 405, 186–190 (2009)CrossRefGoogle Scholar
  401. 401.
    Q.L. Xu, T. Meng, M.Z. Huang, Effects of nano-CaCO3 on the compressive strength and microstructure of high strength concrete in different curing temperature. Appl. Mech. Mater. 121–126, 126–131 (2011)Google Scholar
  402. 402.
    T. Meng, Y. Yu, Z. Wang, Effect of nano-CaCO3, slurry on the mechanical properties and micro-structure of concrete with and without fly ash. Compos. B Eng. 117, 124–129 (2017)CrossRefGoogle Scholar
  403. 403.
    T. Sato, J.J. Beaudoin, Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Adv. Cem. Res. 23(1), 33–43 (2011)CrossRefGoogle Scholar
  404. 404.
    J. Camiletti, A.M. Soliman, M.L. Nehdi, Effect of nano-calcium carbonate on early-age properties of ultra-high-performance concrete. Mag. Concr. Res. 65(5), 297–307 (2013)CrossRefGoogle Scholar
  405. 405.
    W.A. Klemm, L.D. Adams. An investigation of the formation of carboaluminates, in Proceedings of Carbonate Additions to Cement, ed. by P. Klieger, R.D. Hooton (American Society for Testing and Materials, Philadelphia, 1990), pp. 60–72Google Scholar
  406. 406.
    E.T. Carlson, H.A. Berman, Some observations on the calcium aluminate carbonate hydrates. J. Res. Nat. Bureau Stand. 64(4), 333–341 (1960)CrossRefGoogle Scholar
  407. 407.
    S. Mishra, A. Tiwari, Effect on compressive strength of concrete by partial replacement of cement with nano titanium dioxide and nano calcium carbonate. J. Civil Eng. Environ. Technol. 5(3), 426–429 (2016)Google Scholar
  408. 408.
    T. Hemalatha, M. Maitri, P. Vinoth Kumar, Nano modified high volume fly ash self-compacting concrte. Int. J. Res. in Eng. Technol. 4(13), 95–98 (2015)CrossRefGoogle Scholar
  409. 409.
    C. Vipulanandan, A. Mohammed, Smart cement rheological and piezoresistive behavior for oil well applications. J. Petrol. Sci. Eng. 135, 50–58 (2015)CrossRefGoogle Scholar
  410. 410.
    M.E.S.I. Saraya, I.M. Bakr, Influence of nano-barium sulfate agglomeration on microstructure and properties of the hardened cement-based materials. J. Mater. Sci. Chem. Eng. 3(11), 72–81 (2015)Google Scholar
  411. 411.
    N. Tsuyuki, R. Watanabe, K. Koizumi, Y. Umemura, O. Machinaga, Effects of barium salt on the fixation of chloride ions in hardened mortars. Cem. Concr. Res. 30, 1435–1442 (2000)CrossRefGoogle Scholar
  412. 412.
    O.B. Montes, M.M. Alonso, F. Puertas, Viscosity and water demand of limestone- and fly ash-blended cement pastes in the presence of superplasticisers. Constr. Build. Mater. 48, 417–423 (2013)CrossRefGoogle Scholar
  413. 413.
    M. Panfilova, N. Zubrev, V. Kashintseva, Modifying the structures of composite grouts with aluminosilicate nanotubes. Int. J. Appl. Eng. Res. 12(13), 3616–3621 (2017)Google Scholar
  414. 414.
    M.A. Ahmed, Y.A. Hassanean, K.A. Assaf, M.A. Shawkey, Fascinating improvement in mechanical properties of cement mortar using multiwalled carbon nanotubes and ferrite nanoparticles. Glob. J. Res. Eng. E Civil Struct. Eng. 15(1), 23–30 (2015)Google Scholar
  415. 415.
    M.A. Ahmed, Y.A. Hassanean, K.A. Assaf, M.A. Shawkey, The effect of incorporation of ferrite nanoparticles on compressive strength and resistivity of self-compacting concrete. Open J. Civil Eng. 5, 131–138 (2015)CrossRefGoogle Scholar
  416. 416.
    R. Alizadeh, J.J. Beaudoin, L. Raki, J.M. Maker, C–S–H seeding: an approach for the nanostructural tailoring of cement based materials, in 13th International Congress on the Chemistry of Cement, Madrid, Spain (2011)Google Scholar
  417. 417.
    J.J. Gatiero Redondo, J. Sánchez Dolado, Method for the manufacturing of cementitious C–S–H seeds. European Patent 2,878,585 (2017)Google Scholar
  418. 418.
    J.J. Thomas, H.M. Jennings, J.J. Chen, Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. J. Phys. Chem. C 113(11), 4327–4334 (2009)CrossRefGoogle Scholar
  419. 419.
    S.R. Badger, P.J. Tikalsky, B.E. Scheetz. Increased durability through nano-scale Seeding in Portland cement. Transp. Res. Board 1–12 (2002)Google Scholar
  420. 420.
    R. Reichenbach-Klinke, L. Nicoleau, Use of C–S–H suspensions in well cementing: Patent 9,409,820, U.S. (2016)Google Scholar
  421. 421.
    M.H. Hubler, J.J. Thomas, H.M. Jennings, Influence of nucleation seeding on the compressive strength of ordinary Portland cement and alkali activated blast-furnace slag. Cem. Concr. Res. 41(8), 842–846 (2011)CrossRefGoogle Scholar
  422. 422.
    G. Land, D. Stephan, Nanoparticles as accelerators for cement hydration, in 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials: R: Reports, no. 19, p. 93 (2012)Google Scholar
  423. 423.
    Z. Wang, Y. Yang, J. Li, Preparation of C–S–H-phase nuclei and its effects on compressive strength of cement. Mater. Sci. Technol. 15(6), 789–796 (2007)Google Scholar
  424. 424.
    A. Prabhu, J.C. Gimel, A. Ayuela, J.S. Dolado, Effect of nano seeds in C–S–H gel formation: simulation study from the colloidal point of view, in 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, pp. 877–886 (2015)Google Scholar
  425. 425.
    D.P. Bentz, G.P. Forney, Users’ guide to the NIST virtual cement and concrete testing laboratory. Version 1.0, NISTIR 6583 (2000)Google Scholar
  426. 426.
    H.J. Yim, J.H. Kim, S.H. Kwon, Effect of admixtures on the yield stresses of cement pastes under high hydrostatic pressures. Materials 9(3), 147 (2016)CrossRefGoogle Scholar
  427. 427.
    T.P. Chang, J.Y. Shih, K.M. Yang, T.C. Hsiao, Material properties of Portland cement paste with nano-montmorillonite. J. Mater. Sci. 42(17), 7478–7487 (2007)CrossRefGoogle Scholar
  428. 428.
    S. Aiswarya, Experimental investigation on concrete containing nano-metakaolin. Eng. Sci. Technol. Int. J. 3(1), 180–187 (2013)Google Scholar
  429. 429.
    M.S. Morsy, S.H. Alsayed, M. Aqel, Effect of nano-clay on mechanical properties and microstructure of ordinary Portland cement mortar. Int. J. Civil Environ. Eng. 10(01), 23–27 (2010)Google Scholar
  430. 430.
    M.S. Morsy, S.H. Alsayed, M. Aqel, Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr. Build. Mater. 25(1), 145–149 (2011)CrossRefGoogle Scholar
  431. 431.
    K. Patel, The use of nano clay as a constructional material. Int. J. Eng. Res. Appl. 2(4), 1382–1386 (2012)Google Scholar
  432. 432.
    Z.H. Naji, A.M. Ibrahem, S.A. Al-Mishhadani, The effect of nano metakaolin material on some properties of concrete. Diyala J. Eng. Sci. 6(1), 50–61 (2013)Google Scholar
  433. 433.
    A. Hakamy, F.U.A. Shaikh, I.M. Low, Characteristics of nanoclay and calcined nanoclay-cement nanocomposites. Compos. B Eng. 78, 174–184 (2015)CrossRefGoogle Scholar
  434. 434.
    Y.F. Fan, S.Y. Zhang, S.P. Shah, Influence of nanoclay on concrete subjected to freeze-thaw cycles and bond behavior between rebar and concrete. Key Eng. Mater. 711, 256–262 (2016)CrossRefGoogle Scholar
  435. 435.
    Y. Fan, S. Zhang, Q. Wang, S.P. Shah, The effects of nano-calcined kaolinite clay on cement mortar exposed to acid deposits. Constr. Build. Mater. 102, 486–495 (2016)CrossRefGoogle Scholar
  436. 436.
    M.S. Morsy, H.A. Aglan, Development and characterization of nanostructured-perlite-cementitious surface compounds. J. Mater. Sci. 42(24), 10188–10195 (2007)CrossRefGoogle Scholar
  437. 437.
    S.A. EI-Baky, S. Yehia, E.A. Khattab, I.S. Khalil. Effect of nano-clay on the mechanical properties of fresh and hardened cment mortar comparing with nano-silica, in 2nd International Conference on Materials, Energy and Environments, Yokohama, Japan, August 2013Google Scholar
  438. 438.
    M.J.M. Faizal, M.S. Hamidah, M.S.M. Norhasri, I. Noorli, M.P.M.E. Hafez, Chloride permeability of nanoclayed ultra-high performance concrete, in InCIEC 2014 (Springer, Singapore, 2015), pp. 613–623Google Scholar
  439. 439.
    M. Murtaza, M.K. Rahman, A.A. Al-Majed, Effect of nanoclay on mechanical and rheological properties of oil well cement slurry under HPHT environment, in International Petroleum Technology Conference, pp. 1–9 (2016)Google Scholar
  440. 440.
    A.M. Mohamed, Influence of nano materials on flexural behavior and compressive strength of concrete. J. Hous. Build. Nat. Res. Center 12(2), 212–225 (2016)Google Scholar
  441. 441.
    Y. Fan, S. Zhang, Q. Wang, S.P. Shah, Effects of nano-kaolinite clay on the freeze–thaw resistance of concrete. Cem. Concr. Compos. 62, 1–12 (2015)CrossRefGoogle Scholar
  442. 442.
    J. Wei, C. Meyer. Hydration, mechanical properties and microstructure of Portland cement substituted by a combination of metakaolin and nano-clay, in 2nd International Conference and Exhibition on Materials Science and Engineering, Las Vegas, USA, October 2013Google Scholar
  443. 443.
    A. Bahari, A. Sadeghi-Nik, M. Roodbari, A. Sadeghi-Nik, E. Mirshafiei, Experimental and theoretical studies of ordinary Portland cement composites contains nano LSCO perovskite with Fokker-Planck and chemical reaction equations. Constr. Build. Mater. 163, 247–255 (2018)CrossRefGoogle Scholar
  444. 444.
    K.M. Stephenson. Characterizing the behavior and properties of nano cellulose reinforced ultra high performance concrete. Master dissertation, The University of Maine, 2011Google Scholar
  445. 445.
    M.R. Dousti, Y. Boluk, V. Bindiganavile, The influence of cellulose nanocrystals on the fresh properties of oil well cement paste, in CONMAT’15 Conference, pp. 1–13 (2015)Google Scholar
  446. 446.
    J. Clarmaunt, M. Ardanuy, L.J. Fernandez-Carrasco, Wet/dry cycling durability of cement mortar composites reinforced with micro-and nanoscale cellulose pulps. BioResources 10(2), 3045–3055 (2015)Google Scholar
  447. 447.
    L. Ferrara, S.R. Ferreira, M. della Torre, V. Krelani, F.A. de Silva, R.D. Toledo Filho, Effect of cellulose nanopulp on autogenous and drying shrinkage of cement based composites, in Nanotechnology in Construction (Springer, Cham, 2015), pp. 325–330CrossRefGoogle Scholar
  448. 448.
    X. Sun, Q. Wu, J. Zhang, Y. Qing, S. Lee, Rheology, curing temperature and mechanical performance of oil well cement: Combined effect of cellulose nanofibers and graphene nano-platelets. Mater. Des. 114, 92–101 (2017)CrossRefGoogle Scholar
  449. 449.
    L. Jiao, M. Su, L. Chen, Y. Wang, H. Zhu, H. Dai, Natural cellulose nanofibers as sustainable enhancers in construction cement. PLoS ONE 11(12), 1–13 (2016)Google Scholar
  450. 450.
    J. Flores, M. Kamali, A. Ghahremaninezhad, An investigation into the properties and microstructure of cement mixtures modified with cellulose nanocrystal. Materials 10(5), 498–514 (2017)CrossRefGoogle Scholar
  451. 451.
    F. Mohammadkazemi, K. Doosthoseini, E. Ganjian, M. Azin, Manufacturing of bacterial nano-cellulose reinforced fiber-cement composites. Constr. Build. Mater. 101, 958–964 (2015)CrossRefGoogle Scholar
  452. 452.
    R. Mejdoub, H. Hammi, J.J. Suñol, M. Khitouni, A. M ‘nif, S. Boufi, Nanofibrillated cellulose as nanoreinforcement in Portland cement: thermal, mechanical and microstructural properties. J. Compos. Mater. 51(17), 2491–2503 (2017)CrossRefGoogle Scholar
  453. 453.
    Y. Cao, P. Zavaterri, J. Youngblood, R. Moon, J. Weiss, The influence of cellulose nanocrystal additions on the performance of cement paste. Cem. Concr. Compos. 56, 73–83 (2015)CrossRefGoogle Scholar
  454. 454.
    V.C. Correia, S.F. Santos Jr., H. Savastano, Effect of the accelerated carbonation in fibercement composites reinforced with eucalyptus pulp and nanofibrillated cellulose. Composites 9(1), 7–10 (2015)Google Scholar
  455. 455.
    S. Kutcharlapati, S.B. Singh, N.P. Rajamane, Influence of nano cellulose fibres on Portland cement matrix. Metals Mater. Process. 20(20), 307–314 (2008)Google Scholar
  456. 456.
    S.J. Peters, Fracture toughness investigations of micro and nano cellulose fiber reinforced ultra high performance concrete. Master dissertation, University of Maine, 2009Google Scholar
  457. 457.
    S. Peters, T. Rushing, E. Landis, T. Cummins, Nanocellulose and microcellulose fibers for concrete. Transp. Res. Rec. J. Transp. Res. Board 2142, 25–28 (2010)CrossRefGoogle Scholar
  458. 458.
    D. Mazlan, M.M. Din, C. Tokoro, I.S. Ibrahim, Cellulose nanocrystals addition effects on cement mortar matrix properties, in Proceedings of Research World International Conference, Osaka, Japan, 9th December 2015. ISBN 978-93-85832-67-3Google Scholar
  459. 459.
    S. Lapidot, O. Shoseyov, T. Gustafsson, L. Carmel-Goren, Nano crystalline cellulose in construction applications: U.S. Patent Application 15/311,893. 30 March 2017Google Scholar
  460. 460.
    N. Bhalero, A.S. Wayal, P.G. Patil, A.K. Bharimalla, A review on effect of nano cellulose on concrete. Int. J. Civil Struct. Eng. Res. 3(1), 251–254 (2015)Google Scholar
  461. 461.
    R.A. Khushnood, S. Ahmad, G.A. Ferro, L. Restuccia, J.M. Tulliani, P. Jagdale, Modified fracture properties of cement composites with nano/micro carbonized bagasse fibers. Frattura Ed Integr. Strutt. 9(34), 534–542 (2015)Google Scholar
  462. 462.
    L.Q. Zhang, Preparation and performances of nano-scale silica and carbon fibers filled cement mortars. Master dissertation, Dalian University of Technology, 2015Google Scholar
  463. 463.
    Y.F. Sun, P.W. Gao, H.L. Peng, H.W. Liu, X.L. Lu, K. Song, Electromagnetic wave absorbing and mechanical properties of cement-based composite panel with different nanomaterials. Adv. Compos. Lett. 26(1), 6–11 (2017)Google Scholar
  464. 464.
    J.L. Wang, B.G. Han, Z. Li, X. Yu, X.F. Dong, Effect investigation of nanofillers on C–S–H gel structure with Si NMR spectra. J. Mater. Civ. Eng. 31(1), 04018352 (2019)CrossRefGoogle Scholar
  465. 465.
    P. Hlavacek, V. Smilauer, P. Padevet, L. Nasibulina, A.G. Nasibulin, Cement grains with surface-shyntetized carbon nanofibres: mechanical properties and nanostructure, in Proceedings of 3rd International Conference NANOCON 2011 (Tanger Ltd., Brno, Czech Republic, 2011), pp. 75–80Google Scholar
  466. 466.
    P.R. Mudimela, L.I. Nasibulina, A.G. Nasibulin, A. Cwirzen, M. Valkeapää, K. Habermehl-Cwirzen, O.V. Tolochko, Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials. J. Nanomater. 526128, 1–4 (2009)CrossRefGoogle Scholar
  467. 467.
    A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov A.S. Anisimov, A. Hassanien. A novel hybrid carbon material. Nat. Nanotechnol. 2(3), 156–161 (2007)CrossRefGoogle Scholar
  468. 468.
    A.G. Nasibulin, S.D. Shandakov, L.I. Nasibulina, A. Cwirzen, R.M. Prasantha, K. Habermehl-Cwirzen, D.A. Grishin, Y.V. Gavrilov, J.E.M. Malm, Y. Tian, V. Penttala, M.J. Karppinen, E.I. Kauppinen, A novel cement-based hybrid material. New J. Phys. 11(2), 023013 (2009)CrossRefGoogle Scholar
  469. 469.
    P. Ludvig, L.O. Ladeira, J.M. Calixto, I.C.P. Gaspar, V.S. Melo, In situ synthesis of multiwall carbon nanotubes on Portland cement clinker, in 11th International Conference on Advanced Materials (2009)Google Scholar
  470. 470.
    A.G. Nasibulin, T. Koltsova, L.I. Nasibulina et al., A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta Mater. 61(6), 1862–1871 (2013)CrossRefGoogle Scholar
  471. 471.
    L.I. Nasibulina, I.V. Anoshkin, A.V. Semencha et al., Carbon nanofiber/clinker hybrid material as a highly efficient modificator of mortar mechanical properties. Mater. Phys. Mech. 13, 77–84 (2012)Google Scholar
  472. 472.
    P. Ludvig, J.M. Calixto, L.O. Ladeira et al., Using converter dust to produce low cost cementitious composites by in situ carbon nanotube and nanofiber synthesis. Materials 4(3), 575–584 (2011)CrossRefGoogle Scholar
  473. 473.
    O.M. Dunens, K.J. Mackenzie, A.T. Harris, Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts. Environ. Sci. Technol. 43(20), 7889–7894 (2009)CrossRefGoogle Scholar
  474. 474.
    X.Y. Zhang, Z. Liu, Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4(3), 707–714 (2012)MathSciNetCrossRefGoogle Scholar
  475. 475.
    A. Cwirzen, K. Habermehl-Cwirzen, D. Shandakov et al., Properties of high yield synthesised carbon nano fibres/Portland cement composite. Adv. Cem. Res. 21(4), 141–146 (2009)CrossRefGoogle Scholar
  476. 476.
    L.I. Nasibulina, I.V. Anoshkin, S.D. Shandakov, A.G. Nasibulin, A. Cwirzen et al., Direct synthesis of carbon nanofibers on cement particles. J. Transp. Res. Board 2142(1), 96–101 (2010)CrossRefGoogle Scholar
  477. 477.
    P. Hlaváček, V. Šmilauer, Fracture properties of cementitious composites reinforced with carbon nanofibers/nanotubes. Eng. Mech. 211, 391–397 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Baoguo Han
    • 1
    Email author
  • Siqi Ding
    • 2
  • Jialiang Wang
    • 1
  • Jinping Ou
    • 1
  1. 1.School of Civil EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations