Advertisement

Future Developments and Challenges of Nano-Engineered Cementitious Composites

  • Baoguo HanEmail author
  • Siqi Ding
  • Jialiang Wang
  • Jinping Ou
Chapter

Abstract

Nano science and technology shapes a great future from small things. The research and development of nano-engineered cementitious composites has produced a revolution in the field of cementitious composites toward sustainable infrastructures. Although the nano-engineered cementitious composites got rapid development in nearly 20 years, some critical challenges in design, fabrication/processing, test/characterization and simulation, properties/performances, mechanisms, and models, applications and potential risks of nano-engineered cementitious composites are needed to be addressed for promoting their large-scale applications.

Keywords

Nano-engineered cementitious composites Challenges Development Risks 

References

  1. 1.
    B.G. Han, X. Yu, J.P. Ou, Self-sensing Concrete in Smart Structures (Elsevier, 2014)Google Scholar
  2. 2.
    B.G. Han, L.Q. Zhang, J.P. Ou, Smart and Multifunctional Concrete Toward Sustainable Infrastructures (Springer, 2017)Google Scholar
  3. 3.
    F. Xi, S.J. Davis, P. Ciais, D. Crawford-Brown, D. Guan, C. Pade, T. Shi, M. Syddall, J. Lv, L. Ji, Substantial global carbon uptake by cement carbonation. Nat. Geosci. 9(12), 880–883 (2016)CrossRefGoogle Scholar
  4. 4.
    Z. Li, S.Q. Ding, X. Yu, B.G. Han, J.P. Ou, Multifunctional cementitious composites modified with nano titanium dioxide: a review. Compos. A Appl. Sci. Manuf. 111, 115–137 (2018)CrossRefGoogle Scholar
  5. 5.
    L.Q. Zhang, S.Q. Ding, L.W. Li, S.F. Dong, D.N. Wang, X. Yu, B.G. Han, Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials. Compos. A Appl. Sci. Manuf. 109, 303–320 (2018)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    P.K. Mehta, P.J.M. Monteiro, Concrete: Microstructure, Properties and Materials (McGraw-Hill, New York, 2006)Google Scholar
  8. 8.
    M.S. Shetty, Concrete Technology: Theory and Practice (S. Chand and Company, Limited, 2000)Google Scholar
  9. 9.
    A.J. Boyd, S. Mindess, Cement and Concrete: Trends and Challenges (American Ceramics Society, 2002)Google Scholar
  10. 10.
    J.B. Newman, B.S. Choo, Advanced Concrete Technology Set (A Butterworth-Heinemann Title, 2003)Google Scholar
  11. 11.
    Y. Malier, High Performance Concrete: From Material to Structure (Taylor and Francis, 1992)Google Scholar
  12. 12.
    O.E. Gjorv, K. Sakai, Concrete Technology for a Sustainable Development in the 21st Century (Taylor and Francis, 2007)Google Scholar
  13. 13.
    S.Q. Ding, L.Q. Zhang, X. Yu, B.G. Han, J.P. Ou, Nanotechnology in concrete: small things shape a great future. Trends Civil Eng. Material Sci. 1(1), 1–5 (2018)Google Scholar
  14. 14.
    Q.F. Zheng, B.G. Han, X. Cui, X. Yu, J.P. Ou, Graphene-engineered cementitious composites: small makes a big impact. Nanomater. Nanotechnol. 7, 1–18 (2017)Google Scholar
  15. 15.
    X. Wang, Z. Li, B. Han, B.G. Han, X. Yu, S.Z. Zeng, J.P. Ou, Intelligent concrete with self-x capabilities for smart cities. J. Smart Cities 2(2), 1–39 (2016)Google Scholar
  16. 16.
    B.G. Han, L.Q. Zhang, S.Z. Zeng, S.F. Dong, X. Yu, R.W. Yang, J.P. Ou, Nano-core effect in nano-engineered cementitous composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRefGoogle Scholar
  17. 17.
    B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, X. Yu, J.P. Ou, Review of nanocarbon-engineered multifunctional cementitious composites. Compos. A Appl. Sci. Manuf. 70, 69–81 (2015)Google Scholar
  18. 18.
    B.G. Han, S.Q. Ding, X. Yu, Intrinsic self-sensing concrete and structures: a review. Measurement 59, 110–128 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Khitab, W. Anwar, Advanced Research on Nanotechnology for Civil Engineering Applications (IGI Global, 2016)Google Scholar
  20. 20.
    S. Manso, W. De Muynck, I. Segura, A. Aguado, K. Steppe, N. Boon, N. De Belie, Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth. Sci. Total Environ. 481, 232–241 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Manso, G. Mestres, M. Pau Ginebra, N. De Belie, I. Segura, A. Aguado, Development of a low pH cementitious material to enlarge bioreceptivity. Constr. Build. Mater. 54, 485–495 (2014)CrossRefGoogle Scholar
  22. 22.
    S.M. Al-Thawadi, High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria. Dissertation for the Doctor Degree, Mudroch University, Western Australia, 2008Google Scholar
  23. 23.
    J. Zhou, Merging of Metamaterials and Nature Materials (Science Press, 2017)Google Scholar
  24. 24.
    J.S. Chou, C.F. Tsai, A.D. Pham, Y.H. Lu, Machine learning in concrete strength simulations: multi-nation data analytics. Constr. Build. Mater. 73, 771–780 (2014)CrossRefGoogle Scholar
  25. 25.
    B.G. Han, Y.Y. Wang, S.F. Dong, L.Q. Zhang, S.Q. Ding, X. Yu, J.P. Ou, Smart concrete and structures: a review. J. Intell. Mater. Syst. Struct. 26(1), 1303–1345 (2015)CrossRefGoogle Scholar
  26. 26.
    B.G. Han, S.F. Dong, L.Q. Zhang, S.Q. Ding, S.W. Sun, Y.Y. Wang, Book: R&D of China’s Strategic New Industries-Functional Materials. Chapter 6: Functional Civil Engineering Materials (China Machine Press. 2016), pp. 195–298Google Scholar
  27. 27.
    B.G. Han, S.Q. Ding, S.W. Sun, L.Q. Zhang, J.P. Ou, Chapter 33: chemical modification of carbon nanotubes/nanofibers for application in cement and concrete field, in Book: Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications, ed. by V.K. Thakur (Taylor & Francis CRC, 2015), pp. 748–773Google Scholar
  28. 28.
    B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, S.F. Dong, X. Yu, Chapter 8: Nano carbon materials filled cementitious composites: fabrication, properties and application, in Book: Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering, ed. by K.J. Loh, S. Nagarajaiah (Elsevier, 2015), pp. 153–181Google Scholar
  29. 29.
    L.Q. Zhang, S.Q. Ding, S.W. Sun, B.G. Han, X. Yu, J.P. Ou, Chapter 2: Nano-scale behavior and nano-modification of cement and concrete materials, in Book: Advanced Research on Nanotechnology for Civil Engineering Applications, ed. by A. Khitab, W. Anwar (IGI Global, 2016), pp. 28–79Google Scholar
  30. 30.
    S.W. Sun, X. Yu, B.G. Han, J.P. Ou, In situ growth of carbon nanotubes/carbon naonfiber on cement/mineral admixture particles: a review. Constr. Build. Mater. 49, 835–840 (2013)CrossRefGoogle Scholar
  31. 31.
    B.G. Han, X. Yu, J.P. Ou. Chapter 1: Multifunctional and smart carbon nanotube reinforced cement-based materials, in Book: Nanotechnology in Civil Infrastructure: A Paradigm Shift, ed. by K. Gopalakrishnan, B. Birgisson, P. Taylor, N.O. Attoh-Okine (Springer, 2011), pp. 1–47, 276pGoogle Scholar
  32. 32.
    A. Grumezescu, Fabrication and Self-assembly of Nanobiomaterials (Elsevier Science, 2016)Google Scholar
  33. 33.
    A.M. Ovrutsky, A. S Prokhoda, M.S. Rasshchupkyna, Computational Materials Science: Surfaces, Interfaces, Crystallization (Elsevier, 2013)Google Scholar
  34. 34.
    J.P. Schaffer, A. Saxena, S.D. Antolovich, T.H. Sanders Jr., S.B. Warner, The Science and Design of Engineering Materials (WCB/McGraw-Hill, 1999)Google Scholar
  35. 35.
    S. Zhang, L. Li, A. Kumar, Materials Characterization Techniques (CRC Press, 2008)Google Scholar
  36. 36.
    Carpinteri, A.R. Ingraffea, Material Characterization and Testing (D. Reidel Publishing Co., 1984)Google Scholar
  37. 37.
    M.W. Kurdowski, Cement and Concrete Chemistry (Springer, 2014)Google Scholar
  38. 38.
    S. Jiang, D.C. Zhou, L.Q. Zhang, J. Ouyang, X. Yu, X. Cui, B.G. Han, Comparison of compressive strength and electrical resistivity of cementitious composites with different nano- and micro-fillers. Arch. Civil Mech. Eng. 18, 60–68 (2018)CrossRefGoogle Scholar
  39. 39.
    R. de Borst, E. Ramm, Multiscale Methods in Computational Mechanics (Springer, 2011)Google Scholar
  40. 40.
    R.F. Gibson, Principles of Composite Material Mechanics (CRC Press, 2007)Google Scholar
  41. 41.
    R.M. Jones, Mechanics of Composites Materials (Taylor and Francis, 2015)Google Scholar
  42. 42.
    D. Kondepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, 1998)Google Scholar
  43. 43.
    P.C. Hewlett, Lea’s Chemistry of Cement and Concrete, 4th edn. (Elsevier, 1988)Google Scholar
  44. 44.
    E.D. Schneider, J.J. Kay, Order from disorder: the thermodynamics of complexity in biology, in What is Life: The Next Fifty Years. Reflections on the Future of Biology, ed. by P.M. Michael, A.J.O. Luke (Cambridge University Press, 1995), pp. 161–172Google Scholar
  45. 45.
    A. Bentur, S. Mindess, Fibre Reinforced Cementitious Composites, 2nd edn. (Taylor and Francis, 2006)Google Scholar
  46. 46.
    ACI Committee Report 548.3R-03. Polymer-Modified Concrete. American Concrete Institute (2003)Google Scholar
  47. 47.
    M.H. Tan, Y.Y. Huang, Surface Physical Chemistry (China Architecture and Building Press, 1985)Google Scholar
  48. 48.
    Z.H. Guo, Principles of Reinforced Concrete (Tsinghua University Press, 2014)Google Scholar
  49. 49.
    J.P. Schaffer, The Science and Design of Engineering Materials (Mc Graw Hill, 2003)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Baoguo Han
    • 1
    Email author
  • Siqi Ding
    • 2
  • Jialiang Wang
    • 1
  • Jinping Ou
    • 1
  1. 1.School of Civil EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations