Advertisement

Basic Principles of Nano-Engineered Cementitious Composites

  • Baoguo HanEmail author
  • Siqi Ding
  • Jialiang Wang
  • Jinping Ou
Chapter

Abstract

The cementitious composites are multi-component and multi-phase materials; thus they feature complex thermodynamics and kinetics as well as multi-scale and multi-equal characteristics according to the fundamental and the hierarchy of cementitious composites. The properties/performances of cementitious composites closely depend on their compositions and fabrication/processing as well as structures. Because the properties/performances of each scale derive from those of the next smaller scale, the nano science and technology provides a bottom-up approach for understanding and controlling the cementitious composites. The principles of nano-engineered cementitious composites can be attributed to the nano-core effect. The behaviors of the nano-engineered cementitious composites are governed by nano-core effect zone, i.e., nano-core-shell element.

Keywords

Cementitious composites Nano-engineered Principles Hierarchy Nano-core effect 

References

  1. 1.
    B.G. Han, L.Q. Zhang, J.P. Ou, Smart and Multifunctional Concrete toward Sustainable Infrastructures (Springer, 2017)Google Scholar
  2. 2.
    P.K. Mehta, P.J.M. Monteiro, Concr. Microstruct. (McGraw-Hill, Properties and Materials, 2006)Google Scholar
  3. 3.
    B.G. Han, X. Yu. J.P. Ou, Self-sensing Concrete in Smart Structures (Elsevier, 2014)Google Scholar
  4. 4.
    G.C. Bye, Portland Cement: Composition, Production and Properties, 2nd edn. (Thomas Telford Publishing. 1999)Google Scholar
  5. 5.
    J.F. Young, S. Mindess, R.J. Gragy, A. Bentur, The Science and Technology of Civil Engineering (Prentice Hall, 1998)Google Scholar
  6. 6.
    J. Bensted, P. Barnes. Structure and Performance of Cements, 2nd edn. (Taylor and Francis 2008)Google Scholar
  7. 7.
    P.C. Hewlett, Lea’s Chemistry of Cement and Concrete, 4th edn. (Elsevier, 1988)Google Scholar
  8. 8.
    F.M. Lea, The Chemistry of Cement and Concrete, 2nd edn. (Edward Arnold Ltd, 1956)Google Scholar
  9. 9.
    S. Mindess, J.F. Young, D. Darwin, Concrete, 2nd edn. (Prentice Hall, 2002)Google Scholar
  10. 10.
    W. Kurdowski, Cement and Concrete Chemistry (Springer, 2014)Google Scholar
  11. 11.
    J.P. Schaffer, The Science and Design of Engineering Materials (Mc Graw Hill, 2003)Google Scholar
  12. 12.
    R.Z. Yuan, Cementitious Material Science, 2nd edn. (Wuhan University of Technology Press, 1996)Google Scholar
  13. 13.
    Z.J. Li, Advanced Concrete Technology (Wiley, 2011)Google Scholar
  14. 14.
    R.Z. Yuan, Essence and basic law of cementing process. Chin. Sci. Bull. 7, 25–28 (1961)Google Scholar
  15. 15.
    A. Bentur, S. Mindess, Fibre Reinforced Cementitious Composites, 2nd edn. (Taylor and Francis, 2006)Google Scholar
  16. 16.
    S. Gupta, J.G. Gonzalez, K.J. Loh, Self-sensing concrete enabled by nano-engineered cement-aggregate interfaces. Struct. Health Monit. 16(3), 309–323 (2017)CrossRefGoogle Scholar
  17. 17.
    R.X. Shen, Q. Cui, Q.H. Li, New Type Fiber Reinforced Cement-Based Composites (China Building Material Industry Publishing House, 2004)Google Scholar
  18. 18.
    ACI Committee Report 548.3R-03. Polymer-Modified Concrete. American Concrete Institute (2003)Google Scholar
  19. 19.
    D. Viehland, J.F. Li, L.J. Yuan, Z.K. Xu, Mesostructure of calcium silicate hydrate (C–S–H) gel in Portland cement paste: short-range ordering, nanocrystallinity, and local compositional order. J. Am. Ceram. Soc. 79(7), 1731–1744 (1996)CrossRefGoogle Scholar
  20. 20.
    W.G. Shen, G.J. Gang, C.M. Lian, W.S. Zhang, J.Y. Ye, H. Shi, Progresses on the nano scale structure model of C–S–H and the shrinkage mechanism. Mater. Sci. 2, 1–11 (2012)Google Scholar
  21. 21.
    N.R. Yang, C–S–H gel and its determination methods. Bull. Chin. Ceram. Soc. 2, 46–52 (2003)Google Scholar
  22. 22.
    N.R. Yang, Progeress in the investigation of structural model of C–S–H gel. J. Nanjing Univ. Chem. Technol. 20(2), 78–85 (1998)Google Scholar
  23. 23.
  24. 24.
    M. Meyyappan, Carbon Nanotubes Science and Applications (CRC Press, 2005)Google Scholar
  25. 25.
    G.Z. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Imperial College Press, 2004)Google Scholar
  26. 26.
    B.G. Han, L.Q. Zhang, S.Z. Zeng, S.F. Dong, X. Yu, R.W. Yang, J.P. Ou, Nano-core effect in nano-engineered cementitous composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRefGoogle Scholar
  27. 27.
    L.Q. Zhang, N. Ma, Y.Y. Wang, B.G. Han, X. Cui, X. Yu, J.P. Ou, Study on the reinforcing mechanisms of nano silica to cement-based materials with theoretical calculation and experimental evidence. J. Compos. Mater. 50(29), 4135–4146 (2016)CrossRefGoogle Scholar
  28. 28.
    Z. Li, S.Q. Ding, X. Yu, B.G. Han, J.P. Ou, Multifunctional cementitious composites modified with nano titanium dioxide: a review. Compos. A Appl. Sci. Manuf. 111, 115–137 (2018)CrossRefGoogle Scholar
  29. 29.
    B.G. Han, X. Yu, J.P. Ou, Chapter 1: Multifunctional and smart carbon nanotube reinforced cement-based materials, in Book: Nanotechnology in Civil Infrastructure: A Paradigm Shift, ed. by K. Gopalakrishnan, B. Birgisson, P. Taylor, N.O. Attoh-Okine (Springer 2011), pp. 1–47Google Scholar
  30. 30.
    Q.F. Zheng, B.G. Han, X. Cui, X. Yu, J.P. Ou, Graphene-engineered cementitious composites: small makes a big impact. Nanomater. Nanotechnol. 7, 1–18 (2017)Google Scholar
  31. 31.
    B.G. Han, Q.F. Zheng, S.W. Sun, S.F. Dong, L.Q. Zhang, X. Yu, J.P. Ou, Enhancing mechanisms of multi-layer graphenes to cementitious composites. Compos. A Appl. Sci. Manuf. 101, 143–150 (2017)CrossRefGoogle Scholar
  32. 32.
    X. Wang, Z. Li, B. Han, B.G. Han, X. Yu, S.Z. Zeng, J.P. Ou, Intelligent concrete with self-x capabilities for smart cities. J. Smart Cities. 2(2), 1–39 (2016)Google Scholar
  33. 33.
    B.G. Han, S.W. Sun, S.Q. Ding, L.Q. Zhang, X. Yu, J.P. Ou, Review of nanocarbon-engineered multifunctional cementitious composites. Compos. A Appl. Sci. Manuf. 70, 69–81 (2015)CrossRefGoogle Scholar
  34. 34.
    B.G. Han, S.Q. Ding, X. Yu, Intrinsic self-sensing concrete and structures: a review. Measurement 59, 110–128 (2015)CrossRefGoogle Scholar
  35. 35.
    B.R. Pamplin, Crystal Growth (Pergamon Press, 1975)Google Scholar
  36. 36.
    Z. Wang, Y.Z. Yang, J.H. Li, Preparation of C–S–H-phase nuclei and its effects on compressive strength of cement. Mater. Sci. Technol. 15(6), 789–791 (2007)Google Scholar
  37. 37.
    L.Q. Zhang, S.Q. Ding, S.W. Sun, B.G. Han, X. Yu, J.P. Ou. Chapter 2: Nano-scale behavior and nano-modification of cement and concrete materials, in Book: Advanced Research on Nanotechnology for Civil Engineering Applications, ed. by A. Khitab, W. Anwar, (IGI Global, 2016), 28–79Google Scholar
  38. 38.
    J.J. Gaitero, I. Campillo, A. Guerrero, Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cem. Concr. Res. 38(8), 1112–1118 (2008)CrossRefGoogle Scholar
  39. 39.
    A. Peyvandi, L.A. Sbia, P. Soroushian, K. Sobolev, Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite. Constrion Build. Mater. 48, 265–269 (2013)CrossRefGoogle Scholar
  40. 40.
    Y.F. Ruan, B.G. Han, X. Yu, W. Zhang, D.N. Wang, Carbon nanotubes reinforced reactive powder concrete. Compos. A Appl. Sci. Manuf. 112, 371–382 (2018)CrossRefGoogle Scholar
  41. 41.
    W. Zhang, B.G. Han, X. Yu, Y.F. Ruan, J.P. Ou, Nano boron nitride modified reactive powder concrete. Constrion Build. Mater. 179, 186–197 (2018)CrossRefGoogle Scholar
  42. 42.
    L.Q. Zhang, S.Q. Ding, L.W. Li, S.F. Dong, D.N. Wang, X. Yu, B.G. Han, Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials. Compos. A Appl. Sci. Manuf. 109, 303–320 (2018)CrossRefGoogle Scholar
  43. 43.
    Y.F. Ruan, B.G. Han, X. Yu, Z. Li, J.L. Wang, S.F. Dong, J.P. Ou, Mechanical behaviors of nano-zirconia filled reactive powder concrete under compression and flexture. Constrion Build. Mater. 162, 663–673 (2018)CrossRefGoogle Scholar
  44. 44.
    S. Jiang, B.H. Shan, J. Ouyang, W. Zhang, X. Yu, P.G. Li, B.G. Han, Rheological properties of cementitious composites with nano/fiber fillers. Constrion Build. Mater. 158, 786–800 (2018)CrossRefGoogle Scholar
  45. 45.
    S. Jiang, D.C. Zhou, L.Q. Zhang, J. Ouyang, X. Yu, X. Cui, B.G. Han, Comparison of compressive strength and electrical resistivity of cementitious composites with different nano- and micro-fillers. Arch. Civil Mech. Eng. 18, 60–68 (2018)CrossRefGoogle Scholar
  46. 46.
    X. Cui, B.G. Han, Q.F. Zheng, X. Yu, S.F. Dong, L.Q. Zhang, J.P. Ou, Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes. Compos. A Appl. Sci. Manuf. 103, 131–147 (2017)CrossRefGoogle Scholar
  47. 47.
    B.G. Han, Z. Wang, S.Z. Zeng, D.C. Zhou, X. Yu, X. Cui, J.P. Ou, Properties and modification mechanisms of nano-zirconia filled reactive powder concrete. Constr. Build. Mater. 141, 426–434 (2017)CrossRefGoogle Scholar
  48. 48.
    B.G. Han, S.Q. Ding, S.W. Sun, L.Q. Zhang, J.P. Ou. Chapter 33: Chemical modification of carbon nanotubes/nanofibers for application in cement and concrete field, in Book: Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications, ed. by V.K. Thakur (Taylor & Francis CRC, 2015), 748–773Google Scholar
  49. 49.
    J.G. Michopolulos, C. Farhat, Modeling and simulation of multiphysics systems. Trans. ASME 5, 198–213 (2005)Google Scholar
  50. 50.
    R. de Borst, E. Ramm, Multiscale Methods in Computational Mechanics (Springer, 2011)Google Scholar
  51. 51.
    A.M. Ovrutsky, A.S. Prokhoda, M.S. Rasshchupkyna, Computational Materials Science: Surfaces, Interfaces, Crystallization (Elsevier, 2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Baoguo Han
    • 1
    Email author
  • Siqi Ding
    • 2
  • Jialiang Wang
    • 1
  • Jinping Ou
    • 1
  1. 1.School of Civil EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations