Advertisement

Quantitative Strand

  • Jufang KongEmail author
Chapter

Abstract

This chapter is devoted to the quantitative strand in this study. In this chapter, research questions are first raised to serve as a concrete and visible goal to target at in the study. Then a detailed research design is presented, including research procedures, participants and research instruments. The great room in this chapter goes to the discussion of the findings obtained through the quantitative strand.

References

  1. Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49(2), 155–173.CrossRefGoogle Scholar
  2. Bachman, L. F., & Palmer, A. S. (1981). The construct validation of the FSI oral interview. Language Learning, 31(1), 67–86.CrossRefGoogle Scholar
  3. Bachman, L. F., & Palmer, A. S. (1982). The construct validation of some components of communicative proficiency. TESOL Quarterly, 16(4), 449–465.CrossRefGoogle Scholar
  4. Bentler, P. M. (2006). EQS 6.1 for Windows. [Computer software]. Encino, CA: Multivariate Software, Inc.Google Scholar
  5. Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81–105.CrossRefGoogle Scholar
  6. Dickinson, E. R., & Adelson, J. L. (2016). Choosing among multiple achievement measures: Applying multitrait-multimethod confirmatory factor analysis to state assessment, ACT, and student GPA data. Journal of Advanced Academics, 27(1), 4–22.CrossRefGoogle Scholar
  7. Green, R. (2013). Statistical analyses for language testers. Basingstoke: Palgrave Macmillan.CrossRefGoogle Scholar
  8. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.CrossRefGoogle Scholar
  9. Hu, L. T., & Bentler, P. M. (1995). Measuring model fit. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 76–99). Thousand Oaks: Sage.Google Scholar
  10. Jin, Y., & Fan, J. (2011). Test for English Majors (TEM) in China. Language Testing, 28(4), 589–596.CrossRefGoogle Scholar
  11. Joreskog, K. G. (1974). Analyzing psychological data by structural analysis of covariance matrices. In R. C. Atkinson, D. H. Krantz, R. D. Luce, & P. Suppes (Eds.), Contemporary developments in mathematical psychology: Measurement, psycho-physics, and neural information processing (Vol. 2) (pp. 1–56), San Francisco: Freeman.Google Scholar
  12. Kline, R. B. (2010). Principles and practice of structural equation modeling (3rd ed.). New York: The Guilford Press.Google Scholar
  13. Llosa, L. (2005). Building and supporting a validity argument for a standards-based classroom assessment of English proficiency. Unpublished doctoral dissertation, University of California, Los Angeles.Google Scholar
  14. Marsh, H. W. (1988). Multitrait-multimethod analyses. In J. P. Keeves (Ed.), Educational research methodology, measurement and evaluation: An international handbook (pp. 570–580). Oxford: Pergamon Press.Google Scholar
  15. Marsh, H. W., Byrne, B. M., & Craven, R. (1992). Overcoming problems in confirmatory factor analyses of MTMM data: The correlated uniqueness model and factorial invariance. Multivariate Behavioral Research, 27(4), 489–507.CrossRefGoogle Scholar
  16. Marsh, H. W. (1989). Confirmatory factor analyses of multitrait-multimethod data: Many problems and a few solutions. Applied Psychological Measurement, 13(4), 335–361.CrossRefGoogle Scholar
  17. Marsh, H. W., & Grayson, D. (1995). Latent variable models of multitrait-multimethod data. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 177–198). Thousand Oaks: Sage.Google Scholar
  18. NACFLT. (2000). Syllabus for university English language teaching. Shanghai: Shanghai Foreign Language Education Press.Google Scholar
  19. NACFLT. (2004a). Syllabus for TEM4. Shanghai: Shanghai Foreign Language Education Press.Google Scholar
  20. NACFLT. (2004b). Syllabus for TEM8. Shanghai: Shanghai Foreign Language Education Press.Google Scholar
  21. Pae, H. K. (2012). Convergence and discriminant: Assessing multiple traits using multiple methods. Educational Research and Evaluation, 18(6), 571–596.CrossRefGoogle Scholar
  22. Popham, M. J. (2000). Modern educational measurement: Practical guidelines for educational leaders (3rd ed.). Boston: Allyn & Bacon.Google Scholar
  23. Sawaki, Y. (2003). A comparison of summarization and free recall as reading comprehension tasks in web-based assessment of Japanese as a foreign language. Unpublished doctoral dissertation, University of California, Los Angeles.Google Scholar
  24. Sawaki, Y. (2007). Construct validation of analytic rating scales in a speaking assessment: Reporting a score profile and a composite. Language Testing, 24(3), 355–390.CrossRefGoogle Scholar
  25. Schmitt, N. (1978). Path analysis of multitrait-multimethod matrices. Applied Psychological Measurement, 2(2), 157–173.CrossRefGoogle Scholar
  26. Widaman, K. F. (1985). Hierarchically nested covariance structure models for multitrait-multimethod data. Applied Psychological Measurement, 9(1), 1–26.CrossRefGoogle Scholar
  27. Wimmers, P. F., & Fung, C. C. (2008). The impact of case specificity and generalisable skills on clinical performance: A correlated traits-correlated methods approach. Medical Education, 42(6), 580–588.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Zhejiang Normal UniversityJinhuaChina

Personalised recommendations