Advertisement

Plant-Bacterial Association and Their Role as Growth Promoters and Biocontrol Agents

  • Ahmed Abdul Haleem Khan
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 13)

Abstract

Bacteria are common among the microorganisms that colonize both the aerial and underground parts of plant systems. The colonization could result in a benefit to improve fitness in the ecosystem they live by a variety of positive activities. Both the gram-positive and gram-negative bacteria were found in association with plants. It was found from the available literature number of evidence recorded that the plant-associated bacteria were able to reduce the burden of pathogens and support plant growth promotion. Researchers proved that bacterial isolates for plant growth promotion and biocontrol of pathogens from different domesticated plants were efficient antifungals, antibacterials and antinematicidal than synthetic agrochemicals. The use of beneficial bacteria is an eco-friendly approach to develop a sustainable environment.

Keywords

Biocontrol Inoculants KSB PSB PGPR Nitrogen fixers 

References

  1. AbdElgawad H, Saleh AM, Al Jaouni S, Selim S, Hassan MO, Wadaan MAM, Shuikan AM, Mohamed HS, Hozzein WN (2019) Utilization of actinobacteria to enhance the production and quality of date palm (Phoenix dactylifera L.) fruits in a semi-arid environment. Sci Total Environ 665:690–697PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abedinzadeh M, Etesami H, Alikhani HA (2019) Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol Rep 10(21):e00305.  https://doi.org/10.1016/j.btre.2019.e00305CrossRefGoogle Scholar
  3. Agrillo B, Mirino S, Tate R, Gratino L, Gogliettino M, Cocca E, Tabli N, Nabti E, Palmieri G (2019) An alternative biocontrol agent of soil-borne phytopathogens: a new antifungal compound produced by a plant growth-promoting bacterium isolated from North Algeria. Microbiol Res 221:60–69PubMedCrossRefPubMedCentralGoogle Scholar
  4. Akbaba M, Ozaktan H (2018) Biocontrol of angular leaf spot disease and colonization of cucumber (Cucumis sativus L.) by endophytic bacteria. Egypt J Biol Pest Control 28:14CrossRefGoogle Scholar
  5. Al-Ali A, Deravel J, Krier F, Béchet M, Ongena M, Jacques P (2018) Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environ Sci Pollut Res 25:29910–29920CrossRefGoogle Scholar
  6. Alves LPS, do Amara FP, Daewon Kim D, Bom MT, Gavídia MP, Teixeira CS, Holthman F, Pedrosa FO, de Souza EM, Chubatsu LS, Muller-Santos M, Stacey G (2019) Importance of poly-3-hydroxybutyrate (PHB) metabolism to the ability of Herbaspirillum seropedicae to promote plant growth. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.02586-18
  7. Andreolli M, Zapparoli G, Angelini E, Lucchetta G, Lampis S, Vallini G (2019) Pseudomonas protegens MP12: a plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiol Res 219:123–131PubMedCrossRefPubMedCentralGoogle Scholar
  8. Ankati S, Rani TS, Podile AR (2018a) Changes in root exudates and root proteins in groundnut–Pseudomonas sp. interaction contribute to root colonization by bacteria and defense response of the host. J Plant Growth Regul.  https://doi.org/10.1007/s00344-018-9868-xCrossRefGoogle Scholar
  9. Ankati S, Rani TS, Podile AR (2018b) Partner-triggered proteome changes in the cell wall of Bacillus sonorensis and roots of groundnut benefit each other. Microbiol Res 217:91–10PubMedCrossRefPubMedCentralGoogle Scholar
  10. Arabi Z, Eghtedaey H, Gharehchmaghloo B, Faraji A (2018) Effects of biochar and biofertilizer on yield and qualitative properties of soybean and some chemical properties of soil. Arab J Geosci 11:672CrossRefGoogle Scholar
  11. Asl KK, Hatami M (2019) Application of zeolite and bacterial fertilizers modulates physiological performance and essential oil production in dragonhead under different irrigation regimes. Acta Physiol Plantarum 41:17CrossRefGoogle Scholar
  12. Bahramisharif A, Rose LE (2018) Efficacy of biological agents and compost on growth and resistance of tomatoes to late blight. Planta.  https://doi.org/10.1007/s00425-018-3035-2PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bajpai A, Singh B, Joshi S, Johri BN (2018) Production and characterization of an antifungal compound from Pseudomonas protegens strain W45. Proc Natl Acad Sci India Sect B Biol Sci 88(3):1081–1089CrossRefGoogle Scholar
  14. Baliyan N, Dheeman S, Maheshwari DK, Dubey RC, Vishnoi VK (2018) Rhizobacteria isolated under field first strategy improved chickpea growth and productivity. Environ Sustain 1:461–469CrossRefGoogle Scholar
  15. Banik A, Dash GK, Swain P, Kumar U, Mukhopadhyay SK, Dangar TK (2019) Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under greenhouse and field condition. Microbiol Res 219:56–65PubMedCrossRefPubMedCentralGoogle Scholar
  16. Brigido C, Singh S, Menéndez E, Tavares MJ, Glick BR, Félix MDR, Oliveira S, Carvalho M (2019) Diversity and functionality of culturable endophytic bacterial communities in chickpea plants. Plants (Basel) 8(2):pii: E42CrossRefGoogle Scholar
  17. Cetintas R, Kusek M, Fateh SA (2018) Effect of some plant growth-promoting rhizobacteria strains on root-knot nematode, Meloidogyne incognita, on tomatoes. Egypt J Biol Pest Control 28:7CrossRefGoogle Scholar
  18. Chakdar H, Dastager SG, Khire JM, Rane D, Dharne MS (2018) Characterization of mineral phosphate-solubilizing and plant growth-promoting bacteria from termite soil of the arid region. 3 Biotech 8(11):463PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chandra S, Askari K, Kumari M (2018) Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. J Genet Eng Biotechnol 16(2):581–586PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen SL, Tsai MK, Huang YM, Huang CH (2018) Diversity and characterization of Azotobacter isolates obtained from rice rhizosphere soils in Taiwan. Ann Microbiol 68:17–26CrossRefGoogle Scholar
  21. Chen L, Shi H, Heng J, Wang D, Bian K (2019) Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiol Res 218:41–48PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chenniappan C, Narayansamy M, Daniel GM, Ramaraj GB, Ponnusamy P, Sekar J, Ramalingam PV (2019) Biocontrol efficiency of native plant growth-promoting rhizobacteria against rhizome rot disease of turmeric. Biocontrol 129:55–64Google Scholar
  23. da Silva JF, da Silva TR, Escobar IEC, Fraiz ACR, Dos Santos JWM, do Nascimento TR, JMR DS, SJW P, de Melo RF, Signor D, Fernandes-Júnior PI (2018) Screening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different management in Brazilian drylands. World J Microbiol Biotechnol 34(12):186PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dall’Asta P, Velho AC, Pereira TP, Stadnik MJ, Arisi ACM (2019) Herbaspirillum seropedicae promotes maize growth but fails to control the maize leaf anthracnose. Physiol Mol Biol Plants 25(1):167–176PubMedCrossRefPubMedCentralGoogle Scholar
  25. Deodatus K, Moses T, Ernest S, Susan I, Balthazar M, Cargele M (2019) Maize response to chemical and microbial products on two Tanzanian soils. J Agric Sci 11(2):71–81Google Scholar
  26. Desai S, Bagyaraj DJ, Ashwin R (2019) Inoculation with microbial consortium promotes growth of tomato and capsicum seedlings raised in pro trays. Proc Natl Acad Sci India Sect B Biol Sci.  https://doi.org/10.1007/s40011-019-01078-w
  27. Dhaouadi S, Rouissi W, Mougou-Hamdane A, Nasraoui B (2018) Evaluation of biocontrol potential of Achromobacter xylosoxidans against Fusarium wilt of melon. Eur J Plant Pathol.  https://doi.org/10.1007/s10658-018-01646-2CrossRefGoogle Scholar
  28. Dhiman S, Dubey RC, Maheshwari DK, Kumar S (2019) Sulphur oxidizing buffalo dung bacteria enhance growth and yield of Foeniculum vulgare Mill. Can J Microbiol.  https://doi.org/10.1139/cjm-2018-0476PubMedCrossRefPubMedCentralGoogle Scholar
  29. Disi JO, Mohammad HK, Lawrence K, Kloepper J, Fadamiro H (2019) A soil bacterium can shape belowground interactions between maize, herbivores and entomopathogenic nematodes. Plant Soil.  https://doi.org/10.1007/s11104-019-03957-7CrossRefGoogle Scholar
  30. Elazouni I, Abdel-Aziz S, Rabea A (2019) Microbial efficacy as biological agents for potato enrichment as well as bio-controls against wilt disease caused by Ralstonia solanacearum. World J Microbiol Biotechnol 35:30PubMedCrossRefPubMedCentralGoogle Scholar
  31. El-Sayed ASA, Akbar A, Iqrar I, Ali R, Norman D, Brennan M, Ali GS (2018) A glucanolytic Pseudomonas sp. associated with Smilax bona-nox L. displays strong activity against Phytophthora parasitica. Microbiol Res 207:140–152PubMedCrossRefPubMedCentralGoogle Scholar
  32. Etesami H, Alikhani HA (2018) Bacillus species as the most promising bacterial biocontrol agents in rhizosphere and endorhiza of plants grown in rotation with each other. Eur J Plant Pathol 150:497–506CrossRefGoogle Scholar
  33. Ferjani R, Gharsa H, Estepa-Perez V, Gomez-Sanz E, Cherni M, Mahjoubi M, Boudabous A, Torres C, Ouzari HI (2019) Plant growth-promoting Rhizopseudomonas: expanded biotechnological purposes and antimicrobial resistance concern. Ann Microbiol 69:51–59CrossRefGoogle Scholar
  34. Freitas MA, Medeiros FHV, Melo IS, Pereira PF, Penaflor MFGV, Bento JMS, Pare PW (2018) Stem inoculation with bacterial strains Bacillus amyloliquefaciens (GB03) and Microbacterium imperiale (MAIIF2a) mitigates Fusarium root rot in cassava. Phytoparasitica.  https://doi.org/10.1007/s12600-018-0706-2CrossRefGoogle Scholar
  35. Gadhave KR, Devlin PF, Ebertz A, Ross A, Gange AC (2018) Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner. Microb Ecol 76:741–750PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gamez R, Cardinale M, Montes M, Ramirez S, Schnell S, Rodriguez F (2019) Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla). Microbiol Res 220:12–20PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gang S, Saraf M, Waite CJ, Buck M, Schumacher J (2018) Mutualism between Klebsiella SGM 81 and Dianthus caryophyllus in modulating root plasticity and rhizospheric bacterial density. Plant Soil 424:273–288PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gerayeli N, Baghaee-Ravari S, Tarighi S (2018) Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. Carotovorum and their role in the induction of resistance to potato soft rot infection. Eur J Plant Pathol 150:1049–1063CrossRefGoogle Scholar
  39. Grady EN, MacDonald J, Ho MT, Weselowski B, McDowell T, Solomon O, Renaud J, Yuan ZC (2019) Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiol 19:5PubMedPubMedCentralCrossRefGoogle Scholar
  40. Guevara-Avendano E, Carrillo JD, Ndinga-Muniania C, Moreno K, Mendez-Bravo A, Guerrero-Analco JA, Eskalen A, Reverchon F (2018) Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Antonie Van Leeuwenhoek 111:563–572PubMedCrossRefPubMedCentralGoogle Scholar
  41. Harun-Or-Rashid M, Kim HJ, Yeom SI, Yu HA, Manir MM, Moon SS, Kang YJ, Chung YR (2018) Bacillus velezensis YC7010 enhances plant defenses against brown plant hopper through transcriptomic and metabolic changes in rice. Front Plant Sci 9:1904PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ipek M (2019) Effect of rhizobacteria treatments on nutrient content and organic and amino acid composition in raspberry plants. Turk J Agric For 43.  https://doi.org/10.3906/tar-1804-16CrossRefGoogle Scholar
  43. Ishizawa H, Kuroda M, Inoue K, Inoue D, Morikawa M, Ike M (2019) Colonization and competition dynamics of plant growth-promoting/inhibiting bacteria in the phytosphere of the duckweed Lemna minor. Microb Ecol.  https://doi.org/10.1007/s00248-018-1306-xPubMedCrossRefPubMedCentralGoogle Scholar
  44. Islam MA, Nain Z, Alam MK, Banu NA, Islam MR (2018) In vitro study of biocontrol potential of rhizospheric Pseudomonas aeruginosa against Fusarium oxysporum f. sp. cucumerinum. Egypt J Biol Pest Control 28:90CrossRefGoogle Scholar
  45. Iyer B, Rajkumar S (2019) Genome sequence and comparative genomics of Rhizobium sp. Td3, a novel plant growth-promoting, phosphate-solubilizing Cajanus cajan symbiont. Microbiol Res 218:32–40PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jack CN, Wozniak KJ, Porter SS, Friesen ML (2019) Rhizobia protect their legume hosts against soil-borne microbial antagonists in a host-genotype-dependent manner. Rhizosphere 9:47–55CrossRefGoogle Scholar
  47. Jayakumar V, Sundar AR, Viswanathan R (2018) Biological suppression of sugarcane smut with endophytic bacteria. Sugar Tech.  https://doi.org/10.1007/s12355-018-0684-1CrossRefGoogle Scholar
  48. Jesus EC, Leite RA, Bastos RA, Aragao OOS, Araujo AP (2018) Co-inoculation of Bradyrhizobium stimulates the symbiosis efficiency of Rhizobium with common bean. Plant Soil 425:201–215CrossRefGoogle Scholar
  49. Jing X, Cui Q, Li X, Yin J, Ravichandran V, Pan D, Fu J, Tu Q, Wang H, Bian X, Zhang Y (2018) Engineering Pseudomonas protegens Pf-5 to improve its antifungal activity and nitrogen fixation. Microb Biotechnol.  https://doi.org/10.1111/1751-7915.13335
  50. John CJ, Radhakrishnan EK (2018) Chemicobiological insight into anti-phytopathogenic properties of rhizospheric Serratia plymuthica R51. Proc Natl Acad Sci India Sect B Biol Sci 88(4):1629–1635CrossRefGoogle Scholar
  51. Kabdwal BC, Sharma R, Tewari R, Tewari AK, Singh RP, Dandona JK (2019) Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egypt J Biol Pest Control 29:1CrossRefGoogle Scholar
  52. Kamutando CN, Vikram S, Kamgan-Nkuekam G, Makhalanyane TP, Greve M, Roux JJL, Richardson DM, Cowan DA, Valverde A (2019) The functional potential of the rhizospheric microbiome of an invasive tree species, Acacia dealbata. Microb Ecol 77:191–200PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kang JP, Huo Y, Kim YJ, Ahn JC, Hurh J, Yang DU, Yang DC (2019) Rhizobium panacihumi sp. nov., an isolate from ginseng-cultivated soil, as a potential plant growth-promoting bacterium. Arch Microbiol 201:99–105PubMedCrossRefPubMedCentralGoogle Scholar
  54. Karimi N, Zarea MJ, Mehnaz S (2018) Endophytic Azospirillum for enhancement of growth and yield of wheat. Environ Sustain 1:149–158CrossRefGoogle Scholar
  55. Kavino M, Manoranjitham SK (2018) In vitro bacterization of banana (Musa spp.) with native endophytic and rhizospheric bacterial isolates: novel ways to combat Fusarium wilt. Eur J Plant Pathol 151:371–387CrossRefGoogle Scholar
  56. Keerthana U, Nagendran K, Raguchander T, Prabakar K, Rajendran L, Karthikeyan G (2018) Deciphering the role of Bacillus subtilis var. amyloliquefaciens in the management of late blight pathogen of potato, Phytophthora infestans. Proc Natl Acad Sci India Sect B Biol Sci 88(3):1071–1080CrossRefGoogle Scholar
  57. Khan AAH, Naseem, Samreen S (2010) Antagonistic ability of Streptomyces species from composite soil against pathogenic bacteria. BioTechnol Indian J 4(4):222–225Google Scholar
  58. Khan AAH, Naseem RL, Prathibha B (2011) Screening and potency evaluation of antifungal from soil isolates of Bacillus subtilis on selected fungi. Adv Biotech 10(7):35–37Google Scholar
  59. Khan AAH, Naseem, Vardhini BV (2016) Microorganisms and their role in sustainable environment. In: Prasad R (ed) Environmental microbiology. IK International Publishing House, New Delhi, pp 60–88Google Scholar
  60. Khan AAH, Naseem, Vardhini BV (2017) Resource-conserving agriculture and role of microbes. In: Prasad R, Kumar N (eds) Microbes & sustainable agriculture. IK International Publishing House, New Delhi, pp 117–152Google Scholar
  61. Khan N, Martínez-Hidalgo P, Ice TA, Maymon M, Humm EA, Nejat N, Sanders ER, Kaplan D, Hirsch AM (2018) Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front Microbiol 9:2363PubMedPubMedCentralCrossRefGoogle Scholar
  62. Khanghahi MY, Pirdashti H, Rahimian H, Nematzadeh G, Sepanlou MG (2018) Potassium solubilizing bacteria (KSB) isolated from rice paddy soil: from isolation, identification to K use efficiency. Symbiosis 76:13–23CrossRefGoogle Scholar
  63. Khani AG, Enayatizamir N, Nourozi Masir M (2019) Impact of plant growth-promoting rhizobacteria on different forms of soil potassium under wheat cultivation. Lett Appl Microbiol.  https://doi.org/10.1111/lam.13132PubMedCrossRefPubMedCentralGoogle Scholar
  64. Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2019) Role of plant growth-promoting bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant Soil.  https://doi.org/10.1007/s11104-019-03932-2CrossRefGoogle Scholar
  65. Koiv V, Arbo K, Maivali U, Kisand V, Roosaare M, Remm M, Tenson T (2019) Endophytic bacterial communities in peels and pulp of five root vegetables. PLoS One 14(1):e0210542PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ku Y, Xu G, Tian X, Xie H, Yang X, Cao C (2018) Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6. PLoS One 13(11):e0200181PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kulimushi PZ, Basime GC, Nachigera GM, Thonart P, Ongena M (2018) Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in South Kivu. Environ Sci Pollut Res 25:29808–29821CrossRefGoogle Scholar
  68. Lin C, Tsai CH, Chen PY, Wu CY, Chang YL, Yang YL, Chen YL (2018) Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One 13(4):e0196520PubMedPubMedCentralCrossRefGoogle Scholar
  69. Linu MS, Asok AK, Thampi M, Sreekumar J, Jisha MS (2019) Plant growth traits of indigenous phosphate-solubilizing Pseudomonas aeruginosa isolates from chili (Capsicum annuum L.) rhizosphere. Commun Soil Sci Plant Anal.  https://doi.org/10.1080/00103624.2019:1566469
  70. Liu K, McInroy JA, Hu CH, Kloepper JW (2018) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant growth promotion in the presence of pathogens. Plant Dis 102(1):67–72CrossRefGoogle Scholar
  71. Ma Y, Látr A, Rocha I, Freitas H, Vosátka M, Oliveira RS (2019) Delivery of inoculum of Rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy 9:33CrossRefGoogle Scholar
  72. Manasfi Y, Cannesan MA, Riah W, Bressan M, Laval K, Driouich A, Vicre M, Trinsoutrot-Gattin I (2018) Potential of combined biological control agents to cope with Phytophthora parasitica, a major pathogen of Choisya ternata. Eur J Plant Pathol 152:1011–1025CrossRefGoogle Scholar
  73. Marian M, Morita A, Koyama H, Suga H, Shimizu M (2018) Enhanced biocontrol of tomato bacterial wilt using the combined application of Mitsuaria TWR114 and nonpathogenic Ralstonia sp. TCR112. J Gen Plant Pathol.  https://doi.org/10.1007/s10327-018-00834-6CrossRefGoogle Scholar
  74. Martins SJ, Faria AF, Pedroso MP, Cunha MG, Rocha MR, Medeiros FHV (2019) Microbial volatiles organic compounds control anthracnose (Colletotrichum lindemuthianum) in common bean (Phaseolus vulgaris L.). Biol Control 131:36–42CrossRefGoogle Scholar
  75. Meena VS, Zaid A, Maurya BR, Meena SK, Bahadur I, Saha M, Kumar A, Verma R, Wani SH (2018) Evaluation of potassium solubilizing rhizobacteria (KSR): enhancing K-bioavailability and optimizing K-fertilization of maize plants under Indo-Gangetic Plains of India. Environ Sci Pollut Res 25:36412–36424CrossRefGoogle Scholar
  76. Minaeva OM, Akimova EE, Tereshchenko NN, Zyubanova TI, Apenysheva MV, Kravets AV (2018) Effect of Pseudomonas bacteria on peroxidase activity in wheat plants when infected with Bipolaris sorokiniana. Russ J Plant Physiol 65(5):717–725CrossRefGoogle Scholar
  77. Mohamed I, Eid KE, Abbas MHH, Salem AA, Ahmed N, Ali M, Shah GM, Fang C (2019) Use of plant growth-promoting rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicol Environ Saf 171:539–548PubMedCrossRefPubMedCentralGoogle Scholar
  78. Mohammed BL, Hussein RA, Toama FN (2019) Biological control of Fusarium wilt in tomato by endophytic rhizobacteria. Energy Procedia 157:171–179CrossRefGoogle Scholar
  79. Mokrani S, Rai A, Belabid L, Cherif A, Cherif H, Mahjoubi M, Nabti E (2019) Pseudomonas diversity in western Algeria: role in the stimulation of bean germination and common bean blight biocontrol. Eur J Plant Pathol 153:397–415CrossRefGoogle Scholar
  80. Moreno-Velandia CA, Izquierdo-Garcia LF, Ongena M, Kloepper JW, Cotes AM (2018) Soil sterilization, pathogen and antagonist concentration affect biological control of Fusarium wilt of cape gooseberry by Bacillus velezensis Bs006. Plant Soil.  https://doi.org/10.1007/s11104-018-3866-4CrossRefGoogle Scholar
  81. Mougou I, Boughalleb-M’hamdi (2018) Biocontrol of Pseudomonas syringae pv. syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract. Egypt J Biol Pest Control 28:60CrossRefGoogle Scholar
  82. Mpanga IW, Nkebiwe PM, Kuhlmann M, Cozzolino V, Piccolo A, Geistlinger J, Berger N, Ludewig U, Neumann G (2019) The form of N supply determines plant growth promotion by P-solubilizing microorganisms in maize. Microorganisms 7:38PubMedCentralCrossRefGoogle Scholar
  83. Muresu R, Porceddu A, Sulas L, Squartini A (2019) Nodule-associated microbiome diversity in wild populations of Sulla coronaria reveals clues on the relative importance of culturable rhizobial symbionts and co-infecting endophytes. Microbiol Res 221:10–14PubMedCrossRefPubMedCentralGoogle Scholar
  84. Nikolic I, Beric T, Dimkic I, Popovic T, Lozo J, Fira D, Stankovic S (2019) Biological control of Pseudomonas syringae pv. aptata on sugar beet with Bacillus pumilus SS-10.7 and Bacillus amyloliquefaciens (SS-12.6 and SS-38.4) strains. J Appl Microbiol 126:165–176PubMedCrossRefPubMedCentralGoogle Scholar
  85. Pandey RP, Srivastava AK, Gupta VK, O’Donovan A, Ramteke PW (2018) Enhanced yield of diverse varieties of chickpea (Cicer arietinum L.) by different isolates of Mesorhizobium ciceri. Environ Sustain 1:425–435CrossRefGoogle Scholar
  86. Paungfoo-Lonhiennea C, Redding M, Pratt C, Wang W (2019) Plant growth-promoting rhizobacteria increase the efficiency of fertilizers while reducing nitrogen loss. J Environ Manag 233:337–341CrossRefGoogle Scholar
  87. Phour M, Sindhu SS (2019) Bio-herbicidal effect of 5-aminolevulinic acid producing rhizobacteria in suppression of Lathyrus aphaca weed growth. BioControl 64:221.  https://doi.org/10.1007/s10526-019-09925-5CrossRefGoogle Scholar
  88. Pramanik P, Goswami AJ, Ghosh S, Kalita C (2018) An indigenous strain of potassium-solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of North-East India. J Appl Microbiol 126:215–222PubMedCrossRefPubMedCentralGoogle Scholar
  89. Saechow S, Thammasittirong A, Kittakoop P, Prachya S, Thammasittirong SN (2018) Antagonistic activity against dirty panicle rice fungal pathogens and plant growth-promoting activity of Bacillus amyloliquefaciens BAS23. J Microbiol Biotechnol 28(9):1527–1535PubMedCrossRefPubMedCentralGoogle Scholar
  90. Sánchez-Cruz R, Vanquez IT, Batista-Garcia RA, Mendez-Santiago EW, Sanchez-Carbente MR, Leija A, Lira-Ruan V, Hernandez G, Wong-Villarreal A, Folch-Mallol JL (2019) Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potential. Microbiol Res 218:76–86PubMedCrossRefPubMedCentralGoogle Scholar
  91. Sandilya SP, Bhuyan PM, Gogoi DK, Kardong D (2018) Phosphorus solubilization and plant growth promotion ability of rhizobacteria of R. communis L growing in Assam, India. Proc Natl Acad Sci India Sect B Biol 88(3):959–966CrossRefGoogle Scholar
  92. Sarwar A, Latif Z, Zhang S, Hao J, Bechthold A (2019) A potential biocontrol agent Streptomyces violaceusniger AC12AB for managing potato common scab. Front Microbiol 10:202PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sepulveda-Caamano M, Gerding M, Vargas M, Moya-Elizondo E, Oyarzua P, Campos J (2018) Lentil (Lens culinaris L.) growth-promoting rhizobacteria and their effect on nodulation in coinoculation with rhizobia. Arch Agron Soil Sci 64(2):244–256CrossRefGoogle Scholar
  94. Shahzad R, Khan AL, Waqas M, Ullah I, Bilal S, Kim YH, Asaf S, Kang SM, Lee IJ (2019) Metabolic and proteomic alteration in phytohormone-producing endophytic Bacillus amyloliquefaciens RW-1 during methanol utilization. Metabolomics 15:16PubMedCrossRefPubMedCentralGoogle Scholar
  95. Sharma IP, Sharma AK (2019) Mycorrhizal colonization and phosphorus uptake in presence of PGPRs along with nematode infection. Symbiosis 77:185–187CrossRefGoogle Scholar
  96. Shifa H, Gopalakrishnan C, Velazhahan R (2018) Management of late leaf spot (Phaeoisariopsis personata) and root rot (Macrophomina phaseolina) diseases of groundnut (Arachis hypogaea L.) with plant growth-promoting rhizobacteria, systemic acquired resistance inducers, and plant extracts. Phytoparasitica 46:19–30CrossRefGoogle Scholar
  97. Shinde S, Zerbs S, Collart FR, Cumming JR, Noirot P, Larsen PE (2019) Pseudomonas fluorescens increases mycorrhization and modulates expression of antifungal defense response genes in roots of aspen seedlings. BMC Plant Biol 19:4PubMedPubMedCentralCrossRefGoogle Scholar
  98. Silva CF, Vitorino LC, Soares MA, Souchie EL (2018) Multifunctional potential of endophytic and rhizospheric microbial isolates associated with Butia purpurascens roots for promoting plant growth. Antonie Van Leeuwenhoek 111:2157–2174PubMedCrossRefPubMedCentralGoogle Scholar
  99. Slama HB, Cherif-Silini H, Chenari Bouket A, Qader M, Silini A, Yahiaoui B, Alenezi FN, Luptakova L, Triki MA, Vallat A, Oszako T, Rateb ME, Belbahri L (2019) Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium. Front Microbiol 9:3236PubMedPubMedCentralCrossRefGoogle Scholar
  100. Souza CDS, Barbosa ACO, Ferreira CF, Souza FVD, Rocha LS, de Souza EH, de Oliveira SAS (2019) Diversity of microorganisms associated to Ananas spp. from natural environment, cultivated and ex situ conservation areas. Sci Hortic 243:544–551CrossRefGoogle Scholar
  101. Sui J, Ji C, Wang X, Liu Z, Sa R, Hu Y, Wang C, Li Q, Liu X (2019) A plant growth-promoting bacterium alters the microbial community of continuous cropping poplar trees’ rhizosphere. J Appl Microbiol.  https://doi.org/10.1111/jam.14194PubMedCrossRefPubMedCentralGoogle Scholar
  102. Syed-Ab-Rahman SF, Carvalhais LC, Chua E, Xiao Y, Wass TJ, Schenk PM (2019a) Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth. Front Plant Sci 9:1502CrossRefGoogle Scholar
  103. Syed-Ab-Rahman SF, Xiao Y, Carvalhais LC, Ferguson BJ, Schenk PM (2019b) Suppression of Phytophthora capsici infection and promotion of tomato growth by soil bacteria. Rhizosphere 9:72–75CrossRefGoogle Scholar
  104. Tan T, Zhu J, Shen A, Li J, Yu Y, Zhang M, Zhao M, Li Z, Chen J, Gao C, Cheng Y, Guo L, Yan L, Sun X, Zeng L, Yan Z (2019) Isolation and identification of a Bacillus subtilis HZ-72 exhibiting biocontrol activity against flax seedling blight. Eur J Plant Pathol.  https://doi.org/10.1007/s10658-018-1595-4CrossRefGoogle Scholar
  105. Tao S, Wu Z, Wei M, Liu X, He Y, Ye BC (2019) Bacillus subtilis SL-13 biochar formulation promotes pepper plant growth and soil improvement. Can J Microbiol.  https://doi.org/10.1139/cjm-2018-0333PubMedCrossRefPubMedCentralGoogle Scholar
  106. Todeschini V, AitLahmidi N, Mazzucco E, Marsano F, Gosetti F, Robotti E, Bona E, Massa N, Bonneau L, Marengo E, Wipf D, Berta G, Lingua G (2018) Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Front Plant Sci 9:1611PubMedPubMedCentralCrossRefGoogle Scholar
  107. Trdan S, Vucajnk F, Bohinc T, Vidrih M (2019) The effect of a mixture of two plant growth-promoting bacteria from Argentina on the yield of potato, and occurrence of primary potato diseases and pest – short communication. Acta Agric Scand Sect B Soil Plant Sci 69(1):89–94Google Scholar
  108. Trotel-Aziz P, Abou-Mansour E, Courteaux B, Rabenoelina F, Clement C, Fontaine F, Aziz A (2019) Bacillus subtilis PTA-271 counteracts Botryosphaeria dieback in grapevine, triggering immune responses and detoxification of fungal phytotoxins. Front Plant Sci 10:25PubMedPubMedCentralCrossRefGoogle Scholar
  109. Verma JP, Tiwari KN, Yadav J, Mishra AK (2018) Development of microbial consortia for growth attributes and protein content in micropropagated Bacopamonnieri (L.). Proc Natl Acad Sci India Sect B Biol Sci 88(1):143–151CrossRefGoogle Scholar
  110. Vishwakarma K, Kumar V, Tripathi DK, Sharma S (2018) Characterization of rhizobacterial isolates from Brassica juncea for multitrait plant growth promotion and their viability studies on carriers. Environ Sustain 1:253–265CrossRefGoogle Scholar
  111. Wang CJ, Wang YZ, Chu ZH, Wang PS, Luan BH (2018) Root promoting effect and its regulation mechanisms of endophytic Bacillus amyloliquefaciens YTB1407 in sweet potato. Ying Yong Sheng Tai Xue Bao 29(11):3819–3828PubMedPubMedCentralGoogle Scholar
  112. Wang Q, Ye J, Wu Y, Luo S, Chen B, Ma L, Pan F, Feng Y, Yang X (2019) Promotion of the root development and Zn uptake of Sedum alfredii was achieved by an endophytic bacterium Sasm05. Ecotoxicol Environ Saf 172:97–104PubMedCrossRefPubMedCentralGoogle Scholar
  113. Won SJ, Kwon JH, Kim DH, Ahn YS (2019a) The effect of Bacillus licheniformis MH48 on control of foliar fungal diseases and growth promotion of Camellia oleifera seedlings in the coastal reclaimed land of Korea. Pathogens 8:6PubMedCentralCrossRefGoogle Scholar
  114. Won SJ, Choub V, Kwon JH, Kim DH, Ahn YS (2019b) The control of Fusarium root rot and development of coastal pine (Pinus thunbergii Parl.) seedlings in a container nursery by use of Bacillus licheniformis MH48. Forests 10:6CrossRefGoogle Scholar
  115. Wu H, Qin X, Wang J, Wu L, Chen J, Fan J, Zheng L, Tangtai H, Arafat Y, Lin W, Luo X, Lin S, Lin W (2019) Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes. Agric Ecosyst Environ 270–271:19–31CrossRefGoogle Scholar
  116. Xie L, Lehvävirta S, Timonen S, Kasurinen J, Niemikapee J, Valkonen JPT (2018) Species-specific synergistic effects of two plant growth-promoting microbes on green roof plant biomass and photosynthetic efficiency. PLoS One 13(12):e0209432PubMedPubMedCentralCrossRefGoogle Scholar
  117. Xu W, Ren H, Ou T, Wei J, Huang C, Li T, Strobel G, Zhou Z, Xie J (2018) Genomic and functional characterization of the endophytic Bacillus subtilis 7PJ-16 strain, a potential biocontrol agent of mulberry fruit sclerotiniose. Microb Ecol.  https://doi.org/10.1007/s00248-018-1247-4PubMedCrossRefPubMedCentralGoogle Scholar
  118. Yu F, Jing X, Li X, Wang H, Chen H, Zhong L, Yin J, Pan D, Yin Y, Fu J, Xia L, Bian X, Tu Q, Youming Zhang Y (2019) Recombineering Pseudomonas protegens CHA0: an innovative approach that improves nitrogen fixation with impressive bactericidal potency. Microbiol Res 218:58–65PubMedCrossRefPubMedCentralGoogle Scholar
  119. Zheng L, Gu C, Cao J, Li SM, Wang G, Luo YM, Guo JH (2018) Selecting bacterial antagonists for cucurbit downy mildew and developing an effective application method. Plant Dis 102(3):628–639PubMedCrossRefPubMedCentralGoogle Scholar
  120. Zheng BX, Ding K, Yang XR, Wadaan MAM, Hozzein WN, Penuelas J, Zhu YG (2019) Straw biochar increases the abundance of inorganic phosphate-solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Sci Total Environ 647:1113–1120PubMedCrossRefPubMedCentralGoogle Scholar
  121. Zhou D, Feng H, Schuelke T, De Santiago A, Zhang Q, Zhang J, Chuping Luo C, Wei L (2019) Rhizosphere microbiomes from root-knot nematode non-infested plants suppress nematode infection. Microb Ecol.  https://doi.org/10.1007/s00248-019-01319-5PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ahmed Abdul Haleem Khan
    • 1
  1. 1.Department of BotanyTelangana UniversityNizamabadIndia

Personalised recommendations