Advertisement

Biotic and Abiotic Stress Management by AM-Mediated PGPRs

  • Ashwini Marotirao Charpe
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 13)

Abstract

Arbuscular mycorrhizal fungi or AM fungi improve mineral and water nutrition of most of the land plants by developing a mutualistic symbiosis with the plants and thus increase the resistance of plants to biotic and abiotic stress. The intraradical proliferation of soilborne plant pathogens is greatly affected by root colonization by AM fungi. Specifically, the rhizobacteria associated with the AM extraradical network and the mycorrhizosphere are attributed to the biocontrol exerted by the AM fungi. Mycorrhizosphere is the soil zone under the influence of the root and AM association with some particular characteristics. Mycorrhizosphere provides a conducive environment for proliferation of antagonistic microorganisms that suppresses the growth of phytopathogens. Rhizobacteria associated with AM structures and mycorrhizosphere are found to have strong antagonistic potential against various soilborne phytopathogens. The phenomenon is attributed to the capacity of AM fungi to stimulate the establishment of antagonistic rhizobacteria in mycorrhizosphere ahead of the infection by root pathogens and triggering the localized and systemic defense mechanisms of the crop plants. Mechanisms of biocontrol, biocontrol of many diseases of various crop plants, and abiotic stress management under water and salt stress conditions of various crop plants by AM-mediated rhizobacteria have also been discussed in this chapter.

Keywords

Rhizobacteria AM fungi Mutualism Disease Resistance Antagonism 

References

  1. Akhtar MS, Siddiqui ZA (2008) Biocontrol of a root rot disease complex of chickpea by Glomus intraradices, Rhizobium sp., and Pseudomonas striata. Crop Protect 27:410–417CrossRefGoogle Scholar
  2. Akhtar MS, Siddiqui MA (2009) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar S, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–98Google Scholar
  3. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79CrossRefGoogle Scholar
  4. Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208–6215PubMedPubMedCentralCrossRefGoogle Scholar
  5. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  6. Augé RM (2001) Water relations, drought, and VA mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  7. Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740CrossRefGoogle Scholar
  8. Aysen K, Gulden B, Yasar E, Hakan K, Nalan B, Sezai E (2016) Influence of arbuscular mycorrhizae and plant growth promoting rhizobacteria on proline content, membrane permeability and growth of strawberry (Fragaria × ananassa Duch.) under salt stress. J Appl Bot Food Qual 89:89–97Google Scholar
  9. Azaizeh H, Marschner H, Römheld V, Wittenmayer L (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5(5):321–327.  https://doi.org/10.1007/BF00207404CrossRefGoogle Scholar
  10. Baath E, Hayman DS (1983) Plant growth responses to vesicular-arbuscular mycorrhizae XIV. Interactions with Verticillium wilt on tomato plants. New Phytol 95:419–426CrossRefGoogle Scholar
  11. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bharadwaj DP, Lundquist PO, Alstrom S (2008a) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth, and potato pathogens. Soil Biol Biochem 40:2494–2501CrossRefGoogle Scholar
  13. Bharadwaj DP, Lundquist PO, Persson P, Alstrom S (2008b) Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores (multitrophic interactions in the rhizosphere). FEMS Microbiol Ecol 65:310–322PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialized niche for rhizospheric and endocellular bacteria. Antonie van Leeuwenhoek Int – J Genet Mol Microbiol 81:365–371CrossRefGoogle Scholar
  15. Bianciotto V, Minerdi D, Perotto S, Bonfante P (1996a) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123–131CrossRefGoogle Scholar
  16. Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996b) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010PubMedPubMedCentralGoogle Scholar
  17. Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001a) Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur J Histochem 45:39–49PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001b) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and non-mycorrhizal carrot roots. Mol Plant-Microbe Interac 14:255–260CrossRefGoogle Scholar
  19. Bianciotto V, Genre A, Jargeat P, Lumini E, Becard G, Bonfante P (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through the generation of vegetative spores. Appl Environ Microbiol 70:3600–3608PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bonfante P (2003) Plants, mycorrhizal fungi and endobacteria: a dialog among cells and genomes. Biol Bull 204:215–220PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agronom 66:1–102CrossRefGoogle Scholar
  22. Budi SW, Van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150PubMedPubMedCentralGoogle Scholar
  23. Budi SW, Van Tuinen D, Arnould C, Dumasgaudot E, Gianinazzi-Pearson V, Gianinazzi S (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl Soil Ecol 15:191–199CrossRefGoogle Scholar
  24. Carlsen SCK, Understrup A, Fomsgaard IS, Mortensen AG, Ravnskov S (2008) Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil 302:33–43CrossRefGoogle Scholar
  25. Chang P (2007) The use of plant growth-promoting Rhizobacteria (PGPR) and an Arbuscular Mycorrhizal Fungus (AMF) to improve plant growth in saline soils for phytoremediation. A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of master of science in biology. Waterloo, Ontario, CanadaGoogle Scholar
  26. Christensen H, Jakobsen I (1993) Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L). Biol Fertil Soils 15:253–258CrossRefGoogle Scholar
  27. Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232CrossRefGoogle Scholar
  28. Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interact 11:1017–1028CrossRefGoogle Scholar
  29. Davis RM, Menge JA (1980) Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root rot of citrus. Phytopathology 70:447–452CrossRefGoogle Scholar
  30. Duineveld BM, Kowalchuk GA, Keijzer A, JDVE VJAV (2001) Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178PubMedPubMedCentralCrossRefGoogle Scholar
  31. Elsen A, Declerck S, De Waele D (2001) Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11:49–51CrossRefGoogle Scholar
  32. Elsen A, Declerck S, Waele DD (2003) Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311PubMedPubMedCentralCrossRefGoogle Scholar
  33. Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533CrossRefGoogle Scholar
  34. Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229–235PubMedCrossRefPubMedCentralGoogle Scholar
  35. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefPubMedCentralGoogle Scholar
  36. Garbaye J (1994) Mycorrhization helper bacteria: a new dimension in mycorrhizal symbiosis. Act Bot Gall 141:517–521CrossRefGoogle Scholar
  37. Garmendia I, Aguirreolea J, Goicoechea N (2006) Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae. BioControl 51:293–310CrossRefGoogle Scholar
  38. Gerdemann J (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–418CrossRefGoogle Scholar
  39. Gerdemann JW (1974) Vesicular-arbuscular mycorrhiza. Academic, New YorkGoogle Scholar
  40. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35CrossRefGoogle Scholar
  41. Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems (special issue: current research at the Scottish Agricultural College). Pest Manag Sci 60:149–157PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110PubMedCrossRefPubMedCentralGoogle Scholar
  44. Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B (2005) Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiol 139:1401–1410PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jäderlund L, Arthurson V, Granhall U, Jansson JK (2008) Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett 287:174–180PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jargeat P, Cosseau C, Ola’h B, Jauneau A, Bonfante P, Batut J, Becard G (2004) Isolation, free-living capacities, and genome structure of Candidatus glomeribacter gigasporarum, the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita. J Bacteriol 186:6876–6884PubMedPubMedCentralCrossRefGoogle Scholar
  47. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kabir Z, Ohalloran IP, Fyles JW, Hamel C (1997) Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: hyphal density and mycorrhizal root colonization. Plant Soil 192:285–293CrossRefGoogle Scholar
  49. Khaosaad T, Garcia-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734CrossRefGoogle Scholar
  50. Kim JS, Dungan RS, Kwon SW, Weon HY (2006) The community composition of root-associated bacteria of the tomato plant. W J Microbiol Biotechnol 22:1267–1273CrossRefGoogle Scholar
  51. Krishna KR, Bagyaraj DJ (1983) Interaction between Glomus fasciculatum and Sclerotium rolfsii in peanut. Can J Bot 61:2349–2351CrossRefGoogle Scholar
  52. Larsen J, Bodker L (2001) Interactions between pea root-inhabiting fungi examined using signature fatty acids. New Phytol 149:487–493CrossRefGoogle Scholar
  53. Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256PubMedPubMedCentralCrossRefGoogle Scholar
  54. Li B, Ravnskov S, Xie G, Larsen J (2007) Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. BioControl 52:863–875CrossRefGoogle Scholar
  55. Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371Google Scholar
  56. Lioussanne L (2007) Roles des modifications de la microflore bactérienne et de l’exudation racinaire de la tomate par la symbiosis mycorhizienne dans le biocontrôle sur le Phytophthora nicotianae. Doctoral thesis. University of Montreal, Montreal. [In French]Google Scholar
  57. Lioussanne L (2010) The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phytopathogens. Span J Agric Res 8(S1):S51–S61CrossRefGoogle Scholar
  58. Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224CrossRefGoogle Scholar
  59. Lioussanne L, Jolicoeur M, St-Arnaud M (2009a) The effects of arbuscular mycorrhizal fungi, of root exudates from mycorrhizal plants and of the soilborne pathogen Phytophthora nicotianae on the bacterial community structure of tomato rhizosphere. Soil Biol Biochem 42:473–483CrossRefGoogle Scholar
  60. Lioussanne L, Beauregard MS, Hamel C, Jolicoeur M, St-Arnaud M (2009b) Interactions between arbuscular mycorrhiza and soil microorganisms. In: Khasa D, Piche Y, Coughlan A (eds) Advances in mycorrhizal biotechnology: a Canadian perspective. NRC Press, OttawaGoogle Scholar
  61. Lioussanne L, Jolicoeur M, St-Arnaud M (2009c) Role of root exudates and rhizosphere microflora in the arbuscular mycorrhizal fungi-mediated biocontrol of Phytophthora nicotianae in tomato. In: Varma A, Kharkwal AC (eds) Symbiotic fungi: principles and practice. Springer, Berlin, pp 141–158CrossRefGoogle Scholar
  62. Lioussanne L, Jolicoeur M, St-Arnaud M (2009d) The growth of the soilborne pathogen Phytophthora nicotianae is reduced in tomato roots colonized with arbuscular mycorrhizal fungi but unaffected by the application of root exudates collected from corresponding mycorrhizal plants. Mycorrhiza 19:443–448PubMedCrossRefPubMedCentralGoogle Scholar
  63. Liu JY, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544PubMedCrossRefPubMedCentralGoogle Scholar
  64. Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140PubMedCrossRefPubMedCentralGoogle Scholar
  65. Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36CrossRefGoogle Scholar
  66. Marschner P, Crowley DE, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302PubMedCrossRefPubMedCentralGoogle Scholar
  67. Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732PubMedPubMedCentralCrossRefGoogle Scholar
  68. Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206CrossRefGoogle Scholar
  69. Nehl DB, Allen SJ, Brown JF (1997) Deleterious rhizosphere bacteria: an integrating perspective. Appl Soil Ecol 5:1–20CrossRefGoogle Scholar
  70. Nogueira MA, Nehls U, Hampp R, Poralla K, Cardoso EJBN (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273–284CrossRefGoogle Scholar
  71. Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073CrossRefGoogle Scholar
  72. Olsson PA, Thingstrup I, Jakobsen I, Baath F (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887CrossRefGoogle Scholar
  73. Pozo MJ, Azcon-Aguilar C (2007) Unravelling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398CrossRefGoogle Scholar
  74. Pozo MJ, Dumas-Gaudot E, Slezack S, Cordier C, Asselin A, Gianinazzi S, Gianinazzipearson V, Azcon-Aguilar C, Barea JM (1996) Induction of new chitinase isoforms in tomato roots during interactions with Glomus mosseae and/or Phytophthora nicotianae var. parasitica. Agronomie 16:689–697CrossRefGoogle Scholar
  75. Pozo MJ, Azcon-Aguilar C, Dumas-Gaudot E, Barea JM (1998) Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophthora parasitica. J Exp Bot 49:1729–1739CrossRefGoogle Scholar
  76. Pozo MJ, Azcon-Aguilar C, Dumas-Gaudot E, Barea JM (1999) Beta-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157CrossRefGoogle Scholar
  77. Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534PubMedCrossRefPubMedCentralGoogle Scholar
  78. Pozo MJ, Van Loon LC, Pieterse CMJ (2004) Jasmonates – signals in plant-microbe interactions. J Plant Growth Regul 23:211–222Google Scholar
  79. Raiesi F, Ghollarata M (2006) Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in calcareous soil. Pedobiologia 50:413–425CrossRefGoogle Scholar
  80. Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in the rhizosphere and hyphosphere soil. New Phytol 142:113–122CrossRefGoogle Scholar
  81. Rhodes LH, Gerdemann JW (1975) Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions. New Phytol 75:555–561CrossRefGoogle Scholar
  82. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefPubMedCentralGoogle Scholar
  83. Rillig MC, Lutgen ER, Ramsey PW, Klironomos JN, Gannon JE (2005) Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologia 49:251–259CrossRefGoogle Scholar
  84. Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679PubMedPubMedCentralCrossRefGoogle Scholar
  85. Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K et al (2006) Plant growth stage, fertilizer management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rainfed wheat fields. Soil Biol Biochem 38:1111–1120CrossRefGoogle Scholar
  86. Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64:153–166PubMedCrossRefPubMedCentralGoogle Scholar
  87. Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza 16:365–370PubMedCrossRefPubMedCentralGoogle Scholar
  88. Selim S, Negrel J, Govaerts C, Gianinazzi S, Van Tuinen D (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl Environ Microbiol 71:6501–6507PubMedPubMedCentralCrossRefGoogle Scholar
  89. Siddiqui ZA, Mahmood I (1998) Effect of plant growth promoting bacterium, an AM fungus and soil types on the morphometrics and reproduction of Meloidogyne javanica on tomato. Appl Soil Ecol 8:77–84CrossRefGoogle Scholar
  90. Singh DP, Srivastava JS, Bahadur A, Singh UP, Singh SK (2004) Arbuscular mycorrhizal fungi induced biochemical changes in pea (Pisum sativum) and their effect on powdery mildew (Erysiphe pisi). J Plant Dis Protect 111:266–272Google Scholar
  91. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego/LondonGoogle Scholar
  92. Sood SG (2003) Chemotactic response of plant-growth promoting bacteria towards the roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227CrossRefGoogle Scholar
  93. St-Arnaud M, Elsen A (2005) Interaction of arbuscular mycorrhizal fungi with soil-borne pathogens and nonpathogenic rhizosphere micro-organisms. In: Declerck S, Strullu SG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin Heidelberg, pp 217–231CrossRefGoogle Scholar
  94. St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C (eds) Arbuscular mycorrhizae in crop production. Haworth’s Food Products Press, New York, pp 67–122Google Scholar
  95. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431–438Google Scholar
  96. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1997) Inhibition of Fusarium oxysporum f. sp. dianthi in the non-VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices. Can J Bot 75:998–1005CrossRefGoogle Scholar
  97. Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40PubMedCrossRefPubMedCentralGoogle Scholar
  98. Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304PubMedCrossRefPubMedCentralGoogle Scholar
  99. Toussaint JP, Kraml M, Nell M, Smith SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f. sp. basilici. Plant Pathol 57:1109–1116CrossRefGoogle Scholar
  100. Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209CrossRefGoogle Scholar
  101. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483CrossRefGoogle Scholar
  102. Vestergard M, Henry F, Rangel-Castro JI, Michelsen A, Prosser JI, Christensen S (2008) Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting. FEMS Microbio Ecol 64:78–89CrossRefGoogle Scholar
  103. Vierheilig H, Steinkellner S, Khaosaad T, Garcia-Garrido GM (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of AM symbiosis: one mechanism, two effects? In: Varma A (ed) Mycorrhiza: genetics and molecular biology – Eco-function – Biotechnology – Eco-physiology – Structure and systematics. Springer, Berlin, pp 307–320CrossRefGoogle Scholar
  104. Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514CrossRefGoogle Scholar
  105. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar
  106. Wu QS, Zou YN, Xia RX (2006) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 42:166–172.  https://doi.org/10.1016/j.ejsobi.2005.12.006CrossRefGoogle Scholar
  107. Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478CrossRefGoogle Scholar
  108. Yao MK, Tweddell RJ, Desilets H (2002) Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12:235–242PubMedCrossRefPubMedCentralGoogle Scholar
  109. Zhu HH, Zao Q (2004) Localized and a systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ashwini Marotirao Charpe
    • 1
  1. 1.Department of Plant PathologyDr. Panjabrao Deshmukh Krishi VidyapeethAkolaIndia

Personalised recommendations