Advertisement

Free-Living PGPRs in Biotic Stress Management

  • Ashwini Marotirao Charpe
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 13)

Abstract

Plant growth-promoting rhizobacteria (PGPR) is a heterogeneous group of microorganisms found in the rhizosphere. They live in association with roots and stimulate the plant growth and/or reduce the incidence of plant disease. The term PGPR is used to describe soil bacteria that colonize the rhizosphere of plants, growing in, on, or around plant tissues that stimulate plant growth by several mechanisms. The PGPRs are involved in various biotic activities of the soil ecosystem to make it dynamic for nutrient turnover and sustainable crop production by affecting plant growth. Generally, PGPR promotes plant growth directly due to their ability for nutrient supply (nitrogen, phosphorus, potassium, and essential minerals) or modulating plant hormone levels or indirectly by decreasing the inhibitory effect of various pathogens on plant growth and development in the form of biocontrol agents, root colonizers, and environment protectors. PGPRs can protect plants from diseases by a wide variety of mechanisms like antibiosis, induction of systemic resistance, siderophore production, production of 1-aminocyclopropane-1-carboxylate deaminase (ACC), signal interference while quorum sensing (QS) and inhibition of biofilm formation, production of lytic enzymes, production of volatile organic compounds (VOCs), promoting beneficial plant–microbe symbioses by competition for nutrients and niches, interference with pathogen toxin production, etc. A particular PGPR may affect plant diseases by using any one, or more, of these mechanisms. Bacteria of diverse genera have been identified as PGPRs, of which Bacillus and Pseudomonas spp. are predominant and have been implied in biocontrol due to their effective competitive interactions with bacteria, fungi, oomycetes, protozoa, viruses, and nematodes attacking a variety of crops.

Keywords

PGPR Antagonism Application of PGPRs on crop diseases Cereals Pulses Oilseeds Vegetables Fruits Flowers Spices Plantation crops 

References

  1. Aarons S, Abbas A, Adams C, Fenton A, O’Gara F (2000) A regulatory RNA (PrrB RNA) modulates expression of the secondary metabolite genes in Pseudomonas fluorescens F113. J Bacteriol 182:3913–3919PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abriouel H, Franz CM, Ben-Omar N, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232Google Scholar
  3. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: a current perspective. J King Saud Univ Sci 26:1–20CrossRefGoogle Scholar
  4. Ahmed E, Holmstrom SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208PubMedPubMedCentralCrossRefGoogle Scholar
  5. Akhtar N, Qureshi MA, Iqbal A, Ahmad MJ, Khan KH (2012) Influence of Azotobacter and IAA on the symbiotic performance of Rhizobium and yield parameters of lentil. J Agric Res 50:361–372Google Scholar
  6. Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S (1999) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246Google Scholar
  7. Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberg O, Christensen BB, Molin S, Givskov M (2001) Gfp-based N-acyl homoserine lactone sensor systems for detection of bacterial communities. Appl Environ Microbiol 67:575–585PubMedPubMedCentralCrossRefGoogle Scholar
  8. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237PubMedPubMedCentralCrossRefGoogle Scholar
  9. Arora NK, Khare E, Verma A, Sahu RK (2008) In vivo control of Macrophomina phaseolina by a chitinase and β-1,3 glucanase producing pseudomonad NDN1. Symbiosis 46:129–135Google Scholar
  10. Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740Google Scholar
  11. Bangera MG, Thomashow LS (1999) Identification and characterization of a gene cluster for the synthesis of the polyketide antibiotic 2,4-diacetyl phloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 181:3155–3163PubMedPubMedCentralGoogle Scholar
  12. Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF) In Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 225–259Google Scholar
  14. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18CrossRefGoogle Scholar
  15. Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bevivino A, Tabacchioni S, Chiarini L, Carusi MV, Del Gallo M, Visca P (1994) Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia. Microbiology 140:1069–1077PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bevivino A, Sarrocco S, Dalmastri S, Tabacchioni S, Canale C, Chiarini L (1998) Characterization of a free-living maize rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27:225–237CrossRefGoogle Scholar
  18. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere; new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176PubMedCrossRefPubMedCentralGoogle Scholar
  22. Blumer C, Haas D (2000a) Multicopy suppression of a gacA mutation by the infC operon in Pseudomonas fluorescens CHA0: competition with the global translational regulator RsmA. FEMS Microbiol Lett 187:53–58PubMedCrossRefPubMedCentralGoogle Scholar
  23. Blumer C, Haas D (2000b) Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0. Microbiology 146:2417–2424PubMedCrossRefPubMedCentralGoogle Scholar
  24. Blumer C, Heeb S, Pessi G, Haas D (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 96:14073–14078PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bolwerk A, Lagopodi AL, Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC et al (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 16:983–993PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bottiglieri M, Keel C (2006) Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetyl phloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 72:418–427PubMedPubMedCentralCrossRefGoogle Scholar
  27. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore-mediated iron transport. Biometals 15:325–339PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6531–6536PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63:1670–1680CrossRefGoogle Scholar
  31. Cazorla FM, Duckett SB, Bergstrom ET, Noreen S, Odijk R et al (2006) Biocontrol of avocado Dematophora root rot by the antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant Microbe Interact 19:418–428PubMedCrossRefPubMedCentralGoogle Scholar
  32. Chancey ST, Wood DW, Pierson LS (1999) Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65:2294–2299PubMedPubMedCentralGoogle Scholar
  33. Chin-A-Woeng TFC (2000) Molecular basis of biocontrol of tomato foot and root rot by Pseudomonas chlororaphis strain PCL1391. PhD thesis. Leiden University, Leiden, The NetherlandsGoogle Scholar
  34. Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization is essential for biocontrol of tomato foot and root rot by the phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 13:1340–1345PubMedCrossRefPubMedCentralGoogle Scholar
  35. Chin-A-Woeng TFC, Van den Broek D, De Voer G, van der Drift KMGM, Tuinman S et al (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Mechanisms of biological control of phytopathogenic fungi by Pseudomonas spp. Plant-Microbe Interact 6:173–224Google Scholar
  37. Cho JY, Chung-Soon J (1998) Effect of rhizobacteria on the growth of cucumber and tomato plug seedlings. J Korean Soc Hortic Sci 39(1):18–23Google Scholar
  38. Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  39. Compant S, Reiter B, Sessitsch A, Nowak J, Clement C et al (2005b) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693PubMedPubMedCentralCrossRefGoogle Scholar
  40. Copping LG (2004) The manual of biocontrol agents, 3rd edn. British Crop Production Council, Alton, p 702Google Scholar
  41. Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249PubMedPubMedCentralCrossRefGoogle Scholar
  42. Crowley DE (2006) Microbial siderophores in the plant rhizospheric. In: Barton LL, Abadía J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer; Dordrecht, pp 169–198Google Scholar
  43. Davidson L (1988) Plant beneficial bacteria. Biotechnology 6:282–286Google Scholar
  44. De Bruijn I, De Kock MJD, Yang M, De Waard P, Van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428PubMedPubMedCentralCrossRefGoogle Scholar
  45. De Laat AMM, Van Loon LC (1982) Regulation of ethylene biosynthesis in virus-infected tobacco leaves: II. Time course of levels of intermediates and in vivo conversion rates. Plant Physiol 69:240–245PubMedPubMedCentralCrossRefGoogle Scholar
  46. De Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2,4-diacetyl phloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975CrossRefGoogle Scholar
  47. De Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180PubMedCrossRefPubMedCentralGoogle Scholar
  48. De Weert S, Kuiper I, Lagendijk EL, Lamers GEM, Lugtenberg BJJ (2003) Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f.sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 16:1185–1191Google Scholar
  49. Dekkers LC, Mulders CHM, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato-Fusarium f.sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild types Pseudomonas spp. bacteria. Mol Plant Microbe Interact 13:1177–1183PubMedCrossRefPubMedCentralGoogle Scholar
  50. Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J Bacteriol 183:318–327PubMedPubMedCentralCrossRefGoogle Scholar
  51. Delany I, Sheehan MM, Fenton A, Bardin S, Aarons S, O’Gara F (2000) Regulation of production of the antifungal metabolite 2,4-diacetyl phloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology 146:537–546CrossRefGoogle Scholar
  52. Despres C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dinesh R, Anandaraj M, Kumar A, Subila KP, Bini YK, Aravind A (2014) Native multitrait rhizobacteria promote growth and suppress Phytophthora capsici in black pepper. J Spices Aromatic Crops 23:156–163Google Scholar
  55. Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759PubMedPubMedCentralCrossRefGoogle Scholar
  56. Doornbos RF, Van Loon LC, Peter AHM, Bakker A (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Rev Sustain Dev 32:227–243CrossRefGoogle Scholar
  57. Downing KJ, Thomson JA (2000) Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Can J Microbiol 46:363–369PubMedCrossRefPubMedCentralGoogle Scholar
  58. Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1AC7 and Serratia macescens chiA genes in sugarcane associated bacteria. Appl Environ Microbiol 66:2804–2810PubMedPubMedCentralCrossRefGoogle Scholar
  59. Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438PubMedPubMedCentralGoogle Scholar
  60. Duffy B, Defago G (2000) Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 66:3142–3150PubMedPubMedCentralCrossRefGoogle Scholar
  61. Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538PubMedPubMedCentralCrossRefGoogle Scholar
  62. Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, Veen JAV (2001) Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178PubMedPubMedCentralCrossRefGoogle Scholar
  63. Dunne C, Moenne-Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, O’Gara F (1998) Combining proteolytic and phloroglucinol-producing bacteria for improved control of Pythium-mediated damping-off of sugar beet. Plant Pathol 47:299–307CrossRefGoogle Scholar
  64. Dwivedi D, Johri BN (2003) Antifungals from fluorescent Pseudomonads, biosynthesis, and regulation. Curr Sci 85:1693–1703Google Scholar
  65. Egamberdiyeva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown in salinated soil in Uzbekistan. Environ Microbiol 10:1–9Google Scholar
  66. Elbadry M, Taha RM, Eldougdoug KA, Gamal-Eldin H (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Protect 113:247–251CrossRefGoogle Scholar
  67. Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  68. Espinosa-Urgel M, Salido A, Ramos JL (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182:2363–2369PubMedPubMedCentralCrossRefGoogle Scholar
  69. Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389PubMedPubMedCentralCrossRefGoogle Scholar
  70. Farrand SK (1990) Agrobacterium radiobacter strain K84: a model control system. In: Liss AR (ed) New directions in biological control: alternatives for suppressing agricultural pests and diseases. Alan R. Liss, New York, pp 679–691Google Scholar
  71. Fenton AM, Stephens PM, Crowley J, O’Callaghan M, O’Gara F (1992) Exploitation of gene(s) involved in 2,4-diacetyl phloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol 58: 3873-3878Google Scholar
  72. Filippi MCC, Da Silva GB, Silva-Lobo VL, Cortes MVCB, Moraes AJG, Prabhu AS (2011) Leafblast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biol Control 58:160–166CrossRefGoogle Scholar
  73. Fray RG, Troup JP, Daykin M, Wallace A, Williams P, Stewart GSAB, Grierson D (1999) Plants genetically modified to produce N-acyl homoserine lactones communicate with bacteria. Nat Biotechnol 17:1017–1020PubMedCrossRefPubMedCentralGoogle Scholar
  74. Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Microbe Interact 14:1114–1124PubMedCrossRefPubMedCentralGoogle Scholar
  75. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gajera HP, Vakharia DN (2012) Production of Lytic Enzymes by Trichoderma Isolates during in vitro Antagonism with Aspergillus Niger, The Causal Agent of Collar ROT of Peanut. Braz J Microbiol 43:43–52PubMedPubMedCentralCrossRefGoogle Scholar
  77. Gilbert GS, Handelsman J, Parke JL (1994) Root camouflage by disease control. Phytopathology 84:222–225Google Scholar
  78. Glick BR (2001) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(3):83393Google Scholar
  79. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) Article ID:963401CrossRefGoogle Scholar
  80. Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378CrossRefGoogle Scholar
  81. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  82. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  83. Gundlach H, Mueller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393PubMedCrossRefPubMedCentralGoogle Scholar
  84. Guo-Jian H, Qi-Hong Y, Li-Shi M (2002) Biocontrol efficiency of three PGPR strains admixture to pepper bacterial wilt. Bacterial Wilt Newsletter 17:32–47Google Scholar
  85. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefGoogle Scholar
  86. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153PubMedPubMedCentralCrossRefGoogle Scholar
  87. Han J, Sun L, Dong X, Cai Z, Sun X, Yang H et al (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28:66–76PubMedCrossRefPubMedCentralGoogle Scholar
  88. Hanafi A, Fellah K (2006) Does the PGPR Bacillus subtilis induce plant resistance to whiteflies and Pythium spp. in greenhouse tomato? Bulletin OILB/SROP 29.4:105Google Scholar
  89. Harman GE, Howel CH, Viterbo A, Chet I, Lorito M (2004) Trichoderma species–opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56CrossRefGoogle Scholar
  90. Hayat R, Ali S, Amara U, Khalid Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598CrossRefGoogle Scholar
  91. He H, Silo-Suh LA, Handelsman J, Clardy J (1994) Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett 35:2499–2502CrossRefGoogle Scholar
  92. Heeb S, Itoh Y, Nishijyo T, Schnider U, Keel C, Wade J, Walsh U, O’Gara F, Haas D (2000) Small, stable shuttle vectors based on the minimal pVS1 replicon for use in Gram-negative plant-associated bacteria. Mol Plant Microbe Interact 13:232–237PubMedCrossRefPubMedCentralGoogle Scholar
  93. Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928PubMedPubMedCentralCrossRefGoogle Scholar
  94. Hill DS, Stein JI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Environ Microbiol 60:78–85PubMedPubMedCentralGoogle Scholar
  95. Hiltner L (1904) U¨ ber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie under bessonderer Ber ¨ ucksichtigung der Gr¨undung und Brache. Arb Dtsch Landwirtsch Ges Berl 98:59–78Google Scholar
  96. Hofte M (1993) In: Barton LL, Hemming BC (eds) Iron chelation in plants and soil microorganisms, Academic, San Diego, pp 3–26Google Scholar
  97. Hong H, Xueging C, Yongcong H, Xiong G, Fangping H (2002) Selection of endophytic antifungal bacteria from capsicum. Chin J Biol Contr 18(4):171–175Google Scholar
  98. Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858PubMedPubMedCentralCrossRefGoogle Scholar
  99. Jones DA, Ryder MH, Clare BG, Farrand SK, Kerr A (1988) Construction of a Tra – deletion mutant pf pAgK84 to safeguard the biological control of crown gall. Mol General Genet 212:207–214CrossRefGoogle Scholar
  100. Joshi M, Shrivastava R, Sharma AK, Prakash A (2012) Screening of resistant verities and antagonistic Fusarium oxysporum for biocontrol of Fusarium Wilt of Chilli. Plant Pathol Microbiol 3:134Google Scholar
  101. Jourdan E et al (2007) PGPR-induced systemic resistance: the activity of amphiphilic elicitors and structural analogs on different plant species. Bulletin-OILB/SROP 30(6-1):123–126Google Scholar
  102. Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090PubMedPubMedCentralCrossRefGoogle Scholar
  103. Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817CrossRefGoogle Scholar
  104. Kamilova F, Leveau JHJ, Lugtenberg B (2007) Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Environ Microbiol 9:1597–1603PubMedCrossRefPubMedCentralGoogle Scholar
  105. Kamilova F, Lamers G, Lugtenberg B (2008) Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as the subsequent formation of new spores. Environ Microbiol 10:2455–2461PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kandan A, Ramiah M, Vasanthi VJ, Radjacommare R, Nandakumar R, Ramanathan A, Samiyappan R (2005) Use of Pseudomonas fluorescens-based formulations for management of tomato spotted wilt virus (TSWV) and enhanced yield in tomato. Biocontr Sci Technol 15(6):553–569CrossRefGoogle Scholar
  107. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338PubMedCrossRefPubMedCentralGoogle Scholar
  108. Katiyar V, Goel R (2004) Siderophore-mediated plant growth promotion at low temperature by a mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244CrossRefGoogle Scholar
  109. Kaur R, Macleod J, Foley W, Nayudu M (2006) Gluconic acid, an antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry 67:595–604PubMedCrossRefPubMedCentralGoogle Scholar
  110. Khan MR, Akram M (2000) Effects of certain antagonistic fungi and rhizobacteria on wilt disease complex of tomato caused by Meloidogyne incognita and Fusarium oxysporum f. sp. lycopersici. Nematol Medd 28:139–144Google Scholar
  111. Kim JS, Dungan RS, Kwon SW, Weon HY (2006) The community composition of root-associated bacteria of the tomato plant. W J Microbiol Biotechnol 22:1267–1273CrossRefGoogle Scholar
  112. Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the IVth international conference on plant pathogenic bacteria, vol. 2. Station de Pathologie Vegetale et Phyto-Bacteriology, pp 879–882Google Scholar
  114. Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886CrossRefGoogle Scholar
  115. Kloepper JW, Leong J, Teintze M, Schroth MN (1980b) Pseudomonas siderophores: A mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320CrossRefGoogle Scholar
  116. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43CrossRefGoogle Scholar
  117. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266CrossRefGoogle Scholar
  118. Kokalis-Burelle N, Kloepper JW, Reddy MS (2005) Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31:91–100CrossRefGoogle Scholar
  119. Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804PubMedCrossRefPubMedCentralGoogle Scholar
  120. Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44CrossRefGoogle Scholar
  121. Kumar NR, Arasu VT, Gunasekaran P (2002) Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Curr Sci 82:1465–1466Google Scholar
  122. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S et al (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256CrossRefGoogle Scholar
  123. Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967–973PubMedPubMedCentralCrossRefGoogle Scholar
  124. Laslo E, Gyorgy E, Mara G, Tamas E, Ábraham B, Lanyi S (2012) Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Prot 40:43–48CrossRefGoogle Scholar
  125. Laue BE, Jiang Y, Ram Chhabra S, Jacob S, Stewart GSAB, Hardman A, Downie JA, O’Gara F, Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via Hdts, a putative novel N-acyl-homoserine lactone synthase. Microbiology 146:2469–2480PubMedCrossRefPubMedCentralGoogle Scholar
  126. Lee SW, Cooksey DA (2000) Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungus. Appl Environ Microbiol 66:2764–2772PubMedPubMedCentralCrossRefGoogle Scholar
  127. Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664CrossRefGoogle Scholar
  128. Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR et al (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860PubMedCrossRefPubMedCentralGoogle Scholar
  129. Lin HF et al (2010) Evaluation of Bacillus subtilis as a bio-control agent against pepper blight under greenhouse and field conditions. J Agric Assoc Taiwan 11(3):210–222Google Scholar
  130. Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37:81–97PubMedCrossRefPubMedCentralGoogle Scholar
  131. Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172CrossRefGoogle Scholar
  132. Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119:265–278CrossRefGoogle Scholar
  133. Lopez MM, Gorris MT, Temprano FJ, Orive RJ (1987) Results of seven years of biological control of Agrobacterium tumefaciens in Spain. Bull OEPP/EPPO Bull 17:273–280CrossRefGoogle Scholar
  134. Lopez MM, Gorris MT, Salcedo CI, Montojo AM, Miro M (1989) Evidence of biological control of Agrobacterium tumefaciens strain sensitive and resistant to agrocin 84 by different Agrobacterium radiobacter strain on stone fruit trees. Appl Environ Microbiol 55:741–746PubMedPubMedCentralGoogle Scholar
  135. Lopez-Baena FJ, Monreal JA, Perez-Montano F, Guash-Vidal B, Bellogin RA, Vinardell JM et al (2009) The absence of Nops secretion in Sinorhizobium fredii HH103 increases GmPR1 expression in William soybean. Mol Plant Microbe Interact 22:1445–1454PubMedCrossRefPubMedCentralGoogle Scholar
  136. Lu SF (1994) Isolation of putative pAgK84 transconjugants from commercial cherry and raspberry plants treated with Agrobacterium radiobacter strain K84. MS thesis. Oregon State University, Corvallis, OR, USAGoogle Scholar
  137. Lubeck PS, Hansen M, Sorensen J (2000) Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain Dr54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization techniques. FEMS Microbiol Ecol 33:11–19PubMedCrossRefPubMedCentralGoogle Scholar
  138. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86(1):1–25PubMedCrossRefPubMedCentralGoogle Scholar
  139. Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13PubMedCrossRefPubMedCentralGoogle Scholar
  140. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefGoogle Scholar
  141. Lugtenberg B, Leveau JHJ (2007) Biocontrol of plant pathogens: principles, promises, and pitfalls. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface (2nd edn). CRC Press/Taylor & Francis Group. Boca Raton, pp 267–296Google Scholar
  142. Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446PubMedCrossRefPubMedCentralGoogle Scholar
  143. Lugtenberg BJJ, Dekkers LC, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490PubMedPubMedCentralCrossRefGoogle Scholar
  144. Lugtenberg BJJ, Chin-A-Woeng TFC, Bloomberg GV (2002) Microbe-plant interactions: Principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383PubMedCrossRefPubMedCentralGoogle Scholar
  145. Machuca A, Pereira G, Aguiar A, Milagres AM (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12PubMedCrossRefPubMedCentralGoogle Scholar
  146. Maheshwari DK, Dubey RC, Aeron A, Kumar B, Kumar S et al (2012) Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol 28:3015–3024PubMedCrossRefPubMedCentralGoogle Scholar
  147. Maksimov IV, Abizgildina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as an alternative to chemical crop protectors from pathogens (Review). Appl Biochem Microbiol 47:333–345CrossRefGoogle Scholar
  148. Marschner H, Rohmeld V (1994) Strategies of plants for the acquisition of iron. Plant Soil 165(2):261–274CrossRefGoogle Scholar
  149. Martins SJ, Vasconcelos de Medeiros FH, Magela de Souza R, Vilela de Resende ML, Martins Ribeiro Junior P (2013) Biological control of bacterial wilt of common bean by plant growth-promoting Rhizobacteria. Biol Control 66:65–71CrossRefGoogle Scholar
  150. Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fert Soils 30:433–439CrossRefGoogle Scholar
  151. Mauch F, Hadwiger LA, Boller T (1994) Ethylene: Symptom, not signal for the induction of chitinase and-1,3-glucanase in pea pods by pathogens and elicitors. Plant Physiol 76:607–611CrossRefGoogle Scholar
  152. Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146CrossRefGoogle Scholar
  153. Mavrodi OV, Walter N, Elateek S, Taylor CG, Okubara PA (2012) Suppression of Rhizoctonia and Pythium root rot of wheat by new strains of Pseudomonas. Biol Control 62:93–102CrossRefGoogle Scholar
  154. Mehnaz S (2013) Secondary metabolites of Pseudomonas aurantiaca and their role in plant growth promotion. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 373–394CrossRefGoogle Scholar
  155. Melo J, Caroline M, Carvalho L, Correia P, Tenreiro R, Chaves S, Meleiro AI, de Souza SB, Dias T, Cruz C, Ramos AC (2016) Crop management as a driving force of plant growth promoting rhizobacteria physiology. SpringerPlus 5:1574PubMedPubMedCentralCrossRefGoogle Scholar
  156. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451PubMedPubMedCentralCrossRefGoogle Scholar
  157. Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than the development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50:500–513PubMedPubMedCentralCrossRefGoogle Scholar
  158. Moore LW, Canfield M (1996) Biology of Agrobacterium and management of crown gall disease. In: Hall R (ed) Principles and practice of managing soil-borne plant pathogens. APS Press, St. Paul, pp 151–191Google Scholar
  159. Murphy JF et al (2000) Plant growth-promoting rhizobacteria-mediated protection in tomato against tomato mottle virus. Plant Dis 84(7):779–784PubMedPubMedCentralCrossRefGoogle Scholar
  160. Nadeem SM, Naveed M, Zahir ZA, Asghar HN (2013) Plant-microbe interactions for sustainable agriculture: fundamentals and recent advances. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 51–103CrossRefGoogle Scholar
  161. Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2012) Analysis of volatile organic compounds emitted by plant growth-promoting fungus phoma sp. GS8-3 for growth promotion effects on tobacco. Microbe Environ 28:42–49CrossRefGoogle Scholar
  162. Neeraj KS (2011) Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. Eur J Soil Biol 47:288–295CrossRefGoogle Scholar
  163. Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241CrossRefGoogle Scholar
  164. Nery-Silva FA, Machado JC, Vilela de Resende ML, Lima LCO (2007) Inoculation methodology s of papaya fruits with fungi causing stem-end-rot. Cienc Agrotec Lavras 31:1374–1379CrossRefGoogle Scholar
  165. Nguyen MT, Ranamukhaarachchi SL (2010) Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J Plant Pathol 92(2):395–406Google Scholar
  166. Nielsen TH, Christopheresen C, Anthoni U, Sørensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87:80–90PubMedCrossRefPubMedCentralGoogle Scholar
  167. Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J (2000) Structure, production characteristics and fungal antagonism of tensin — a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001PubMedCrossRefPubMedCentralGoogle Scholar
  168. Normander B, Prosser JI (2000) Bacterial origin and community composition in the barley phytosphere as a conditions function of habitat and presowing. Appl Environ Microbiol 66:4372–4377PubMedPubMedCentralCrossRefGoogle Scholar
  169. Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174PubMedPubMedCentralGoogle Scholar
  170. O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676PubMedPubMedCentralGoogle Scholar
  171. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125CrossRefGoogle Scholar
  172. Ongena M, Thonart P (2006) In: da Silva JA Teixeira (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, Global Science Books, London, pp 447–463Google Scholar
  173. Ongena M, Jourdan E, Adam A, Paquot M, Brans A et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090CrossRefGoogle Scholar
  174. Osorio F, Leib und Gut-Landmann S, Lochner M, Lahl K, Sparwasser T, Eberl G, Reis e Sousa C (2008) DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol 38(12):3274–3281PubMedPubMedCentralCrossRefGoogle Scholar
  175. Pal KK, Tilak KVBR, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223PubMedCrossRefPubMedCentralGoogle Scholar
  176. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801PubMedPubMedCentralCrossRefGoogle Scholar
  177. Paulitz TC, Loper JE (1991) Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology 81:930–935CrossRefGoogle Scholar
  178. Peix A, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biol Biochem 33:1927–1935CrossRefGoogle Scholar
  179. Penalver R, Lopez MM (1999) Co-colonisation of the rhizosphere by pathogenic strains K84 and K1026, used for crown gall biocontrol. Appl Environ Microbiol 65:1936–1940Google Scholar
  180. Pereira P, Ibanez SG, Agostini E, Miriam Etcheverry M (2011) Effects of maize inoculation with Fusarium verticillioides and with two bacterial biocontrol agents on seedlings growth and antioxidative enzymatic activities. Appl Soil Ecol 51:52–59CrossRefGoogle Scholar
  181. Perez-Montano F, Jimenez-Guerrero I, Contreras Sanchez-Matamoros R, Lopez-Baena FJ, Ollero FJ, Rodriguez-Carvajal MA et al (2013) Rice, and bean AHL-mimicquorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Res Microbiol 164:749–760PubMedCrossRefPubMedCentralGoogle Scholar
  182. Perez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jimenez-Guerrero I, Lopez-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol Res 169:325–336PubMedCrossRefPubMedCentralGoogle Scholar
  183. Perneel M, D’Hondt L, De Maeyer K, Adiobo A, Rabaey K, Hofte M (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10:778–788PubMedCrossRefPubMedCentralGoogle Scholar
  184. Pessi G, Haas D (2000) Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J Bacteriol 182:6940–6949PubMedPubMedCentralCrossRefGoogle Scholar
  185. Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237PubMedPubMedCentralGoogle Scholar
  186. Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580PubMedPubMedCentralCrossRefGoogle Scholar
  187. Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Métraux JP, Van Loon LC (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134CrossRefGoogle Scholar
  188. Pieterse CMJ, Ton J, Van Loon LC (2001) Cross-talk between plant defense signaling pathways: Boost or burden? Ag Biotech Net 3:ABN068Google Scholar
  189. Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA, Van Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544CrossRefGoogle Scholar
  190. Pinton R, Veranini Z, Nannipieri P (2007) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Taylor & Francis Group, New YorkGoogle Scholar
  191. Pliego C, DeWeert S, Lamers G, De Vicente A, Bloemberg G et al (2008) Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia neatrix hyphae. Environ Microbiol 10:3295–3304PubMedCrossRefPubMedCentralGoogle Scholar
  192. Pozo MJ, Azcon-Aguilar C (2007) Unravelling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398Google Scholar
  193. Quinones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18:682–693PubMedCrossRefPubMedCentralGoogle Scholar
  194. Quyet-Tien P, Park YM, Seul KJ, Ryu CM, Park SH, Kim JC et al (2010) Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. J Microbiol Biotechnol 20:1605–1613Google Scholar
  195. Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062CrossRefGoogle Scholar
  196. Raghavan D, Muthuswamy A, Aundy K, Yogiyar KB, Kizhakke PS, Ravindran A (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res 173:34–43CrossRefGoogle Scholar
  197. Rahman MM, Khan AAA (2002) Antagonist against bacterial wilt pathogen Ralstonia solanacearum. Bangladesh J Plant Pathol 18(1/2):27–31Google Scholar
  198. Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257PubMedCrossRefPubMedCentralGoogle Scholar
  199. Ramesh R et al (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L). World J Microbiol Biotechnol 25(1):47–55CrossRefGoogle Scholar
  200. Ramos C, Molbak L, Molin S (2000) Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl Environ Microbiol 66:801–809PubMedPubMedCentralCrossRefGoogle Scholar
  201. Ramos SB, Barriuso MJ, Pereyra de la IMT, Domenech J, Gutierrez MFJ (2008) Systemic disease protection elicited by plant growth-promoting rhizobacteria strains: the relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology 98:451–457CrossRefGoogle Scholar
  202. Rangajaran S, Saleena LM, Vasudevan P, Nair S (2003) Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant Soil 251:73–82CrossRefGoogle Scholar
  203. Raupach GS, Kloepper JW (1998) Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164PubMedPubMedCentralCrossRefGoogle Scholar
  204. Rawat S, Mushtaq A (2015) Plant growth promoting rhizobacteria, a formula for sustainable agriculture: A review. Asian J Plant Sci Res 5(4):43–46Google Scholar
  205. Reed SC, Yang X, Thornton PE (2015) Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytol 208:324–329PubMedCrossRefPubMedCentralGoogle Scholar
  206. Rhouma A, Boubaker A, Ferchichi A (2004) Efficacy of the nonpathogenic Agrobacterium strains K84 and K1026 against crown gall in Tunisia. Phytopathologia Mediterranea 43:167–176Google Scholar
  207. Rhouma A, Bouri M, Boubaker A, Nesme X (2008) Potential effect of rhizobacteria in the management of crown gall disease caused by Agrobacterium tumefaciens biovar 1. J Plant Pathol 90(3):517–526Google Scholar
  208. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  209. Riley M (1993) Molecular mechanisms of colicin evolution. Mol Biol Evol 10:1380–1395Google Scholar
  210. Riley MA, Wertz JE (2002) Bacteriocins: Evolution, ecology, and application. Annu Rev Microbiol 56:117–137PubMedPubMedCentralCrossRefGoogle Scholar
  211. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339CrossRefGoogle Scholar
  212. Rondon MR, Raffel SJ, Goodman RM, Handelsman J (1999) Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc Natl Acad Sci USA 96:6451–6455PubMedCrossRefPubMedCentralGoogle Scholar
  213. Rovira AD (1956) A study of the development of the root surface microflora during the initial stages of plant growth. J Appl Bacteriol 19:72–79CrossRefGoogle Scholar
  214. Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556PubMedPubMedCentralCrossRefGoogle Scholar
  215. Ruy CM, Murphy JF, Mysore KS, Kloepper JW (2004) Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392CrossRefGoogle Scholar
  216. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1808–1819CrossRefGoogle Scholar
  217. Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX et al (2003) Bacterial volatiles promote growth of Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932PubMedCrossRefPubMedCentralGoogle Scholar
  218. Sacherer P, Defago G, Haas D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160PubMedPubMedCentralCrossRefGoogle Scholar
  219. Sadfi ZN, Essghaier B, Hajlaoui MR, Achbani H, Boudabous A (2007) Ability of the antagonistic bacteria Bacillus subtilis and B. licheniformis to control Botrytis cinerea on fresh market tomatoes. Bulletin-OILB/SROP 306(1):63Google Scholar
  220. Sandy M, Butler A (2009) Microbial iron acquisition: Marine and terrestrial siderophores. Chem Rev 109:4580–4595PubMedPubMedCentralCrossRefGoogle Scholar
  221. Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial microorganisms and the effect on cropping practices. Annu Rev Phytopathol 25:339–358CrossRefGoogle Scholar
  222. Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Defago G, Haas D, Keel C (2000) Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225PubMedPubMedCentralCrossRefGoogle Scholar
  223. Schripsema J, de Rudder KE, van Vliet TB, Lankhorst PP, de Vroom E, Kijne JW, van Brussel AA (1996) Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-Lhomoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J Bacteriol 178:366–371PubMedPubMedCentralCrossRefGoogle Scholar
  224. Senthilkumar M, Swarnalakshmi K, Govindasamy V, Young KL, Annapurna K (2009) Bio-control potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Curr Microbiol 58:288–293PubMedCrossRefPubMedCentralGoogle Scholar
  225. Shalaby MEM, Sedik MZ (2008) Biocontrol activity of some bacterial isolates against Meloidogyne incognita. Egypt J Biol Pest Control 18(1):119–125Google Scholar
  226. Shephard RW, Lindow S (2008) Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol 74:6663–6671CrossRefGoogle Scholar
  227. Shilev S (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 147–150CrossRefGoogle Scholar
  228. Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521PubMedCrossRefPubMedCentralGoogle Scholar
  229. Shuhegge R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G et al (2006) Induction of systemic resistance in tomato by N-acyl-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918CrossRefGoogle Scholar
  230. Siddiqui IA, Shaukat SS, Ehteshamul-Haque S (2001) Use of plant growth promoting rhizobacteria (PGPR) and soil organic amendments for the management of root diseases complex of uridbean. Acta Agrobotanica 54:65–70CrossRefGoogle Scholar
  231. Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030PubMedPubMedCentralGoogle Scholar
  232. Simon H, Smith KP, Dodsworth JE, Guenthner B, Handelsman J, Goodman RM (2001) Influence of tomato genotype on growth of inoculated and indigenous bacteria in the spermosphere. Appl Environ Microbiol 67:514–520PubMedPubMedCentralCrossRefGoogle Scholar
  233. Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607PubMedPubMedCentralCrossRefGoogle Scholar
  234. Singh JS (2013) Plant growth promoting rhizobacteria potential microbes for sustainable agriculture. Resonance 3:275–281CrossRefGoogle Scholar
  235. Singh S, Kapoor KK (1999) Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fertil Soils 28(2):139–144CrossRefGoogle Scholar
  236. Singh RK, Malik N, Singh S (2013) Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microb Ecol 66:375–384PubMedCrossRefPubMedCentralGoogle Scholar
  237. Sivakumar T et al (2008) Bioefficacy of antagonists against for the management of Fusarium oxysporum f. sp. lycopersici and Meloidogyne incognita disease complex of tomato under field condition. Plant Archives 8(1):373–377Google Scholar
  238. Sivasakhti S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR) – Pseudomonas fluorescence and Bacillus subtilis: A review. Afr J Agricult Res 9:1265–1277Google Scholar
  239. Smith LM, Tola E, de Boer P, O’Gara F (1999) Signalling by the fungus Pythium ultimum represses expression of two ribosomal RNA operons with key roles in the rhizosphere ecology of Pseudomonas fluorescens F113. Environ Microbiol 1:495–502PubMedCrossRefPubMedCentralGoogle Scholar
  240. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling, a love parade beneath our feet. Crit Rev Microbiol 30:205–235PubMedPubMedCentralCrossRefGoogle Scholar
  241. Someya N, Kataoka N, Komagata T, Hirayae K, Hibi T, Akutsu K (2000) Biological control of cyclamen soil borne diseases by Serratia marcescens strain B2. Plant Dis 84:334–340PubMedCrossRefPubMedCentralGoogle Scholar
  242. Someya N, Nakajima M, Hirayae K, Hibi T, Akutsu K (2001) Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium Serratia marcescens Strain B2 against gray mold pathogen Botrytis cinerea. J Gen Plant Pathol 67:312–317CrossRefGoogle Scholar
  243. Son JS, Sumayo M, Hwang YJ, Kim BS, Ghim SY (2014) Screening of plant growth-promoting rhizobacteria as an elicitor of systemic resistance against gray leaf spot disease in pepper. Appl Soil Ecol 73:1–8CrossRefGoogle Scholar
  244. Spiers A, Field D, Bailey M, Rainey PB (2001) Notes on designing a partial genomic database: the PfSBW25 encyclopedia, a sequence database for Pseudomonas fluorescens SBW25. Microbiology 147:247–253PubMedCrossRefPubMedCentralGoogle Scholar
  245. Stephens PM, Crowley JJ, O’Connell C (1993) Selection of pseudomonad strains inhibiting Pythium ultimum on sugar-beet seeds in soil. Soil Biol Biochem 25:1283–1288CrossRefGoogle Scholar
  246. Stockwell VO, Kawalek MD, Moore LW, Lopper JE (1996) Transfer of pAgK84 from the biocontrol agent Agrobacterium radiobacter K84 to under field conditions. Phytopathology 86:31–37CrossRefGoogle Scholar
  247. Stohl EA, Milner JL, Handelsman J (1999) Zwittermicin A biosynthetic cluster. Gene 237:403–411PubMedCrossRefPubMedCentralGoogle Scholar
  248. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964PubMedCrossRefPubMedCentralGoogle Scholar
  249. Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244PubMedCrossRefPubMedCentralGoogle Scholar
  250. Stuurman N, Bras CP, Schlaman HR, Wijfjes AH, Bloemberg GV, Spaink HP (2000) Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobacteria interacting with plants. Mol Plant Microbe Interact 13:1163–1169PubMedCrossRefPubMedCentralGoogle Scholar
  251. Suryanto D et al (2010) Control of Fusarium wilt of chili with chitinolytic bacteria. Hayati J Biosci 17(1):5–8CrossRefGoogle Scholar
  252. Suzuki MS, Zambolim L, Liberato JR (2007) Progress of fungal diseases and correlation with climatic variables in papaya. Summa Phytopathol 33:167–177CrossRefGoogle Scholar
  253. Swarnalakshmi K, Prasanna R, Kumar A, Pattnaik S, Chakravarty K, Shivay YS, Singh R, Saxena AK (2013) Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur J Soil Biol 55:107–116CrossRefGoogle Scholar
  254. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648PubMedCrossRefPubMedCentralGoogle Scholar
  255. Tewari S, Arora NK (2013) Transactions among Microorganisms and Plant in the Composite Rhizosphere. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 1–50Google Scholar
  256. Thakore Y (2006) The biopesticide market for global agricultural use. Indust Biotechnol 2(3)CrossRefGoogle Scholar
  257. Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant-microbe interaction, vol 1. Chapman & Hall, New York, pp 187–235Google Scholar
  258. Thrane C, Harder NT, Neiendam NM, Sørensen J, Olson S (2000) Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33:139–146PubMedCrossRefPubMedCentralGoogle Scholar
  259. Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodi DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic-acid biosynthetic pathway enhances the efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant Microbe Interact 13:1293–1300PubMedCrossRefPubMedCentralGoogle Scholar
  260. Tombolini R, van der Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barley seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674–3680PubMedPubMedCentralGoogle Scholar
  261. Upadhyay SK, Maurya SK, Singh DP (2012) Salinity tolerance in free-living plant growth-promoting Rhizobacteria. Ind J Sci Res 3:73–78Google Scholar
  262. Validov S (2007) Biocontrol of tomato foot and root rot by Pseudomonas bacteria in stonewool. PhD thesis. Leiden University. http://hdl.handle.net/1887/12480
  263. Validov SZ, Kamilova F, Lugtenberg BJJ (2009) Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse. Biol Control 48:6–11CrossRefGoogle Scholar
  264. Van den Broek D, Bloemberg GV, Lugtenberg BJJ (2005) The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ Microbiol 7:1686–1697PubMedCrossRefPubMedCentralGoogle Scholar
  265. Van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, Van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrecht, pp 521–574CrossRefGoogle Scholar
  266. Van Loon LC (2006) Effects of beneficial microorganisms on plants. Bulletin-OILB/SROP 29(2):183–192Google Scholar
  267. Van Loon LC (2007) Plant responses to plant growth promoting bacteria. Eur J Plant Pathol 119:243–254CrossRefGoogle Scholar
  268. Van Loon LC, Bakker PAHM (2006) Root-associated bacteria inducing systemic resistance. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 269–316CrossRefGoogle Scholar
  269. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483CrossRefGoogle Scholar
  270. Van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth promoting Pseudomonas sp. strain WCS417r induce resistance incarnation to fusarium wilt. Neth J Plant Pathol 98:129–139CrossRefGoogle Scholar
  271. Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 91:728–734CrossRefGoogle Scholar
  272. Van Rij ET, Wesselink M, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2004) Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 17:557–566PubMedCrossRefPubMedCentralGoogle Scholar
  273. Van Rij ET, Girard G, Lugtenberg BJJ, Bloemberg GV (2005) Influence of fusaric acid on the phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology 151:2805–2814PubMedPubMedCentralCrossRefGoogle Scholar
  274. Van Wees SCM, Pieterse CMJ, Trijssenaar A, Vant Westend YAM, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724PubMedPubMedCentralCrossRefGoogle Scholar
  275. Van Wees SCM, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate — and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716PubMedCrossRefPubMedCentralGoogle Scholar
  276. Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448PubMedPubMedCentralCrossRefGoogle Scholar
  277. Verhagen BWM, Van Loon LC, Pieterse CMJ (2006) Induced disease resistance signaling in plants. In: Silva JAT (ed.) Floriculture, ornamental and plant biotechnology, volume III. Global Science Books; Gainesville, pp 334–343Google Scholar
  278. Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319Google Scholar
  279. Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281CrossRefGoogle Scholar
  280. Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358PubMedPubMedCentralCrossRefGoogle Scholar
  281. Wandersman C, Delepelaire P (2004) Bacterial iron sources: From siderophores to hemophores. Annu Rev Microbiol 58:611–647PubMedCrossRefPubMedCentralGoogle Scholar
  282. Wang C, Knill E, Glick B, Defago G (2000) Effect of transferring the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease suppressive capacities. Can J Microbiol 46:898–907CrossRefGoogle Scholar
  283. Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512CrossRefGoogle Scholar
  284. Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407CrossRefGoogle Scholar
  285. Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256PubMedPubMedCentralCrossRefGoogle Scholar
  286. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511CrossRefGoogle Scholar
  287. Whistler CA, Stockwell VO, Loper JE (2000) Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 66:2718–2725PubMedPubMedCentralCrossRefGoogle Scholar
  288. Xu Z, Zhang R, Wang D, Qiu M, Feng H, Zhang N et al (2014) Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation. Appl Environ Microbiol 80:2941–2950PubMedPubMedCentralCrossRefGoogle Scholar
  289. Yuan SZ, Zhou MG (2006) Screening and root colonization of biocontrol agents against Phytophthora capsica. J Yangzhou Univ Agricult Life Sci 27(4):93–97Google Scholar
  290. Yuan J, Ruan Y, Wang B, Zhang J, Waseem R, Huang Q et al (2013) Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-Enriched bioorganic fertilizer suppressed fusarium wilt and promoted the growth of banana plants. J Agric Food Chem 61:3774–3780PubMedCrossRefPubMedCentralGoogle Scholar
  291. Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera, Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396CrossRefGoogle Scholar
  292. Zhang YL, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ashwini Marotirao Charpe
    • 1
  1. 1.Department of Plant PathologyDr. Panjabrao Deshmukh Krishi VidyapeethAkolaIndia

Personalised recommendations