Advertisement

Other Typical Applications of RELAX

  • Renbiao WuEmail author
  • Qiongqiong Jia
  • Lei Yang
  • Qing Feng
Chapter

Abstract

RELAX is not only widely used in the fields described in the previous chapters, but has also been introduced into many other fields, including air maneuvering target detection for airborne early-warning phased array radar [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], ground moving target high range resolution imaging for airborne radar [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30], target parameter estimation for airborne meteorological radar [31, 32, 33, 34], underground structure inversion for ground penetrating radar [35, 36, 37], interference suppression for satellite navigation [38, 39, 40, 41, 42, 43], cavity shape control for underwater super-cavitation vehicles [29, 44, 45], compressive sensing DOA estimation [46, 47], and neuron information demixing in biomedical engineering [48, 49].

References

  1. 1.
    Li H, Wang XH, Wu RB. Multiple maneuvering target detection and parameter estimation based on RELAX. J Aeronaut. 2013;34(4):873–81.Google Scholar
  2. 2.
    Wu RB, Jia QQ, Li H, et al. A new method for airborne radar maneuvering target detection. Electron J. 2013;41(1):86–90.Google Scholar
  3. 3.
    Li H, Wu RB, Wang XH. Airborne maneuvering target detection method based on nonlinear least squares. J Electron Inf. 2012;9:2143–8.Google Scholar
  4. 4.
    Wu RB, Wang XH, Li H, et al. Maneuvering target detection and parameter estimation based on reconstructed time sampling. J Electron Inf. 2012;34(4):936–42.Google Scholar
  5. 5.
    Li H, Zhen JZ, Zhou M, et al. Low complexity air maneuvering target parameter estimation based on compressed sensing and cubic phase transformation. J Electron Inf. 2015;11:2697–704.Google Scholar
  6. 6.
    Zhou Z, Su ZG, Wu RB. Method for detecting ground moving target with range migration. In: IET international radar conference; 2009. p. 141–4.Google Scholar
  7. 7.
    Wu RB. Principle and implementation of space-time two-dimensional adaptive filter for airborne early-warning radar. Xi’an University of Electronic Science and Technology, Xi’an; 1994.Google Scholar
  8. 8.
    Wu RB, Bao Z. Array pattern distortion and remedies in space-time adaptive processing for airborne radar. IEEE Trans Antennas Propag. 1998;46(7):963–70.Google Scholar
  9. 9.
    Wu RB, Su ZG, Wang L. Space-time adaptive monopulse processing for airborne radar in non-homogeneous environments. AEU-Int J Electron Commun. 2011;65(3):258–64.Google Scholar
  10. 10.
    Wu RB, Jia QQ, Li H. A novel STAP method for the detection of fast air moving targets from high speed platform. Sci China Inf Sci. 2012;55(6):1259–69.MathSciNetGoogle Scholar
  11. 11.
    Bao Z, Liao GS, Wu RB, et al. Adaptive spatial-temporal processing for airborne radar. Chin J Electron. 1993;2(1):1–7.Google Scholar
  12. 12.
    Bao Z, Liao GS, Wu RB, et al. Space-time two-dimensional adaptive filtering for clutter suppression of airborne phased array radar. Electron J. 1993;21(9):1–7.Google Scholar
  13. 13.
    Wu RB, Bao Z. Quality control of secondary data in space-time adaptive processing for airborne radar. Chin J Electron. 1995;4(3):12–7.Google Scholar
  14. 14.
    Wu RB. Single-pulse angle measurement technology compatible with spaceborne two-dimensional adaptive filtering of airborne early-warning radar. J Aeronaut. 1996;17(4):410–6.MathSciNetGoogle Scholar
  15. 15.
    Wang L, Su ZG, Wu RB. Space-time adaptive single pulse technique based on linear constraint. J Electron Inf. 2010;32(10):2501–5.Google Scholar
  16. 16.
    Wu RB, Bao Z, Zhang YH. Subarray-level adaptive spatial-temporal processing for airborne radar. In: International conference on signal processing; 1993. p. 391–5.Google Scholar
  17. 17.
    Wu RB, Bao Z. Training method in space-time adaptive processing with strong generalization ability. In: Record of the IEEE 1995 international radar conference; 1995. p. 603–8.Google Scholar
  18. 18.
    Wu RB, Jia QQ, Li H. A novel STAP method for the detection of fast dim air moving targets. In: International conference on signal processing; 2010. p. 2160–3.Google Scholar
  19. 19.
    Jia QQ, Wu RB, Li H. Impacts of keystone formatting on space-time adpative processing in airborne radar. In: International conference on signal processing; 2010. p. 2164–7.Google Scholar
  20. 20.
    Bi ZQ, Wu RB, Li J, et al. Joint super resolution moving target feature extraction and stationary clutter suppression. IEEE Proc-Radar, Sonar, Navig. 2000;147(1):23–9.Google Scholar
  21. 21.
    Jiang NZ, Wu RB, Liu G, et al. Clutter suppression and moving target parameter estimation for airborne phased array radar. Electron Lett. 2000;36(5):456–7.Google Scholar
  22. 22.
    Jiang NZ, Wu RB, Li J. Super resolution feature extraction of moving targets. IEEE Trans Aerosp Electron Syst. 2001;37(3):781–93.Google Scholar
  23. 23.
    Zhou F, Wu RB, Xing MD, et al. Eigensubspace-based filtering with application in narrow-band interference suppression for SAR. IEEE Geosci Remote Sens Lett. 2007;4(1):75–9.Google Scholar
  24. 24.
    Bi ZQ, Wu RB, Li J, et al. Simultaneous HRR feature extraction and doppler shift estimation of moving targets with rigid bodies. In: Proceedings of SPIE; 1999. p. 425–36.Google Scholar
  25. 25.
    Yang L, Bi G, Xing M, et al. Airborne SAR moving target signatures and imagery based on LVD. IEEE Trans Geosci Remote Sens. 2015;53(11):5958–71.Google Scholar
  26. 26.
    Yang L, Zhao L, Bi G, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning. IEEE Trans Geosci Remote Sens. 2016;54(4):2254–67.Google Scholar
  27. 27.
    Yang L, Zhao L, Zhou S, et al. Sparsity-driven SAR imaging for highly maneuvering ground target by the combination of time-frequency analysis and parametric Bayesian learning. IEEE J Sel Top Appl Earth Obs Remote Sens. 2016.Google Scholar
  28. 28.
    Zhao L, Wang L, Yang L, et al. The race to improve radar imagery: an overview of recent progress in statistical sparsity-based techniques. IEEE Signal Process Mag. 2016;33(6):85–102.Google Scholar
  29. 29.
    Li X, Wu RB, Rasmi S, et al. An acoustic proximity ranging system for monitoring the cavity thickness. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50(7):898–910.Google Scholar
  30. 30.
    Wu RB, Li T. Robust linear prediction for landmine detection. In: International conference on radar systems; 2004. p. 18–22.Google Scholar
  31. 31.
    Lu XG, Wu RB. Airborne meteorological radar echo spectrum moment estimation based on nonlinear least squares. Syst Eng Electron Technol. 2014;36(3):447–52.Google Scholar
  32. 32.
    Lu XG, Wu RB. RELAX-based estimation method of parameterized spectrum moments for meteorological radar echo. Sig Process. 2011;27(8):1250–3.Google Scholar
  33. 33.
    Lu XG, Wu RB, Qin J. Parametric spectral moments estimation algorithm based on fitting auto-correlation sequence. In: IET international radar conference; 2013. p. 1–4.Google Scholar
  34. 34.
    Lu XG. Research on some key technologies of airborne meteorological demand signal processing. Doctoral dissertation, Tianjin University, Tianjin; 2014.Google Scholar
  35. 35.
    He WH, Wu RB, Liu JX. Identification method of inversion of electromagnetic characteristics of airport road surface structure layer. Data Collect Process. 2012:547–51.Google Scholar
  36. 36.
    He WH. Research on key technologies of airport runway quality monitoring based on ground penetrating radar. Doctoral dissertation, Tianjin University, Tianjin; 2012.Google Scholar
  37. 37.
    Wu RB, Cao YQ, Liu JX. Multilayered diffraction tomography algorithm for ground penetrating radar. In: International conference on signal processing; 2010. p. 2129–32.Google Scholar
  38. 38.
    Wang L, Zhang YT, Wu RB, Lu D, Wang WY. GNSS spoofing suppression method based on multi-source estimation. Chinese Patent: ZL201410607107.2, 2015.2.4.Google Scholar
  39. 39.
    Zhang YT, Wang L, Wang WY, et al. Spoofing jamming suppression techniques for GPS based on DOA estimating. In: 2014 China satellite navigation conference; 2014. p. 683–94.Google Scholar
  40. 40.
    Han NS, Zhang Y, Meng NW, et al. GPS anti-spoofing technology based on RELAX algorithm in smart grid. In: International conference on communications and networking in China. IEEE computer society; 2015. p. 637–42.Google Scholar
  41. 41.
    Li J, Wu R, Lu D, Wang W. GPS multipath mitigation algorithm based on signal separation estimation theory. Chin Signal Process. 27(12):1884–7.Google Scholar
  42. 42.
    Mohammed S. Fourier transformsignal processing and physical sciences. Croatia: INTECH Open Access Publisher; 2015.Google Scholar
  43. 43.
    Jia QQ, Wu RB, Wang WW, et al. Multipath interference mitigation in GNSS via WRELAX. GPS Solut. 2017;21(2):487–98.Google Scholar
  44. 44.
    Li X, Wu R, Rasmi S, et al. Acoustic proximity ranging in the presence of secondary echoes. IEEE Trans Instrum Meas. 2003;52(5):1593–605.Google Scholar
  45. 45.
    Li X, Wu RB, Sheplak M. Multi-frequency CW-based time delay estimation for proximity ultrasonic sensors. IEE Proc-Radar, Sonar, Navig. 2002;149(2):53–9.Google Scholar
  46. 46.
    Yardibi T, Li J, Stoica P, et al. Source localization and sensing: a nonparametric iterative adaptive approach based on weighted least squares. IEEE Trans Aerosp Electron Syst. 2010;46(1):425–43.Google Scholar
  47. 47.
    Xu L, Zhao K, Li J, et al. Wideband source localization using sparse learning via iterative minimization. Sig Process. 2013;93(12):3504–14.Google Scholar
  48. 48.
    Wang GL, Zhou Y, Chen AH, et al. A robust method for spike sorting with automatic overlap decomposition. IEEE Trans Biomed Eng. 2006;53(6):1195–8.Google Scholar
  49. 49.
    Wang GL. Retinal neuron activity multi-electrode recording signal processing. Doctor dissertation, Shanghai Jiaotong University, Shanghai; 2007.Google Scholar
  50. 50.
    Gini F, Greco M. Texture modelling, estimation and validation using measured sea clutter data. IEE Proc—Radar, Sonar Navig. 2002;149(3):115–24.Google Scholar
  51. 51.
    Jensen TL, Jakobsen ML. Online estimation of wind turbine blade deflection with UWB signals. In: 2015 23rd European signal processing conference; 2015. p. 1182–6.Google Scholar
  52. 52.
    Jr OO, Li J. RFI suppression for synchronous impulse reconstruction UWB radar using RELAX. Int J Remote Sens Appl. 2013;3(1):33–46.Google Scholar
  53. 53.
    Wang Y, Li J, Stoica P, et al. Wideband RELAX and wideband CLEAN for aeroacoustic imaging. J Acoust Soc Am. 2004;115(2):757–67.Google Scholar
  54. 54.
    Babu P, Stoica P. A combined linear programming-maximum likelihood approach to radial velocity data analysis for extrasolar planet detection. In: IEEE international conference on acoustics, speech & signal processing; 2011. p. 4352–5.Google Scholar
  55. 55.
    Li C, Ling J, Li J, et al. Accurate doppler radar noncontact vital sign detection using the RELAX algorithm. IEEE Trans Instrum Meas. 2010;59(3):687–95.Google Scholar
  56. 56.
    Nanzer JA, Rogers RL. Frequency estimation of human presence detection signals from a scanning-beam millimeter-wave correlation radiometer. IEEE Geosci Remote Sens Lett. 2011;8(1):78–82.Google Scholar
  57. 57.
    Sun HJ, Zhang T, Duan RF. Vortex information retrieval system based on relaxing notch periodogram. In: Machine learning and cybernetics; 2005. p. 13–8.Google Scholar
  58. 58.
    Wei Y, Shi C. Fault diagnosis way based on RELAX algorithms in frequency domain for the squirrel cage induction motors. In: 2010 International conference on computational intelligence and software engineering; 2010. p. 1–4.Google Scholar
  59. 59.
    Ma G, Gran F, Jacobsen F, et al. A new approach for modelling the dynamic feedback path of digital hearing aids. In: IEEE international conference on acoustics; 2009. p. 209–12.Google Scholar
  60. 60.
    Liu JX, Tao M. A method of aircraft fuel consumption performance evaluation based on RELAX signal separation. In: IEEE international conference on cyber technology in automation, control, and intelligent systems; 2015. p. 1433–7.Google Scholar
  61. 61.
    Klemm R. Principle of space-time adaptive processing. London: IET Publisher; 2006. p. 1–133.Google Scholar
  62. 62.
    Wang YL, Peng YN. Space-time adaptive signal processing. Beijing: Tsinghua University Press; 2000.Google Scholar
  63. 63.
    Bao Z, Zhang YH, Liao GS. Space-time signal processing for airborne radars. Mod Radar. 1994;16(1):38–48.Google Scholar
  64. 64.
    Liu JC. Study on accelerating target detection and tracking. Changsha: National University of Defense Technology; 2007. p. 1–3.Google Scholar
  65. 65.
    Kelly EJ. The radar measurement of range, velocity and acceleration. IRE Trans Mil Electron. 1961;5(2):51–7.Google Scholar
  66. 66.
    Zhang XD, Bao Z. Non-stationary signal analysis and processing. Beijing: National Defense Industry Press; 2001.Google Scholar
  67. 67.
    Liu, JC. Research on accelerating maneuvering target detection and tracking technology. Doctoral dissertation, National University of Defense Technology, ChangSha; 2007.Google Scholar
  68. 68.
    Xia XG. Discrete chirp-Fourier transform and its application to chirp rate estimation. IEEE Trans Signal Process. 2000;48(11):3122–33.MathSciNetzbMATHGoogle Scholar
  69. 69.
    Kwok HK, Jones DL. Improved instantaneous frequency estimation using an adaptive short-time Fourier transform. IEEE Signal. 2000;48:2964–72.MathSciNetGoogle Scholar
  70. 70.
    Pitton JW, Fox WLJ, Atlas LE, et al. Range-doppler processing with cone time-frequency representation. In: IEEE pacific rim conference on communication, computers and signal processing; 1991. p. 799–802.Google Scholar
  71. 71.
    Choi HI, Williams WJ. Improved time-frequency representation of multi-component signal using exponential kernels. IEEE Trans ASSP. 1989;38(6):862–71.Google Scholar
  72. 72.
    Flandrin P, Escudie B. An interpretation of pseudo Wigner-Ville distribution. Sig Process. 1984;6:27–36.Google Scholar
  73. 73.
    Boashash B, O’Shea P. Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra. IEEE Trans Signal Process. 1994;42(1):216–20.Google Scholar
  74. 74.
    Barkat B, Boashash B. Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: statistical performance in the presence of additive Gaussian noise. IEEE Trans Signal Process. 1999;47(9):2480–90.Google Scholar
  75. 75.
    Barbarossa S, Zanalda A. A combined Wigner-Ville and Hough transform for cross terms suppression and optional detection and parameter estimation. In: IEEE international conference on acoustics, speech, and signal processing, vol. 5; 1992. p. 173–6.Google Scholar
  76. 76.
    Qi L, Tao R, Zhou SY, et al. Multi-component LFM signal detection and parameter estimation based on fractional Fourier transform. Chin Sci. 2003;33(8):749–59.Google Scholar
  77. 77.
    Almeida LB. The fractional Fourier transform and time frequency representation. IEEE Trans Signal Process. 1994;42(11):3084–91.Google Scholar
  78. 78.
    Fennell MT, Wishner RP. Battlefield awareness via synergistic SAR and MTI exploitation. IEEE Aerosp Electron Syst Mag. 1998;13(2):39–43.Google Scholar
  79. 79.
    Skolnik MI. Radar handbook. New York: Mcgraw-Hill Book; 1990.Google Scholar
  80. 80.
    Chapin E, Chen CW. Airborne along-track interferometry for GMTI. IEEE Aerosp Electron Syst Mag. 2009;24(5):13–8.Google Scholar
  81. 81.
    Ward J. Space-time adaptive processing for airborne radar. Space-Time Adapt Process. 1995:2809–12.Google Scholar
  82. 82.
    Yang Z, Liao G, He S, et al. Target location with signal fitting and sub-aperture tracking for airborne multi-channel radar. J Syst Eng Electron. 2010;21(5):752–8.Google Scholar
  83. 83.
    Bi Z, Wu RB, Li J, et al. Joint super-resolution moving target feature extraction and stationary clutter suppression. IEE Proc—Radar, Sonar Navig. 2000;147(1):23–9.Google Scholar
  84. 84.
    Stoica P, Sharman KC. Novel eigenanalysis method for direction estimation. Process IEEE Proc F Radar & Signal. 1990;137(1):19–26.MathSciNetGoogle Scholar
  85. 85.
    Stoica P, Sharman KC. Maximum likelihood methods for direction-of-arrival estimation. IEEE Trans Acoust Speech Signal Process. 1990;38(7):1132–43.zbMATHGoogle Scholar
  86. 86.
    Qi J. Research on clutter suppression of airborne forward-looking weather radar. TianJin University, Tianjin; 2012.Google Scholar
  87. 87.
    Li H, Zhou M, Guo Q, et al. Compressive sensing-based wind speed estimation for low-altitude wind-shear with airborne phased array radar. Multidimens Syst Signal Process. 2016:1–14.Google Scholar
  88. 88.
    Wu RB, Han YF, Li H. Low-level wind shear wind speed estimation method based on compressive sensing. J Electron Inf. 2013;35(10):2512–7.Google Scholar
  89. 89.
    Wu RB, Lu XG, Li H, et al. Research progress of airborne front-view wind shear detection weather radar. Data Collect Process. 2014;29(4):496–507.Google Scholar
  90. 90.
    Miller K, Rochewarger M. A covariance approach to spectral moment estimation. IEEE Trans Inf Theory. 1972;18(5):588–96.MathSciNetGoogle Scholar
  91. 91.
    Diaz JMB, Leitão JMN. Nonparametric estimation of mean doppler and spectral width. IEEE Trans Geosci Remote Sens. 2000;38(1):271–82.Google Scholar
  92. 92.
    Sirmans D, Bumgarner B. Numerical comparison of five mean frequency estimators. J Appl Meteorol. 1975;14(6):991–1003.Google Scholar
  93. 93.
    Boyer E, Larzabal P, Adnet C, et al. Parametric spectral moments estimation for wind profiling radar. IEEE Trans Geosci Remote Sens. 2003;41(8):1859–68.Google Scholar
  94. 94.
    Nguyen CM, Moisseev DN, Chandrasekar V. A parametric time domain method for spectral moment estimation and clutter mitigation for weather radar. J Atmos Ocean Technol. 2008;25(1):83–92.Google Scholar
  95. 95.
    Siggia AD, Passarelli RE. Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation. In: Processing of ERAD, vol. 2; 2004. p. 421–4.Google Scholar
  96. 96.
    Venkatachalam C, Moiseev D, Nguyen C. Ground clutter mitigation using a parametric time domain method. US patent: 7652614, 2010.1.26.Google Scholar
  97. 97.
    Wu RB, Clement A, Li J, et al. Adaptive ground bounce removal. Electron Lett. 2001;37(20):1250–2.Google Scholar
  98. 98.
    Wu RB, Li X, Li J. Continous pavement profiling with ground penetrating radar. IEE Proc-Radar, Sonar, Navig. 2002;149(4):183–93.Google Scholar
  99. 99.
    Wu RB, Gu K, Li J, et al. Propagation velocity uncertainty on GPR SAR processing. IEEE Trans Aerosp Electron Syst. 2003;39(3):849–61.Google Scholar
  100. 100.
    Wu RB, Li J. Novel time delay estimation methods with applications to ultra wideband ground penetrating radar. In: Aerospace/Defense sensing and controls. International Society for Optics and Photonics; 1998. p. 57–68.Google Scholar
  101. 101.
    Gu K, Wu RB, Li J, et al. SAR processing for GPSAR systems. International Society for Optics and Photonics; 2002. p. 1050–60.Google Scholar
  102. 102.
    Wu RB, Liu J, Li T, et al. Progress in the research of ground bounce removal for landmine detection with ground penetrating radar. Proc Prog Electromagn Res Symp. 2005;1(3):336–40.Google Scholar
  103. 103.
    Wang G, Wu R, Zhang M. Quick determination of refraction points for GPR SAR imaging. The International Society for Optics and Photonics; 2005. p. 544–8.Google Scholar
  104. 104.
    Liu JX, Wu RB, Li T, et al. Reference data selection for ground bounce removal with ground penetrating radar. Processing of IRS. 2005:783–7.Google Scholar
  105. 105.
    He WK, Liu JX, Wu RB. Localized parametric electromagnetic inversion for pavement profiling with ground penetrating radar. Piers Online. 2005;1(3):341–4.Google Scholar
  106. 106.
    Gao Q, Li T, Wu R. A novel KICA method for ground bounce removal with GPR. In: International conference on radar; 2006. p. 1–4.Google Scholar
  107. 107.
    Liu J, Wu RB, Li T, et al. Novel ground bounce removal algorithms based on non-homogeneous detector. In: International conference on radar; 2006. p. 1–5.Google Scholar
  108. 108.
    Liu JX, Wu RB. Training method for ground bounce removal with ground penetrating radar. In: Proceeding of 2007 IEEE radar conference; 2007. p. 875–8.Google Scholar
  109. 109.
    Lerner R. Ground radar system. US patent: 3831173, 1974.8.20.Google Scholar
  110. 110.
    Peters LP, Daniels JJ, Young JD. Ground penetrating radar as a subsurface environmental sensing tool. Proceeding IEEE. 1994;82:1802–22.Google Scholar
  111. 111.
    Daniels DJ, Gunton DJ, Scott HF. Introduction to subsurface radar. IEE Proc Commun, Radar Signal Process. 1988;135(4):278–320.Google Scholar
  112. 112.
    Szynkiewicz A, Grabowski P. GPR monitoring of pavements on airfield. In: Tenth international conference on ground penetrating radar; 2004. p. 803–6.Google Scholar
  113. 113.
    Xie B, Wu CY, Wang W, et al. Application of ground penetrating radar in runway quality monitoring at Wuhan Tianhe airport. J Henan Univ Sci Technol. 2005;26(5):58–60.Google Scholar
  114. 114.
    Spagnolini U. Permittivity measurements of multilayered media with monostatic pulse radar. IEEE Trans Geosci Remote Sens. 1997;35(2):454–63.Google Scholar
  115. 115.
    Li J, Wu RB. An efficient algorithm for time delay estimation. IEEE Trans Signal Process. 1998;46(8):2231–5.Google Scholar
  116. 116.
    Wu RB, Li J, Liu ZH. Super resolution time delay estimation via MODE-WRELAX. IEEE Trans Aerosp Electron Syst. 1999;35(1):294–307.Google Scholar
  117. 117.
    Wu RB, Li J. Novel time delay estimation methods with applications to ultra wideband ground penetrating radar. International Society for Optics and Photonics; 1998. p. 57–68.Google Scholar
  118. 118.
    Zhang P. System identification method for dielectric properties and thickness inversion of pavement structure layer materials. Doctoral dissertation, Chongqing University, ChongQing; 2003.Google Scholar
  119. 119.
    Wu RB, Wang WY, Lu D, Wang L, Jia QQ. Adaptive interference mitigation in GNSS. Beijing: Science Press; 2015.Google Scholar
  120. 120.
    Lu D, Wu RB, Liu HT. Global positioning system anti-jamming algorithm based on period repetitive CLEAN. IET Radar Sonar Navig. 2013;7(2):164–9.Google Scholar
  121. 121.
    Wang WY, Du QR, Wu RB, et al. Interference suppression with flat gain constraint for satellite navigation systems. IET Radar Sonar Navig. 2015;9(7):852–6.Google Scholar
  122. 122.
    Wu RB, Wang WY, Li J, et al. Distance measuring equipment interference suppression based on parametric estimation and wavelet-packet transformation for global navigation satellite systems. IEEE Trans Aerosp Electron Syst. 2016;52(4):1607–17.Google Scholar
  123. 123.
    Wu RB, Xu RL, Lu D. GPS space-time adaptive processing compensation technique based on homomorphic filtering. Chin Sci: Phys Mech Astron. 2010;40(5):554–9.Google Scholar
  124. 124.
    Wang WY, Du QR, Wu RB, et al. A satellite navigation high dynamic interference suppression algorithm using less snapshot data. J Electron Inf. 2014;36(10):2445–9.Google Scholar
  125. 125.
    Lu D, Ge L, Wang WY, et al. High dynamic nulling and widening algorithm based on space-time dimensionality reduction. J Electron Inf. 2016;38(1):216–21.Google Scholar
  126. 126.
    Lu D, Feng Q, Wu R. Survey on interference mitigation via adaptive array processing in GPS. Piers Online. 2006;2(4):357–62.Google Scholar
  127. 127.
    Lu D, Wu RB, Su ZG, et al. A two stage GPS anti-jamming processor for interference suppression and multipath mitigation. In: 2007 IEEE radar conference; 2007. p. 746–9.Google Scholar
  128. 128.
    Lu D, Wu RB, Su ZG, et al. A space-frequency anti-jamming algorithm for GPS. In: 2007 IEEE antennas and propagation society international symposium; 2007. p. 4216–9.Google Scholar
  129. 129.
    Li P, Lu D, Wu RB, et al. Adaptive anti-jamming algorithm based on the spatial and temporal characteristics of GPS signal. In: 2007 Asia-pacific conference on communications; 2007. p. 193–6.Google Scholar
  130. 130.
    Lu D, Wu RB, Li P, et al. GPS smart jammer suppression algorithm based on spatial APES. In: 2007 International symposium on intelligent signal processing and communications systems; 2007. p. 189–92.Google Scholar
  131. 131.
    Wu RB, Xu RL, Lu D, et al. STAP compensation technique based on homomorphic filtering in GPS. In: 2010 IEEE international symposium on phased array systems and technology; 2010. p. 841–5.Google Scholar
  132. 132.
    Jafarnia-Jahromi A, Broumandan A, Nielsen J, et al. GPS vulnerability to spoofing threats and a review of antispoofing techniques. Int J Navig Obs. 2012:1–16.Google Scholar
  133. 133.
    Misra P, Enge P. Global positioning system: signals, measurements, and performance. Ganga-Jamuna Press; 2006.Google Scholar
  134. 134.
    Gecan A, Zoltowski MD. Power minimization technique for GPS null steering antennas. In: Institute of navigation conference, vol. 12(1); 1995. p. 13–5.Google Scholar
  135. 135.
    Li M. Research on key technologies of digital beamforming for satellite navigation receiver. Doctoral Dissertation, National University of Defense Technology, ChangSha; 2011.Google Scholar
  136. 136.
    Shmidt RO. Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag. 1986;34(3):276–80.Google Scholar
  137. 137.
    Roy R, Paulraj A, Kailath T. ESPRIT-A subspace rotation approach to estimation of parameter of cissoids in noise. IEEE Trans Acoust Speech Signal Process. 1986;34:1340–2.Google Scholar
  138. 138.
    Sun W, Amin MG. A self-coherence anti-jamming GPS receiver. IEEE Trans Signal Process. 2005;53(10):3910–5.MathSciNetzbMATHGoogle Scholar
  139. 139.
    Wu RB, Lu D, Liu HT, Wang WY, Hu TQ, Wang L, Li J. GPS interference suppression method based on single-channel single delay cross-correlation processing. Chinese Patent: CN201010100159.2, 2013.9.1.Google Scholar
  140. 140.
    Wu RB, Lu D, Hu TQ, Wang L, Liu HT, Wang WY, Li J. GPS interference suppression method based on single-channel single delay cross-correlation processing. Chinese Patent: CN201010102833.0, 2010.7.28.Google Scholar
  141. 141.
    Wu RB, Lu D, Liu HT, Wang WY, Hu TQ, Wang WY, Li J. GPS interference suppression method based on multi-channel single delay cross-correlation processing. Chinese Patent: CN201010102866.5.3, 2010.7.14.Google Scholar
  142. 142.
    Geng ZL, Nie JW, Wang FX. GNSS anti-jamming interference technology research. GPS Syst. 2013;38(4):65–70.Google Scholar
  143. 143.
    John A. Vulnerability assessment of the transportation infrastructure relying on the global positioning system. Volpe National Transportation Systems Center; 2001.Google Scholar
  144. 144.
    Humphreys TE, Ledvina BM, Psiaki ML, et al. Assessing the spoofing threat: development of a portable GPS civilian spoofer. In: Proceedings of ION GNSS 21st. international technical meeting of the satellite division; 2008. p. 2314–25.Google Scholar
  145. 145.
    Humphreys TE. Robust and resilient navigation. ION GNSS+ 2015 Tutorial; 2015.Google Scholar
  146. 146.
  147. 147.
    Dehghanian V, Nielsen J, Lachapelle G. GNSS spoofing detection based on receiver C/N0 estimates. In: Proceedings of international technical meeting of the satellite division of the institute of navigation; 2012. p. 2878–84.Google Scholar
  148. 148.
    Psiaki ML, O’hanlon BW, Powell SP, et al. GNSS spoofing detection using two-antenna differential carrier phase. In: Proceedings of the ION GNSS+ meeting. Tampa, FL; 2014. p. 1–25.Google Scholar
  149. 149.
    Moshavi S. Multi-user detection for DS-CDMA communications. IEEE Commun Mag. 1996;34(10):124–36.Google Scholar
  150. 150.
    Phelts RE. Multicorrelator techniques for robust mitigation of threats to GPS signal quality. Standford: Standford University; 2012.Google Scholar
  151. 151.
    White NA, Maybeck PS, Devilbiss SL. Detection of interference/jamming and spoofing in a dgps-aided inertial system. IEEE Trans Aerosp Electron Syst. 1998;34(4):1208–17.Google Scholar
  152. 152.
    Humphreys TE. Detection strategy for cryptographic GNSS anti-spoofing. IEEE Trans Aerosp Electron Syst. 2013;49(2):1073–90.Google Scholar
  153. 153.
    Khanafseh S, Roshan N, Langel S, et al. GPS spoofing detection using RAIM with INS coupling. In: Position, location and navigation symposium-PLANS; 2014. p. 1232–9.Google Scholar
  154. 154.
    Wang L, Wu RB, Zhang YT, et al. Spoofing interference suppression for GNSS based on despread-respread method. ION GNSS+; 2015. p. 3405–14.Google Scholar
  155. 155.
    Daneshmand S, Jafarnia-Jahromi A, Broumandan A, et al. A low-complexity GPS anti-spoofing method using a multi-antenna array. In: ION GNSS Conference; 2012. p. 1233–43.Google Scholar
  156. 156.
    Mcdowell CE. GPS spoofer and repeater mitigation system using digital spatial nulling. US Patent: 7250903, 2007.7.31.Google Scholar
  157. 157.
    Kalyanaraman SK, Braasch MS, Kelly JM. Code tracking architecture influence on GPS carrier multipath. IEEE Trans Aerosp Electron Syst. 2006;42(2):548–61.Google Scholar
  158. 158.
    Kos T, Markezic I, Pokrajcic J. Effects of multipath reception on GPS positioning performance. In: 52nd international symposium elmar-2010: conference proceedings; 2010. p. 399–402.Google Scholar
  159. 159.
    Scire-Scauzzo F, Makarov SN. A low-multipath wideband GPS antenna with cutoff or non-cutoff corrugated ground plane. IEEE Trans Antennas Propag. 2009;57(1):33–46.Google Scholar
  160. 160.
    Maqsood M, Gao S, Brown TWC, et al. A compact multipath mitigating ground plane for multiband GNSS antennas. IEEE Trans Antennas Propag. 2014;61(5):2775–82.Google Scholar
  161. 161.
    Lopez AR. GPS landing system reference antenna. IEEE Antennas Propag Soc. 2010;52(1):104–13.Google Scholar
  162. 162.
    Ray JK, Cannon ME, Fenton P. GPS code and carrier multipath mitigation using a multiantenna system. IEEE Trans Aerosp Electron Syst. 2001;37(1):183–95.Google Scholar
  163. 163.
    Braasch MS. GPS Multipath model validation. In: IEEE position location and navigation symposium; 1996. p. 672–8.Google Scholar
  164. 164.
    Cannon ME, Lachapelle G, Qiu W, et al. Performance analysis of a narrow correlator spacing receiver for precise static GPS positioning. In: Position location and navigation symposium; 1994. p. 355–60.Google Scholar
  165. 165.
    Van Nee RDJ, Siereveld J, Fenton PC, et al. The multipath estimating delay lock loop: approaching theoretical accuracy limits. In: IEEE second international symposium on spread spectrum techniques and applications; 1992. p. 39–42.Google Scholar
  166. 166.
    Wu RB, Li J. Time-delay estimation via optimizing highly oscillatory cost functions. IEEE J Oceanic Eng. 1998;23(3):235–44.Google Scholar
  167. 167.
    Wu RB, Li J. Time delay estimation with multiple looks in colored Gaussian noise. IEEE Trans Aerosp Electron Syst. 1999;35(4):1354–61.Google Scholar
  168. 168.
    Göpel W, Hesse J, Zemel JN. Sensors: a comprehensive survey. Weinheim: Wiley-VCH; 1989.Google Scholar
  169. 169.
    Brand O, Baltes H. Micromachined resonant sensors—an overview. Sens Updat. 1998;4(1):3–51.Google Scholar
  170. 170.
    Manthey W, Kroemer N, Magori V. Ultrasonic transducers and transducer arrays for applications in air. Meas Sci Technol. 1992;3(3):249.Google Scholar
  171. 171.
    Barshan B. Fast processing techniques for accurate ultrasonic range measurements. Meas Sci Technol. 2000;11(1):45.Google Scholar
  172. 172.
    Lee AKT, Lucas J, Virr LE. Microcomputer-controlled acoustic range finding technique. J Phys E: Sci Instrum. 1989;22(1):52.Google Scholar
  173. 173.
    Webster D. A pulsed ultrasonic distance measurement system based upon phase digitizing. IEEE Trans Instrum Meas. 1994;43(4):578–82.Google Scholar
  174. 174.
    Chu D. Phase digitizing sharpens timing measurements. IEEE Spectr. 1988;25(7):28–32.Google Scholar
  175. 175.
    Mahmud SM, Mahmud NB, Vishnubhotla SR. Hardware implementation of a new phase measurement algorithm. IEEE Trans Instrum Meas. 1990;39(2):331–4.Google Scholar
  176. 176.
    Zhang Y. Research on direction-of-arrival estimation algorithm based on sparse reconstruction. Ph.D. dissertation, University of Science and Technology of China, HeFei; 2015.Google Scholar
  177. 177.
    Li L. Spatial target DOA estimation algorithm based on sparse perception theory. Master thesis, Beijing Institute of Technology, Beijing; 2015.Google Scholar
  178. 178.
    Yu K, Ying M, Zong XD, et al. Wireless array and cooperative signal processing based on compressed sensing. Comput Res Dev. 2014;51(1):180–8.Google Scholar
  179. 179.
    Ma WJ. Application of Bayesian compressive sensing in DOA estimation. Master thesis, Harbin Institute of Technology, Harbin; 2014.Google Scholar
  180. 180.
    Chen Y, Zhang HJ, Song H. A subspace decomposition compressed sensing algorithm with multiple targets directly located. Sig Process. 2015;31(10):1272–8.Google Scholar
  181. 181.
    Jun HS. Establishment, improvement and application of multi-electrode electrophysiological system. Master thesis, Shanghai Jiao Tong University, Shanghai; 2008.Google Scholar
  182. 182.
    Atiya AF. Recognition of multiunit neural signals. IEEE Trans Biomed Eng. 1992;39(7):723–9.Google Scholar
  183. 183.
    Bankman IN, Johnson KO, Schneider W. Optimal detection, classification, and superposition resolution in neural waveform recordings. IEEE Trans Biomededical Eng. 1993;40(8):836–41.Google Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Renbiao Wu
    • 1
    Email author
  • Qiongqiong Jia
    • 1
  • Lei Yang
    • 1
  • Qing Feng
    • 1
  1. 1.Tianjin Key Lab for Advanced Signal ProcessingCivil Aviation University of ChinaTianjinChina

Personalised recommendations