Application of RELAX in Radar Target Imaging

  • Renbiao WuEmail author
  • Qiongqiong Jia
  • Lei Yang
  • Qing Feng


As an effective microwave detection method, radar has attracted wide attention since conception due to its all-day and all-weather working capability. With the concept of synthetic aperture being introduced to radar systems, radar imaging technology has been gradually developed. Its development has received great attentions, especially in the last 30 years. Synthetic Aperture Radar (SAR) imaging overcomes the limitations of traditional radar target detection and positioning functions, and can achieve two-dimensional or even three-dimensional high-resolution images of terrestrial scenes or objects of interest using finite physical size antennas [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].


  1. 1.
    Walter GC, Ron SG, Ronald MM. Spotlight synthetic aperture radar: signal processing algorithms. Boston: Artech House; 1995.zbMATHGoogle Scholar
  2. 2.
    Cumming IG, Wong FH. Digital processing of synthetic aperture radar data. Boston: Artech House; 2005. p. 223.Google Scholar
  3. 3.
    Jakowatz CVJ, Wahl DE, Eichel PH, et al. Spotlight-mode synthetic aperture radar: a signal processing approach. New York: Springer; 2012. p. 221.Google Scholar
  4. 4.
    Bao Z, Xing MD, Wang T. Radar imaging technology. Beijing: Electronic Industry Press; 2005. p. 229.Google Scholar
  5. 5.
    Wu RB, Li J. Autofocus and super-resolution synthetic aperture radar image formation. IEE Proc-Radar Sonar Navig. 2000;147(5):217–23.Google Scholar
  6. 6.
    Wu RB, Li J, Bi ZQ, et al. SAR image formation via semiparametric spectral estimation. IEEE Trans Aerosp Electron Syst. 1999;35(4):1318–33.Google Scholar
  7. 7.
    Wu RB, Su ZG, Liu JX, et al. A new algorithm of 3D target feature extraction and autofocusing based on curvilinear SAR. J Remote Sens. 2002;6(6):490–5.Google Scholar
  8. 8.
    Li J, Wu RB, Chen VC. Robust autofocus algorithm for ISAR imaging of moving targets. IEEE Trans Aerosp Electron Syst. 2001;37(3):1056–69.Google Scholar
  9. 9.
    Li Y, Wu R, Xing M, et al. Inverse synthetic aperture radar imaging of ship target with complex motion. IET Radar Sonar Navig. 2008;2(6):395–403.Google Scholar
  10. 10.
    Xing M, Wu RB, Li J. New ISAR imaging algorithm based on modified Wigner-Ville distribution. IET Radar Sonar Navig. 2009;3(1):70–80.Google Scholar
  11. 11.
    Bao Z, Wang GY. Inverse synthetic aperture radar range-transient doppler imaging method. Electron J. 1998;26(12):79–83.Google Scholar
  12. 12.
    Wang GY, Bao Z. A new method of envelop alignment in inverse synthetic aperture radar motion compensation. Electron J. 1998;26(6):5–8.Google Scholar
  13. 13.
    Zhou F, Wu RB, Xing M, et al. Eigensubspace-based filtering with application in narrow-bandwidth and interference suppression for SAR. IEEE Geosci Remote Sens Lett. 2007;4(1):75–9.Google Scholar
  14. 14.
    Bi Z, Wu RB, Li J, et al. Joint super-resolution moving target feature extraction and stationary clutter suppression. IEE Proc-Radar Sonar Navig. 2000;147(1):23–9.Google Scholar
  15. 15.
    Jiang N, Wu RB, Li J. Super resolution feature extraction of moving targets. IEEE Trans Aerosp Electron Syst. 2001;37(3):781–93.Google Scholar
  16. 16.
    Jiang N, Wu RB, Liu G, et al. Clutter suppression and moving target parameter estimation for airborne phased array radar. Electron Lett. 2000;36(5):456–7.Google Scholar
  17. 17.
    Zhou F, Wu RB, Xing M, et al. Approach for single channel SAR ground moving target imaging and motion parameter estimation. IET Radar Sonar Navig. 2007;1(1):59–66.Google Scholar
  18. 18.
    Liu ZS, Wu RB, Li J. Complex ISAR imaging of maneuvering targets via the Capon estimator. IEEE Trans Signal Process. 1999;47(5):1262–71.Google Scholar
  19. 19.
    Bao Z, Zhang SH. Inverse synthetic aperture radar imaging of maneuvering targets. J Aeronaut. 2001;22(B06):6–15.Google Scholar
  20. 20.
    Wu RB. A new general preprocessing method for high resolution direction of arrival estimation. Electron Sci J. 1993;15(3):305–9.Google Scholar
  21. 21.
    Wang S, Su ZG, Wu RB. Modified range-Doppler imaging method for the high squint SAR. Radar conference; 2010. p. 1450-3.Google Scholar
  22. 22.
    Wu RB, Li J. Time delay estimation with multiple looks in colored noise. IEEE Trans Aerosp Electron Syst. 1999;35(4):1354–61.Google Scholar
  23. 23.
    Liu W, Wu RB, Langley RJ. Design and analysis of broadb and beamspace adaptive arrays. IEEE Trans Antennas Propag. 2007;55(12):3413–20.Google Scholar
  24. 24.
    Wang WY, Wu RB. Capacity maximization for DM two-hop relay system with separate power constraints. IEEE Trans Veh Technol. 2009;58(9):4943–54.Google Scholar
  25. 25.
    Yen LK, Principe JC, Wu RB. A CFAR intensity pattern detector for MMW SAR images. IEEE Conf Signals Syst Control. 1998;2:974–8.Google Scholar
  26. 26.
    Li J, Stoica P, Bi ZQ, et al. A robust hybrid spectral estimation algorithm for SAR imaging. IEEE Conf Signals Syst Control. 1998;2:1322–6.Google Scholar
  27. 27.
    Li H, Wu RB, Han P, et al. A robust estimation method to coregistration error for InSAR interferometric phase. Radar conference; 2010. p. 283–6.Google Scholar
  28. 28.
    Yang L, Bi G, Xing M, et al. Airborne SAR moving target signatures and imagery based on LVD. IEEE Trans Geosci Remote Sens. 2015;53(11):5958–71.Google Scholar
  29. 29.
    Yang L, Zhao L, Bi G, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning. IEEE Trans Geosci Remote Sens. 2016;54(4):2254–67.Google Scholar
  30. 30.
    Yang L, Zhao L, Zhou S, et al. Sparsity-driven SAR imaging for highly maneuvering ground target by the combination of time-frequency analysis and parametric Bayesian learning. IEEE J Sel Top Appl Earth Obs Remote Sens. 2017.Google Scholar
  31. 31.
    Wu RB, Li J. New progress in high-resolution radar imaging research. The 7th national radar academic conference proceedings; 1999. p. 50–4.Google Scholar
  32. 32.
    Degraaf SR. SAR imaging via modern 2D spectral estimation methods. Int Soc Optics Photon. 1994:36–47).Google Scholar
  33. 33.
    Degraaf SR. SAR imaging via modern 2-D spectral estimation methods. IEEE Trans Image Process. 1998;7(5):729–61.MathSciNetzbMATHGoogle Scholar
  34. 34.
    Benitz GR. Adaptive high-definition imaging. Int Soc Optics Photon. 1994:106–19.Google Scholar
  35. 35.
    Benitz GR. High-definition vector imaging for synthetic aperture radar. Conference record of the thirty-first Asilomar conference, vol. 2; 1997. p. 1204-9.Google Scholar
  36. 36.
    Benitz GR. High-definition vector imaging. Linc Lab J. 1997;10(2):147–70.Google Scholar
  37. 37.
    Li H, Li J, Stoica P. Performance analysis of forward-backward matched-filterbank spectral estimators. IEEE Trans Signal Process. 1998;46(7):1954–66.Google Scholar
  38. 38.
    Capon J. High resolution frequency-wavenumber spectrum analysis. Proc IEEE. 1969;57(8):1408–18.Google Scholar
  39. 39.
    Li J, Stoica P. An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Trans Signal Process. 1996;44(6):1469–84.Google Scholar
  40. 40.
    Farina A, Prodi F, Vinelli F. Application of superresolution techniques to radar imaging. J Syst Eng Electron. 1994;5(1):1–14.Google Scholar
  41. 41.
    Farina A, Forte A, Prodi F, et al. Superresolution capabilities in 2D direct and inverse SAR Processing. Proceedings of international symposium on noise and clutter rejection in radars and imaging sensors; 1994. p. 151–6.Google Scholar
  42. 42.
    Barbarossa S, Marsili L, Mungari G. SAR super-resolution imaging by signal subspace projection techniques. AEU-Archiv Fur Elektronik Und Ubertragungstechnik. 1996;50(2):133–8.Google Scholar
  43. 43.
    Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag. 1986;34(3):276–80.Google Scholar
  44. 44.
    Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust Speech Signal Process. 1989;37(7):984–95.zbMATHGoogle Scholar
  45. 45.
    Li J, Stoica P. Efficient mixed-spectrum estimation with applications to target feature extraction. IEEE Trans Signal Process. 1996;44(2):281–95.Google Scholar
  46. 46.
    Liu ZS, Li J. Feature extraction of SAR targets consisting of trihedral and dihedral corner reflectors. IEE Proc-Radar Sonar Navig. 1998;145(3):161–72.Google Scholar
  47. 47.
    Pertre S, et al. Modern signal spectrum analysis (Translated by Wu RB). Beijing: Electronic Industry Press; 2012. p. 116.Google Scholar
  48. 48.
    Yang L, Xing M, Wang Y, et al. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution. IEEE Geosci Remote Sens Lett. 2013;10(1):165–9.Google Scholar
  49. 49.
    Yang L, Xing M, Zhang L, et al. Entropy-based motion error correction for high-resolution spotlight SAR imagery. IET Radar Sonar Navig. 2012;6(7):627–37.Google Scholar
  50. 50.
    Zhou S, Yang L, Zhao L, et al. Forward velocity extraction from UAV raw SAR data based on adaptive notch filtering. IEEE Geosci Remote Sens Lett. 2016;13(9):1211–5.Google Scholar
  51. 51.
    Xing M, Jiang X, Wu RB, et al. Motion compensation for UAV SAR based on raw radar data. IEEE Trans Geosci Remote Sens. 2009;47(8):2870–83.Google Scholar
  52. 52.
    Calloway TM, Donohoe GW. Subaperture autofocus for synthetic aperture radar. IEEE Trans Aerosp Electron Syst. 1994;30(2):617–21.Google Scholar
  53. 53.
    Barbarossa S, Scaglione A. Autofocusing of SAR images based on the product high-order ambiguity function. IEE Proc-Radar Sonar Navig. 1998;145(5):269–73.Google Scholar
  54. 54.
    Liu ZS, Li J. SAR motion compensation and feature extraction via MCRELAX. Int Soc Optics Photon. 1997:21–32.Google Scholar
  55. 55.
    Wahl DE, Eichel PH, Ghiglia DC, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction. IEEE Trans Aerosp Electron Syst. 1994;30(3):827–35.Google Scholar
  56. 56.
    Hogbom JA. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl Ser. 1974;15:417.Google Scholar
  57. 57.
    Bi Z, Li J, Liu ZS. Superresolution SAR image formation via parametric spectral estimation methods. Algorithms Synth Apert Radar Imag V. 1998;3370:238–49.Google Scholar
  58. 58.
    Han P, Wang WH, Wu RB, et al. An effective SAR automatic target identification method. Pattern Recog Artif Intell. 2003;16(2):208–12.Google Scholar
  59. 59.
    Han P, Wu RB, Wang ZH, et al. SAR target feature extraction and recognition based on KPCA criterion. J Electron Inform. 2003;25(10):1297–301.Google Scholar
  60. 60.
    Han P, Wu RB, Jiang LH. An effective SAR image segmentation and target recognition method. Syst Eng Electron Technol. 2004;26(6):734–7.Google Scholar
  61. 61.
    Li X, Han P, Wu RB, et al. A weibull distribution based SAR image segmentation method. Syst Eng Electron Technol. 2007;29(5):677–9.Google Scholar
  62. 62.
    Open image in new window , Han P, Wu RB, et al. SAR image denoising method based on two-dimensional wavelet transform and independent component analysis. J Electron Inform. 2008; 30(5):1052–5.Google Scholar
  63. 63.
    Han P, Zhang R, Su ZG, et al. An improved SVM-based SAR target and shadow image segmentation method. Syst Eng Electron Technol. 2010;32(8):1640–3.Google Scholar
  64. 64.
    Han P, Yu XH, Deng H, et al. Sparse description and structure feature fusion based on polarimetric SAR speckle suppression algorithm. Syst Eng Electron Technol. 2015;37(2):284–90.Google Scholar
  65. 65.
    Han P, Wu RB, Huang JX. A novel preprocessing approach for SAR ATR. Proceedings of 2006 CIE international conference on radar; 2006. p. 1462–5.Google Scholar
  66. 66.
    Han P, Dong F, Wu RB. Speckle suppression of polarimetric SAR images based on multi-class classification. Syst Eng Electron Technol. 2012;34(7):1360–5.Google Scholar
  67. 67.
    Han P, Xu JF, Zhao AJ. Polsar image airport runway detection based on multi-class classification. Syst Eng Electron Technol. 2014;36(5):866–71.Google Scholar
  68. 68.
    Han Z, Su ZG, Han P, et al. Efficient subspace-based recognition method for SAR targets with similar structure. IET international radar conference; 2009. p. 64–7.Google Scholar
  69. 69.
    Wu RB, Wang ZS, Li J. Mainlobe and peak sidelobe control in adaptive arrays. IEEE international conference on acoustics, speech, and signal processing, vol. 5; 2003. p. 325–8.Google Scholar
  70. 70.
    Han P, Wu RB, Wang YH, et al. An efficient SAR ATR approach. IEEE international conference on acoustics, speech, and signal processing, vol. 2; 2003. p. 429–33.Google Scholar
  71. 71.
    Lu XG, Han P, Wu RB, et al. A novel approach based on wavelet-ICA for SAR image speckle suppression. 8th international conference on signal processing proceedings, vol. 4; 2006. p. 2839–42.Google Scholar
  72. 72.
    Wang Y, Han P, Lu XG, et al. The performance comparison of adaboost and SVM: lied to SAR ATR. Proceedings of 2006 CIE international conference on radar; 2006. p. 1432–5.Google Scholar
  73. 73.
    Wu RB, Naren T, Lu XG. Estimation of direction of arrival for wideb and coherent signals with known waveforms. IET international radar conference; 2009. p. 489–2.Google Scholar
  74. 74.
    Liu ZS, Li H, Li J. Efficient implementation of Capon and APES for spectral estimation. IEEE Trans Aerosp Electron Syst. 1998;34(4):1314–9.Google Scholar
  75. 75.
    Soderstrom T, Stoica P. System identification. London: Prentice-Hall International; 1989.zbMATHGoogle Scholar
  76. 76.
    Volakis JL. XPATCH—a high-frequency electromagnetic-scattering prediction code and environment for complex three-dimensional objects. IEEE Antennas Propag Mag. 1994;36(1):65–9.Google Scholar
  77. 77.
    Li J, Liu ZS, Stoica P. 3-D target feature extraction via interferometric SAR. IEE Proc-Radar Sonar Navig. 1997;144(2):71–80.Google Scholar
  78. 78.
    Knaell K. Three-dimensional SAR from curvilinear apertures. Radar conference; 1996. p. 220–5.Google Scholar
  79. 79.
    Li J, Bi Z, Liu ZS, et al. Use of curvilinear SAR for three-dimensional target feature extraction. IEE Proc-Radar Sonar Navig. 1997;144(5):275–83.Google Scholar
  80. 80.
    Su Z, Peng Y, Wang X. Efficient algorithm for three-dimensional target feature extraction via CLSAR. Electron Lett. 2004;40(15):965–6.Google Scholar
  81. 81.
    Li H, Wu RB. Robust interferometric phase estimation in insar via joint subspace projection. Recent interferometry applications in topography and astronomy. INTECH Open Access Publisher; 2012.Google Scholar
  82. 82.
    Li H, Wu RB. An estimation method for insar interferometric phase using correlation weight joint subspace projection. EURASIP J Adv Signal Process. 2013;2013(1):27.MathSciNetGoogle Scholar
  83. 83.
    Klemm R. Current trend in SAR technology. IEEE Aerosp Electron Syst Mag. 1997;12(3):3–8.Google Scholar
  84. 84.
    Munson DC, O’Brien JD, Jenkins WK. A tomographic formulation of spotlight-mode synthetic aperture radar. Proc IEEE. 1983;71(8):917–25.Google Scholar
  85. 85.
    Su ZG, Wu RB, Liu JX, et al. A robust autofocus algorithm for the 3-D target feature extraction via curvilinear SAR. 2001 CIE international conference on radar proceedings; 2001. p. 644–8.Google Scholar
  86. 86.
    Su Z G, LIU G Y, PENG Y N, et al. RCB-based imaging method for 3-D target via curvilinear SAR [C]. 9th International Conference on Signal Processing Proceedings, 2008: 2368–2371.Google Scholar
  87. 87.
    Su ZG, Wang Y, Wu RB, et al. Use of large curvilinear synthetic aperture for 3-D target imaging. IET international radar conference; 2009. p. 145–8.Google Scholar
  88. 88.
    Chen CC, Rews HC. Target-motion-induced radar imaging. IEEE Trans Aerosp Electron Syst. 1980;1:2–14.Google Scholar
  89. 89.
    Musman S, Kerr D, Bachmann C. Automatic recognition of ISAR ship images. IEEE Trans Aerosp Electron Syst. 1996;32(4):1392–404.Google Scholar
  90. 90.
    Fennell MT, Wishner RP. Battlefield awareness via synergistic SAR and MTI exploitation. IEEE Aerosp Electron Syst Mag. 1998;13(2):39–43.Google Scholar
  91. 91.
    Voles R. Resolving revolutions: imaging and mapping by modern radar. IEE Proc F-Radar Signal Process. 1993;140(1):1–11.Google Scholar
  92. 92.
    Jain A, Patel I. Dynamic imaging and RCS measurements of aircraft. IEEE Trans Aerosp Electron Syst. 1995;31(1):211–26.Google Scholar
  93. 93.
    Ausheman DA, Kozma A, Walker JL, et al. Developments in radar imaging. IEEE Trans Aerosp Electron Syst. 1984;4:363–400.Google Scholar
  94. 94.
    Steinberg BD. Microwave imaging of aircraft. Proc IEEE. 1988;76(12):1578–92.Google Scholar
  95. 95.
    Werness SS, Carrara WG, Joyce LS, et al. Moving target imaging algorithm for SAR data. IEEE Trans Aerosp Electron Syst. 1990;26(1):57–7.Google Scholar
  96. 96.
    Xing MD, Wu RB, Lan JQ, et al. Migration through resolution cell compensation in ISAR imaging. IEEE Geosci Remote Sens Lett. 2004;1(2):141–4.Google Scholar
  97. 97.
    Wu RB, Liu ZS, Li J. Time-varying complex spectral estimation with applications to ISAR imaging. 32nd Asilomar conference on signals, systems, and control, vol. 1; 1998. p. 14–8.Google Scholar
  98. 98.
    Wu H, Grenier D, Delisle GY, et al. Translational motion compensation in ISAR image processing. IEEE Trans Image Process. 1995;4(11):1561–71.Google Scholar
  99. 99.
    Bao Z, Deng W, Yang J. A new motion compensation scheme for ISAR imaging. CIE 1991 international conference on radar, vol. 1; 1991. p. 327–30.Google Scholar
  100. 100.
    Itoh T, Sueda H, Watanabe Y. Motion compensation for ISAR via centroid tracking. IEEE Trans Aerosp Electron Syst. 1996;32(3):1191–7.Google Scholar
  101. 101.
    Eerland KK. Application of inverse synthetic aperture radar on aircraft. Proceedings of the international radar conference; 1984. p. 618–23.Google Scholar
  102. 102.
    Berizzi F, Corsini G. Autofocusing of inverse synthetic aperture radar images using contrast optimization. IEEE Trans Aerosp Electron Syst. 1996;32(3):1185–91.Google Scholar
  103. 103.
    Attia E. Self-cohering airborne distributed arrays on land clutter using the robust minimum variance algorithm. Antennas and propagation society international symposium, vol. 24; 1986. p. 603–6.Google Scholar
  104. 104.
    Haywood B, Evans RJ. Motion compensation for ISAR imaging. Proceedings of Australian symposium on signal processing and applications; 1989. p. 112–7.Google Scholar
  105. 105.
    Kang B, Subbaram HM, Steinberg BD. Improved adaptive-beamforming target for self-calibrating a distorted phased array. IEEE Trans Antennas Propag. 1990;38(2):186–94.Google Scholar
  106. 106.
    Li J, Chen VC. A robust autofocusing algorithm for ISAR imaging. NATO sensors and electronics technology panel symposium on high resolution radar techniques; 1999.Google Scholar
  107. 107.
    Bao Z, Sun CY, Qing MD. Principle and algorithm of inverse synthetic aperture radar imaging for maneuvering targets. Chin J Electron. 2000;28(6):19–23.Google Scholar
  108. 108.
    Xing MD, Wu RB, Bao Z. High resolution ISAR imaging of high speed moving targets. IEE Proc-Radar Sonar Navig. 2005;152(2):58–67.Google Scholar
  109. 109.
    Zheng B, Wei Y. Improvement of autofocus techniques for ISAR motion compensation. Chin J Electron. 1995;4(4):1–8.Google Scholar
  110. 110.
    Wang G, Bao Z. Inverse synthetic aperture radar imaging of maneuvering targets based on chirplet decomposition. Opt Eng. 1999;38(9):1534–41.Google Scholar
  111. 111.
    Annadurai S. Fundamentals of digital image processing. India: Pearson Education; 2007.Google Scholar
  112. 112.
    Wang G, Bao Z, Sun X. Inverse synthetic aperture radar imaging of nonuniformly rotating targets. Opt Eng. 1996;35(10):3007–11.Google Scholar
  113. 113.
    Zhang XD. Modern signal processing, 3rd edn. Beijing: National Defense Industry Press; 2001.Google Scholar
  114. 114.
    Wu RB, Li J, Liu ZS. Super resolution time delay estimation via MODE-WRELAX. IEEE Trans Aerosp Electron Syst. 1999;35(1):294–307.Google Scholar
  115. 115.
    Wang ZS, Li J, Wu RB. Time-delay and time-reversal-based robust Capon beamformers for ultrasound imaging. IEEE Trans Med Imaging. 2005;24(10):1308–22.Google Scholar
  116. 116.
    Li J, Wu RB, Liu ZS. Efficient super resolution time delay estimation techniques. IEEE international conference on acoustics, speech, and signal processing, vol. 4; 1998. p. 2473–6.Google Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Renbiao Wu
    • 1
    Email author
  • Qiongqiong Jia
    • 1
  • Lei Yang
    • 1
  • Qing Feng
    • 1
  1. 1.Tianjin Key Lab for Advanced Signal ProcessingCivil Aviation University of ChinaTianjinChina

Personalised recommendations