Advertisement

Application of RELAX in Direction of Arrival Estimation

  • Renbiao WuEmail author
  • Qiongqiong Jia
  • Lei Yang
  • Qing Feng
Chapter

Abstract

Source localization is widely used in radar, sonar, communications, astrophysics, seismic surveying, biomedicine.

References

  1. 1.
    Stoica P. Modern signal spectrum analysis. Trans. RB Wu, Beijing: Publishing House of Electronics Industry; 2012. Electronic Industry Press; 2012.Google Scholar
  2. 2.
    Dale S. Aeronautical radiocommunication systems and networks. Trans. RB Wu, Beijing: Electronic Industry Press; 2011.Google Scholar
  3. 3.
    Wu RB. New research progress on robust array signal processing. XiAn: Postdoctoral Work Report of Northwestern Polytechnical University; 1996.Google Scholar
  4. 4.
    Wu RB. Principle and realization of spatial and time adaptive filter of airborne early warning radar. XiAn: Xi’an University of Electronic Science and Technology doctoral dissertation; 1994.Google Scholar
  5. 5.
    Wu RB. Research on two-dimensional high-resolution array signal processing. XiAn: Northwestern Polytechnical University master’s degree thesis; 1990.Google Scholar
  6. 6.
    Wu RB, Bao Z. Control of peak sidelobe level in adaptive arrays. IEEE Trans Antennas Propag. 1996;44(10):1341–7.Google Scholar
  7. 7.
    Wu RB, Ma YL, James RD. Array pattern synthesis and robust beamforming for a complex sonar system. IEEE Proc. Radar Sonar Navig. 2002;144(6):370–6.Google Scholar
  8. 8.
    Wu RB, Bao Z. Array pattern distortion and remedies in space-time adaptive processing for airborne radar. IEEE Trans Antennas Propag. 1998;46(7):963–70.Google Scholar
  9. 9.
    Wang ZS, Li J, Wu RB. Time-delay-and time-reversal-based robust capon beamformers for ultrasound imaging. IEEE Trans Med Imaging. 2005;24(10):1308–22.Google Scholar
  10. 10.
    Guo B, Wang Y, Li J. Microwave imaging via adaptive beamforming methods for breast cancer detection. J Electromagn waves Appl. 2006;20(1):53–63.MathSciNetGoogle Scholar
  11. 11.
    Liu W, Wu RB, Langley RJ. Design and analysis of broadband beamspace adaptive arrays. IEEE Trans Antennas Propag. 2007;55(12):3413–20.Google Scholar
  12. 12.
    Zheng XY, Stoica P, Li J. Adaptive arrays for broadband communications in the presence of unknown co-channel interference. IEEE Trans Signal Process. 2008;56(4):1589–600.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bao Z, Liao GS, Wu RB, et al. Adaptive spatial-temporal processing for airborne radar. Chin J Electron. 1993;2(1):1–7.Google Scholar
  14. 14.
    Bao Z, Liao GS, Wu RB, et al. Space-time two-dimensional adaptive filtering for clutter suppression of airborne phased array radar. Electron J. 1993;21(9):1–7.Google Scholar
  15. 15.
    Wu RB, Bao Z. Quality control of secondary data in space-time adaptive processing for airborne radar. Chin J Electron. 1995;4(3):12–7.Google Scholar
  16. 16.
    Wu RB. New method of single pulse angle measurement compatible with space-time two-dimensional adaptive filtering. J Aeronaut. 1996;17(4):410–6.MathSciNetGoogle Scholar
  17. 17.
    Wang J, Feng Q, Wu RB, et al. A robust broadband constant beamwidth beamforming method for acoustic imaging. Xidian Univ J Nat Sci Ed. 2007;34(1):154–8.Google Scholar
  18. 18.
    Shi QY, Zhong LL, Wu RB. Intelligent antenna adaptive interference suppression method based on LS-LMS. Signal Process. 2010;26(5):677–81.Google Scholar
  19. 19.
    Wang J, Feng Q, Wu RB, et al. Robust constant-beamwidth beamforming based on focusing approach for acoustic imaging. In: International symposium on communications and information technologies; 2006. p. 18–20.Google Scholar
  20. 20.
    Wang J, Feng Q, Wu RB, et al. A constant-beamwidth beamforming method for acoustic imaging. IEEE Antennas Propag Soc Int Symp. 2007;2007:4236–9.Google Scholar
  21. 21.
    Wu RB, Lin CP, Chen XG, et al. A novel separable approach to estimate two-dimensional angles of arrival with high resolution. In: International conference on circuits and systems; 1991. p. 588–91.Google Scholar
  22. 22.
    Wu RB, Bao Z, Zhang YH. Subarray-level adaptive spatial-temporal processing for airborne radar. In: International conference on signal processing; 1993. p. 391–5.Google Scholar
  23. 23.
    Wu RB, Bao Z. Training method in space-time adaptive processing with strong generalization ability. In: IEEE 1995 international radar conference; 1995. p. 603–8.Google Scholar
  24. 24.
    Wu RB, Wang ZS, LI J. Mainlobe and peak sidelobe control in adaptive arrays. In: IEEE international conference on acoustics, speech, and signal processing (ASSP); 2003. 325–8.Google Scholar
  25. 25.
    Wu RB, Wang ZS, Lu D, et al. Further results on peak sidelobe control in adaptive arrays. In: Proceedings of 2006 CIE international conference on radar; 2006. p. 951–6.Google Scholar
  26. 26.
    Wang J, Feng Q, Wu RB, et al. Robust constant-beamwidth beamforming based on focusing approach for acoustic imaging. In: International symposium on communications and information technologies;2006:821–6.Google Scholar
  27. 27.
    Liu W, Wu RB, Langley R. Analysis and a novel design of the beamspace broadband adaptive array. Prog Electromagnet Res Symp;2006:733–8.Google Scholar
  28. 28.
    Liu W, Wu RB, Langley R. Beamspace adaptive beamforming for broadband planar arrays. In: IEEE international workshop on antenna technology;2007:311–4.Google Scholar
  29. 29.
    Wu RB. A new general preprocessing method for high resolution direction of arrival estimation. J Electron Inf. 1993;15(3):305–9.Google Scholar
  30. 30.
    Wu RB. A novel universal preprocessing approach for high resolution direction-of-arrival estimation. J Electron. 1993;10(3):249–54.Google Scholar
  31. 31.
    Wu RB. A new general preprocessing method for high resolution direction of arrival estimation. J Electron Inf. 1993;15(5):458–65.Google Scholar
  32. 32.
    Wu RB. Development of fast two-dimensional high-resolution direction-finding techniques. J Electron. 1994;11(1):11–21.Google Scholar
  33. 33.
    Wang WW. High-dynamic DOA estimation based on weighted L1 minimization. Prog Electromagnet Res. 2013;42:253–65.Google Scholar
  34. 34.
    Su ZG, Lu D, Peng YN, et al. Direction of arrival estimation for GPS signal via toeplitz: a roximation the cross-correlation matrix. In: 2007 International symposium on intelligent signal processing and communications systems;2007:92–5.Google Scholar
  35. 35.
    Wu RB, Naren T, Lu XG. Estimation of direction of arrival for wideband coherent signals with known waveforms. In: IET international radar conference; 2009.Google Scholar
  36. 36.
    Li HH, Yang JF, Wu RB. An improved mixture-of-gaussians model for background subtraction. In: 9th International conference on signal processing;2008:1380–3.Google Scholar
  37. 37.
    Krim H, Viberg M. Two decades of array signal processing research: the parametric approach. IEEE Signal Process Mag. 1996;13(4):67–94.Google Scholar
  38. 38.
    Wang YL. Spatial spectrum estimation theory and algorithm. Beijing: Tsinghua University Press; 2004.Google Scholar
  39. 39.
    Wang XS. Research on wideband polarization information processing. Changsha: National Defense Technology University, PhD dissertation; 1996.Google Scholar
  40. 40.
    Zhang XF, et al. Theory and application of array signal processing. Changsha: National Defense Technology University Press; 2013.Google Scholar
  41. 41.
    Capon J. High resolution frequency-wavenumber spectrum analysis. Proc IEEE. 1969;57(8):1408–18.Google Scholar
  42. 42.
    Stoica P, Nehorai A. Statistical analysis of two nonlinear least-squares estimators of sine-wave parameters in the colored-noise case. Circuits Syst Signal process. 1989;8(1):3–15.MathSciNetzbMATHGoogle Scholar
  43. 43.
    Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust Speech Signal Process. 1989;37(7):984–95.zbMATHGoogle Scholar
  44. 44.
    Evans JE, Johnson JR, Sun DF. Applications of advanced signal processing techniques to angle of arrival estimation in ATC navigation and surveillance system. Linc Lab. 1982.Google Scholar
  45. 45.
    Stoica P, Sharman KC. Maximum likelihood methods for direction-of-arrival estimation. IEEE Trans Acoust Speech Signal Process. 1990;38(7):1132–43.zbMATHGoogle Scholar
  46. 46.
    Viberg M, Ottersten B. Sensor array processing based on subspace fitting. IEEE Trans Signal Process. 1991;39(5):1110–21.zbMATHGoogle Scholar
  47. 47.
    Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans Acoust Speech Signal Process. 1988;36(10):1553–60.zbMATHGoogle Scholar
  48. 48.
    Hwang JK, Chen YC. Super resolution frequency estimation by alternating notch periodogram. IEEE Trans Signal Process. 1993;41(2):727–41.zbMATHGoogle Scholar
  49. 49.
    Stoica P, Nehorai P. Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Trans Acoust Speech Signal Process. 1990;38(10):1783–95.zbMATHGoogle Scholar
  50. 50.
    Ottersten B, Viberg M, Stoica P, et al. Exact and large sample ml techniques for parameter estimation and detection in array processing. Radar Array Proc;1993:99–151.Google Scholar
  51. 51.
    Ye XD, Fang DG, Sheng GX. 2-D angle estimation with a uniform circular array via RELAX. Comput Electromagnet Appl. 1999:175–8.Google Scholar
  52. 52.
    Kay SM. Modern spectral estimation. India: Person Education; 1988.zbMATHGoogle Scholar
  53. 53.
    Stoic P, Moses R. Spectral analysis of signals. New Jersey: Pearson Prentice Hall; 2005.Google Scholar
  54. 54.
    Wu RB, Wang WY., Lu D. Adaptive interference mitigation in GNSS. Beijing.Google Scholar
  55. 55.
    Schmidt R. Multiple emitter location and signal parameter estimation. Spectr Estimation Workshop. 1979;243–58.Google Scholar
  56. 56.
    Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag. 1986;34(3):276–80.Google Scholar
  57. 57.
    Li J, Stoica P. Efficient mixed-spectrum estimation with applications to target feature extraction. IEEE Trans Signal Process. 1996;44(2):281–95.Google Scholar
  58. 58.
    Li J, Zheng D, Stoica P. Angle and waveform estimation via RELAX. IEEE Trans Aerosp Electron Syst. 1997;33(3):1077–87.Google Scholar
  59. 59.
    Liu ZS, Li J. Implementation of the RELAX algorithm. IEEE Trans Aerosp Electron Syst. 1998;34(2):657–64.Google Scholar
  60. 60.
    Li QW. Study on wideband DOA estimation algorithm. Harbin: Harbin Engineering University Master’s thesis; 2013.Google Scholar
  61. 61.
    Wang H, Kaveh M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources. IEEE Trans Acoust Speech Signal Process. 1985;33(4):823–31.Google Scholar
  62. 62.
    Pierre JW, Kaveh M. Wideband sensor array processing using a laboratory array testbed. IEEE Trans Circuits Syst. 1992;945–8.Google Scholar
  63. 63.
    Pierre JW. Further results on wideband sensor array processing using a laboratory array testbed. IEEE Trans Circuits Syst. 1993;496–9.Google Scholar
  64. 64.
    Kumaresan R, Scharf L, Shaw A. An algorithm for pole-zero modeling and spectral analysis. IEEE Trans Acoust Speech Signal Proc. 1986;34(6):637–40.Google Scholar
  65. 65.
    Bresler Y, Macovski A. Exact maximum likelihood parameter estimation of super imposed exponential signals in noise. IEEE Trans Acoust Speech Signal Proc. ASSP. 1986;34(5):1081–9.Google Scholar
  66. 66.
    Stoica P, Nehorai A. MUSIC maximum likelihood and Cramer-Rao bound. IEEE Trans Acoust Speech Signal Process. 1989;37(5):720–41.MathSciNetzbMATHGoogle Scholar
  67. 67.
    Zhang XD. Matrix analysis and application. Beijing: Tsinghua University Press; 2004.Google Scholar
  68. 68.
    Zoltowski MD. Beamspace ML bearing estimation for adaptive phased array radar. Adaptive Radar Detect Estim. 1992.Google Scholar
  69. 69.
    Xu L, Zhao K, Li J, et al. Wideband source localization using sparse learning via iterative minimization. Signal Process. 2013;93(12):3504–14.Google Scholar
  70. 70.
    Yardibi T, Li J, Stoica P, et al Source localization and sensing: a nonparametric iterative adaptive approach based on weighted least squares. IEEE Trans Aerosp Electron Syst. 2010;46(1):425–43.Google Scholar
  71. 71.
    Li J, Zheng D. Parameter estimation using RELAX with a COLD array. Circuits Syst Signal Process. 1998;17(4):471–81.zbMATHGoogle Scholar
  72. 72.
    Bangs WJ. Array processing with generalized beamformers. New Haven: Yale University; 1971.Google Scholar
  73. 73.
    Yip L, Chen JC, Hudson RE, et al. Cramer-Rao bound analysis of wideband source localization and DOA estimation. Int Soc Optical Eng. 2002:304–16.Google Scholar
  74. 74.
    Liu JG, Yuan BC, Ming X. The CRB on wideband direction of arrival estimation under the background of colored noises. In: IEEE international conference on power electronics and intelligent transportation system; 2009. p. 416-19.Google Scholar
  75. 75.
    Feng XA, Huang JG. Cramer-Rao bound for azimuth estimation of underwater wideband targets. J Ordnance. 2007;28(3):291–5.Google Scholar
  76. 76.
    Liu JG, Yuan BC, Yan SG, et al. Research on cramer-rao bound for azimuth estimation of underwater wideband sources. J Acoust. 2010;5:539–46.Google Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Renbiao Wu
    • 1
    Email author
  • Qiongqiong Jia
    • 1
  • Lei Yang
    • 1
  • Qing Feng
    • 1
  1. 1.Tianjin Key Lab for Advanced Signal ProcessingCivil Aviation University of ChinaTianjinChina

Personalised recommendations