Advertisement

Fundamentals of Parameter Estimation

  • Renbiao WuEmail author
  • Qiongqiong Jia
  • Lei Yang
  • Qing Feng
Chapter

Abstract

Modern estimation theory is the core of many electronic signal processing systems that extract useful information [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], including radar, navigation, sonar, communications, control, voice, imaging, biomedical, seismic exploration, physics experiments, economic analysis and processing systems and so forth [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41].

References

  1. 1.
    Stoica P. Modern signal spectrum analysis (Translated by Wu RB). Beijing: Publishing House of Electronics Industry; 2012.Google Scholar
  2. 2.
    Stoic P, Moses RL. Spectral analysis of signals. New Jersey: Prentice-Hall; 2004.Google Scholar
  3. 3.
    Steven MK. Fundamentals of statistical signal processing: estimation theory. New Jersey: Prentice-Hall; 1993.zbMATHGoogle Scholar
  4. 4.
    Thomasa S, Arthura G. Signal detection and estimation—theory and applications (Translated by Xin Guan). Beijing Electronic Industry Press; 2012.Google Scholar
  5. 5.
    Zhang XD. Modern signal processing, 3rd ed. Beijing Tsinghua University Press; 2015.Google Scholar
  6. 6.
    Ludeman LC. Stochastic process—filtering, estimation and detection (Translated by Qiu TS). Beijing Electronic Industry Press; 2005.Google Scholar
  7. 7.
    Li BD. Signal statistics detection and estimation theory, 2nd edn. Beijing: Science Press; 2004.Google Scholar
  8. 8.
    Wang YL. Spatial spectrum estimation theory and algorithm. Beijing: Tsinghua University Press; 2004.Google Scholar
  9. 9.
    Zhao SJ. Signal detection and estimation theory. Beijing: Electronic Industry Press; 2013.Google Scholar
  10. 10.
    Wang T. Research on the detection and estimation of non—Gaussian noise signals. Master’s Thesis, Xinjiang University, Urumqi; 2011.Google Scholar
  11. 11.
    Zhang LY, Zhang W, Li H, et al. Signal detection and estimation. Beijing: Tsinghua University Press; 2010.Google Scholar
  12. 12.
    Zhang LY. Signal detection and estimation. Beijing: Tsinghua University Press; 2014.Google Scholar
  13. 13.
    Zhang MY, Lu M. Signal detection and estimation, 2nd ed. Beijing: Electronic Industry Press; 2005.Google Scholar
  14. 14.
    Peng J. Communications and networking. Croatia: INTECH Open Access Publisher; 2010.CrossRefGoogle Scholar
  15. 15.
    Wu RB. Research on two dimensional high resolution array signal processing. Master’s Degree Thesis, Northwestern Polytechnical University, XiAn; 1990.Google Scholar
  16. 16.
    Mohammed S. Fourier Transform/Book 1. Croatia: INTECH Open Access Publisher; 2012.Google Scholar
  17. 17.
    Li J, Wu RB. An efficient algorithm for time delay estimation. IEEE Trans Signal Process. 1998;46(8):2231–5.CrossRefGoogle Scholar
  18. 18.
    Padron I. Recent interferometry applications in topography and astronomy. Croatia: INTECH Open Access Publisher; 2012.CrossRefGoogle Scholar
  19. 19.
    Wu RB, Jia QQ, Li H. A novel STAP method for the detection of fast air moving targets from high speed platform. Sci China Inf Sci. 2012;55(6):1259–69.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li H, Wu RB. An estimation method for InSAR interferometric phase using correlation weight joint subspace projection. EURASIP J Adv Signal Process. 2013;2013(1):1–11.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li H, Zhou M, Guo QH, et al. Compressive sensing-based wind speed estimation for low-altitude wind-shear with airborne phased array radar. Multidimens Syst Signal Process. 2016; 1–14.Google Scholar
  22. 22.
    Li H, Wu RB, Liao GS. InSAR interferometric phase estimation based on correlation coefficient weighted observation vector. J Electron. 2012;40(3):453–8.Google Scholar
  23. 23.
    Wu RB, Jia QQ, Li H, et al. A new method of airborne maneuvering targets detection for airborne radar. J Electron. 2013;41(1):86–90.Google Scholar
  24. 24.
    Wu RB. Principle and realization of spatial and time adaptive filter of airborne early warning radar. Doctoral dissertation, Xi’an University of Electronic Science and Technology, Xi’an; 1994.Google Scholar
  25. 25.
    Zheng XY, Stoica P, Li J. Adaptive arrays for broadband communications in the presence of unknown co-channel interference. Signal Process IEEE Trans Signal Process. 2008;56(4):1589–600.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Wu RB, Wang WY, Lu D. Adaptive interference mitigation in GNSS. Beijing: Science Press; 2015.Google Scholar
  27. 27.
    Wu RB, Wang WY, Li J, et al. Distance measuring equipment interference suppression based on parametric estimation and wavelet-packet transformation for global navigation satellite systems. IEEE Trans Aerosp Electron Syst. 2016;52(4):1607–17.CrossRefGoogle Scholar
  28. 28.
    Jia QQ, Wu RB, Wang WY, et al. Multipath interference mitigation in GNSS via WRELAX. GPS Solut. 2017;21(2):487–98.CrossRefGoogle Scholar
  29. 29.
    Lu D, Wu RB, Liu HT. Global positioning system anti-jamming algorithm based on period repetitive CLEAN. IET Radar Sonar Navig. 2013;7(2):164–9.CrossRefGoogle Scholar
  30. 30.
    Wang WY, Du Q, Wu RB, et al. Interference suppression with flat gain constraint for satellite navigation systems. IET Radar Sonar Navig. 2015;9(7):852–6.CrossRefGoogle Scholar
  31. 31.
    Wu RB, Li C, Lu D. Power minimization with derivative constraints for high dynamic GPS interference suppression. Sci China Inform Sci. 2012;55(4):857–66.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Mohammed S. Fourier transform—signal processing and physical sciences. Croatia: INTECH Open Access Publisher; 2015.Google Scholar
  33. 33.
    Wu RB, Ma YL, James RD. Array pattern synthesis and robust beamforming for a complex sonar system. IEE Proc-Radar Sonar Navig. 1997;144(6):370–6.CrossRefGoogle Scholar
  34. 34.
    Wu RB. New advances in robust array signal processing. Northwestern Polytechnical University Postdoctoral Work Report; 1996.Google Scholar
  35. 35.
    Li X, Wu RB, Rasmi S, et al. An acoustic proximity ranging system for monitoring the cavity thickness. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50(7):898–910.CrossRefGoogle Scholar
  36. 36.
    Zhang L, Wang HL, Wu RB. A high capacity steganography scheme for JPEG2000 baseline system. IEEE Trans Image Process. 2009;18(8):1797–803.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Yang JF, Wu RB. Finger-Vein recognition based on Gabor features. Biometric systems, design and applications. INTECH Open Access Publisher; 2011.Google Scholar
  38. 38.
    Wang ZS, Li J, Wu RB. Time-delay- and time-reversal-based robust capon beamformers for ultrasound imaging. IEEE Trans Med Imag. 2005;24(10):1308–22.CrossRefGoogle Scholar
  39. 39.
    Guo B, Wang Y, Li J. Microwave imaging via adaptive beamforming methods for breast cancer detection. J Electromagn Waves Appl. 2006;20(1):53–63.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Wu RB, Li X, Li J. Continous pavement profiling with ground penetrating radar. IEE Proc-Radar Sonar Navig. 2002;149(4):183–93.CrossRefGoogle Scholar
  41. 41.
    Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag. 1986;34(3):276–80.CrossRefGoogle Scholar
  42. 42.
    Sheynin OB. CF Gauss and the theory of errors. Arch Hist Exact Sci. 1979;20(1):21–72.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Cramér H. Mathematical methods of statistics. New Jersey: Princeton University Press; 1960.zbMATHGoogle Scholar
  44. 44.
    Rao CR. Information and accuracy attainable in the estimation of statistical parameters. Bull Calcutta Math Soc. 1945;37(3):81–91.MathSciNetzbMATHGoogle Scholar
  45. 45.
    Stoica P, Moses RL. On biased estimators and the unbiased Cramer-Rao lower bound. Sig Process. 1990;21(4):349–50.CrossRefGoogle Scholar
  46. 46.
    Stoica P, Ottersten B. The evil of super efficiency. Sig Process. 1996;55(1):133–6.zbMATHCrossRefGoogle Scholar
  47. 47.
    Fisher RA. On the mathematical foundations of theoretical statistics. New York: Springer; 1992.CrossRefGoogle Scholar
  48. 48.
    Sando S, Mitra A, Stoica P. On the Cramer-Rao bound for model-based spectral analysis. IEEE Signal Process Lett. 2002;9(2):68–71.CrossRefGoogle Scholar
  49. 49.
    Soderstrom T, Stoica P. System identification. London: Prentice-Hall International; 1989.zbMATHGoogle Scholar
  50. 50.
    Wang XF. Mysterious formula behind the big data (First Part): Bayesian formula. http://mp.weixin.qq.com/s?__biz=MzA3OTgzMzUzOA==&mid=503740283&idx=1&sn=ea4aa313b699f04cd603889571343bd9#rd.
  51. 51.
    Wang XF. Mysterious formula behind the big data (Second Part): Bayesian formula. http://iscientists.baijia.baidu.com/article/418296.
  52. 52.
  53. 53.
    McGrayne SB. The theory that would not die: how bayes’ rule cracked the enigma code, hunted down russian submarines, and emerged triumphant from two centuries of controversy. New Haven: Yale University Press; 2011.zbMATHGoogle Scholar
  54. 54.
    Yudkowsky ES. An intuitive explanation of Bayes’ theorem. http://yudkowsky.net/rational/bayes. Accessed 20 Dec 2009.
  55. 55.
  56. 56.
    Slepian D. Estimation of signal parameters in the presence of noise. Trans IRE Prof Group Inform Theory. 1954;3(3):68–89.zbMATHCrossRefGoogle Scholar
  57. 57.
    Bangs WJ. Array processing with generalized beam-formers. Ph.D. Thesis, Yale University, New Haven; 1971.Google Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Renbiao Wu
    • 1
    Email author
  • Qiongqiong Jia
    • 1
  • Lei Yang
    • 1
  • Qing Feng
    • 1
  1. 1.Tianjin Key Lab for Advanced Signal ProcessingCivil Aviation University of ChinaTianjinChina

Personalised recommendations