Fundamentals of Parameter Estimation

  • Renbiao WuEmail author
  • Qiongqiong Jia
  • Lei Yang
  • Qing Feng


Modern estimation theory is the core of many electronic signal processing systems that extract useful information [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], including radar, navigation, sonar, communications, control, voice, imaging, biomedical, seismic exploration, physics experiments, economic analysis and processing systems and so forth [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41].


  1. 1.
    Stoica P. Modern signal spectrum analysis (Translated by Wu RB). Beijing: Publishing House of Electronics Industry; 2012.Google Scholar
  2. 2.
    Stoic P, Moses RL. Spectral analysis of signals. New Jersey: Prentice-Hall; 2004.Google Scholar
  3. 3.
    Steven MK. Fundamentals of statistical signal processing: estimation theory. New Jersey: Prentice-Hall; 1993.zbMATHGoogle Scholar
  4. 4.
    Thomasa S, Arthura G. Signal detection and estimation—theory and applications (Translated by Xin Guan). Beijing Electronic Industry Press; 2012.Google Scholar
  5. 5.
    Zhang XD. Modern signal processing, 3rd ed. Beijing Tsinghua University Press; 2015.Google Scholar
  6. 6.
    Ludeman LC. Stochastic process—filtering, estimation and detection (Translated by Qiu TS). Beijing Electronic Industry Press; 2005.Google Scholar
  7. 7.
    Li BD. Signal statistics detection and estimation theory, 2nd edn. Beijing: Science Press; 2004.Google Scholar
  8. 8.
    Wang YL. Spatial spectrum estimation theory and algorithm. Beijing: Tsinghua University Press; 2004.Google Scholar
  9. 9.
    Zhao SJ. Signal detection and estimation theory. Beijing: Electronic Industry Press; 2013.Google Scholar
  10. 10.
    Wang T. Research on the detection and estimation of non—Gaussian noise signals. Master’s Thesis, Xinjiang University, Urumqi; 2011.Google Scholar
  11. 11.
    Zhang LY, Zhang W, Li H, et al. Signal detection and estimation. Beijing: Tsinghua University Press; 2010.Google Scholar
  12. 12.
    Zhang LY. Signal detection and estimation. Beijing: Tsinghua University Press; 2014.Google Scholar
  13. 13.
    Zhang MY, Lu M. Signal detection and estimation, 2nd ed. Beijing: Electronic Industry Press; 2005.Google Scholar
  14. 14.
    Peng J. Communications and networking. Croatia: INTECH Open Access Publisher; 2010.CrossRefGoogle Scholar
  15. 15.
    Wu RB. Research on two dimensional high resolution array signal processing. Master’s Degree Thesis, Northwestern Polytechnical University, XiAn; 1990.Google Scholar
  16. 16.
    Mohammed S. Fourier Transform/Book 1. Croatia: INTECH Open Access Publisher; 2012.Google Scholar
  17. 17.
    Li J, Wu RB. An efficient algorithm for time delay estimation. IEEE Trans Signal Process. 1998;46(8):2231–5.CrossRefGoogle Scholar
  18. 18.
    Padron I. Recent interferometry applications in topography and astronomy. Croatia: INTECH Open Access Publisher; 2012.CrossRefGoogle Scholar
  19. 19.
    Wu RB, Jia QQ, Li H. A novel STAP method for the detection of fast air moving targets from high speed platform. Sci China Inf Sci. 2012;55(6):1259–69.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li H, Wu RB. An estimation method for InSAR interferometric phase using correlation weight joint subspace projection. EURASIP J Adv Signal Process. 2013;2013(1):1–11.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li H, Zhou M, Guo QH, et al. Compressive sensing-based wind speed estimation for low-altitude wind-shear with airborne phased array radar. Multidimens Syst Signal Process. 2016; 1–14.Google Scholar
  22. 22.
    Li H, Wu RB, Liao GS. InSAR interferometric phase estimation based on correlation coefficient weighted observation vector. J Electron. 2012;40(3):453–8.Google Scholar
  23. 23.
    Wu RB, Jia QQ, Li H, et al. A new method of airborne maneuvering targets detection for airborne radar. J Electron. 2013;41(1):86–90.Google Scholar
  24. 24.
    Wu RB. Principle and realization of spatial and time adaptive filter of airborne early warning radar. Doctoral dissertation, Xi’an University of Electronic Science and Technology, Xi’an; 1994.Google Scholar
  25. 25.
    Zheng XY, Stoica P, Li J. Adaptive arrays for broadband communications in the presence of unknown co-channel interference. Signal Process IEEE Trans Signal Process. 2008;56(4):1589–600.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Wu RB, Wang WY, Lu D. Adaptive interference mitigation in GNSS. Beijing: Science Press; 2015.Google Scholar
  27. 27.
    Wu RB, Wang WY, Li J, et al. Distance measuring equipment interference suppression based on parametric estimation and wavelet-packet transformation for global navigation satellite systems. IEEE Trans Aerosp Electron Syst. 2016;52(4):1607–17.CrossRefGoogle Scholar
  28. 28.
    Jia QQ, Wu RB, Wang WY, et al. Multipath interference mitigation in GNSS via WRELAX. GPS Solut. 2017;21(2):487–98.CrossRefGoogle Scholar
  29. 29.
    Lu D, Wu RB, Liu HT. Global positioning system anti-jamming algorithm based on period repetitive CLEAN. IET Radar Sonar Navig. 2013;7(2):164–9.CrossRefGoogle Scholar
  30. 30.
    Wang WY, Du Q, Wu RB, et al. Interference suppression with flat gain constraint for satellite navigation systems. IET Radar Sonar Navig. 2015;9(7):852–6.CrossRefGoogle Scholar
  31. 31.
    Wu RB, Li C, Lu D. Power minimization with derivative constraints for high dynamic GPS interference suppression. Sci China Inform Sci. 2012;55(4):857–66.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Mohammed S. Fourier transform—signal processing and physical sciences. Croatia: INTECH Open Access Publisher; 2015.Google Scholar
  33. 33.
    Wu RB, Ma YL, James RD. Array pattern synthesis and robust beamforming for a complex sonar system. IEE Proc-Radar Sonar Navig. 1997;144(6):370–6.CrossRefGoogle Scholar
  34. 34.
    Wu RB. New advances in robust array signal processing. Northwestern Polytechnical University Postdoctoral Work Report; 1996.Google Scholar
  35. 35.
    Li X, Wu RB, Rasmi S, et al. An acoustic proximity ranging system for monitoring the cavity thickness. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50(7):898–910.CrossRefGoogle Scholar
  36. 36.
    Zhang L, Wang HL, Wu RB. A high capacity steganography scheme for JPEG2000 baseline system. IEEE Trans Image Process. 2009;18(8):1797–803.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Yang JF, Wu RB. Finger-Vein recognition based on Gabor features. Biometric systems, design and applications. INTECH Open Access Publisher; 2011.Google Scholar
  38. 38.
    Wang ZS, Li J, Wu RB. Time-delay- and time-reversal-based robust capon beamformers for ultrasound imaging. IEEE Trans Med Imag. 2005;24(10):1308–22.CrossRefGoogle Scholar
  39. 39.
    Guo B, Wang Y, Li J. Microwave imaging via adaptive beamforming methods for breast cancer detection. J Electromagn Waves Appl. 2006;20(1):53–63.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Wu RB, Li X, Li J. Continous pavement profiling with ground penetrating radar. IEE Proc-Radar Sonar Navig. 2002;149(4):183–93.CrossRefGoogle Scholar
  41. 41.
    Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag. 1986;34(3):276–80.CrossRefGoogle Scholar
  42. 42.
    Sheynin OB. CF Gauss and the theory of errors. Arch Hist Exact Sci. 1979;20(1):21–72.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Cramér H. Mathematical methods of statistics. New Jersey: Princeton University Press; 1960.zbMATHGoogle Scholar
  44. 44.
    Rao CR. Information and accuracy attainable in the estimation of statistical parameters. Bull Calcutta Math Soc. 1945;37(3):81–91.MathSciNetzbMATHGoogle Scholar
  45. 45.
    Stoica P, Moses RL. On biased estimators and the unbiased Cramer-Rao lower bound. Sig Process. 1990;21(4):349–50.CrossRefGoogle Scholar
  46. 46.
    Stoica P, Ottersten B. The evil of super efficiency. Sig Process. 1996;55(1):133–6.zbMATHCrossRefGoogle Scholar
  47. 47.
    Fisher RA. On the mathematical foundations of theoretical statistics. New York: Springer; 1992.CrossRefGoogle Scholar
  48. 48.
    Sando S, Mitra A, Stoica P. On the Cramer-Rao bound for model-based spectral analysis. IEEE Signal Process Lett. 2002;9(2):68–71.CrossRefGoogle Scholar
  49. 49.
    Soderstrom T, Stoica P. System identification. London: Prentice-Hall International; 1989.zbMATHGoogle Scholar
  50. 50.
    Wang XF. Mysterious formula behind the big data (First Part): Bayesian formula.
  51. 51.
    Wang XF. Mysterious formula behind the big data (Second Part): Bayesian formula.
  52. 52.
  53. 53.
    McGrayne SB. The theory that would not die: how bayes’ rule cracked the enigma code, hunted down russian submarines, and emerged triumphant from two centuries of controversy. New Haven: Yale University Press; 2011.zbMATHGoogle Scholar
  54. 54.
    Yudkowsky ES. An intuitive explanation of Bayes’ theorem. Accessed 20 Dec 2009.
  55. 55.
  56. 56.
    Slepian D. Estimation of signal parameters in the presence of noise. Trans IRE Prof Group Inform Theory. 1954;3(3):68–89.zbMATHCrossRefGoogle Scholar
  57. 57.
    Bangs WJ. Array processing with generalized beam-formers. Ph.D. Thesis, Yale University, New Haven; 1971.Google Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Renbiao Wu
    • 1
    Email author
  • Qiongqiong Jia
    • 1
  • Lei Yang
    • 1
  • Qing Feng
    • 1
  1. 1.Tianjin Key Lab for Advanced Signal ProcessingCivil Aviation University of ChinaTianjinChina

Personalised recommendations