Advertisement

Food Allergy pp 147-177 | Cite as

Modulation of Food Allergy by Bioactive Natural Compounds and Development of Functional Foods

  • Linglin Fu
  • Bobby J. Cherayil
  • Haining Shi
  • Yanbo Wang
  • Yang Zhu
Chapter

Abstract

Chemically diverse bioactive compounds with numerous health benefits have been taken more seriously. Food allergic inflammation mediated by several types of immune cells can also be affected by the naturally occurring bioactive compounds. Various compounds show immunomodulating effects, including polyphenols, polysaccharides, vitamins, peptides, fatty acids, amino acids, minerals, as well as prebiotics. Some components boost immune responses, resulting in host defense against infection, whereas others suppress immune responses, thus inhibiting allergy and inflammation. A variety of food components act on the varying immune cells, and the effects are mainly mediated via the intestinal immune system, as well as the intestinal microbiota. This chapter focuses on anti-allergic agents derived from microorganisms, plants (phytochemicals), animals, and marine algae and presents an overview of their potential application in functional foods for the treatment of allergic disorders. The molecular mechanisms and scientific validity of some bioactive natural compounds in the treatment of food allergies will also be explored.

References

  1. Abeyrathne E, Huang X, Ahn D (2018) Antioxidant, angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides-A review. Poult Sci 97:1462PubMedCrossRefGoogle Scholar
  2. Abril-Gil M, Pérez-Cano FJ, Franch À, Castell M (2016) Effect of a cocoa-enriched diet on immune response and anaphylaxis in a food allergy model in Brown Norway rats. J Nutr Biochem 27:317–326PubMedCrossRefGoogle Scholar
  3. Ahmad RS, Hussain MB, Saeed F, Waheed M, Tufail T (2017) Phytochemistry, metabolism, and ethnomedical scenario of honey: a concurrent review. Int J Food Prop 20(Supp1):S254–S269.  https://doi.org/10.1080/10942912.2017.1295257 CrossRefGoogle Scholar
  4. Akdis M, Blaser K, Akdis CA (2005) T regulatory cells in allergy: novel concepts in the pathogenesis, prevention, and treatment of allergic diseases. J Allergy Clin Immunol 116(5):961–968PubMedCrossRefGoogle Scholar
  5. Bae M-J, Shin HS, See H-J, Jung SY, Kwon D-A, Shon D-H (2016) Baicalein induces CD4+ Foxp3+ T cells and enhances intestinal barrier function in a mouse model of food allergy. Sci Rep 6:32225PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barletta B, Rossi G, Schiavi E, Butteroni C, Corinti S, Boirivant M, Di Felice G (2013) Probiotic VSL# 3-induced TGF-β ameliorates food allergy inflammation in a mouse model of peanut sensitization through the induction of regulatory T cells in the gut mucosa. Mol Nutr Food Res 57(12):2233–2244PubMedCrossRefGoogle Scholar
  7. Bisgaard H, Stokholm J, Chawes BL, Vissing NH, Bjarnadóttir E, Schoos A-MM, Wolsk HM, Pedersen TM, Vinding RK, Thorsteinsdóttir S (2016) Fish oil-derived fatty acids in pregnancy and wheeze and asthma in offspring. N Engl J Med 375(26):2530–2539PubMedCrossRefGoogle Scholar
  8. Blacher E, Levy M, Tatirovsky E, Elinav E (2017) Microbiome-modulated metabolites at the interface of host immunity. J Immunol 198(2):572–580PubMedCrossRefGoogle Scholar
  9. Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32(2):116–211PubMedCrossRefGoogle Scholar
  10. Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2017) Marine natural products. Nat Prod Rep 34(3):235–294PubMedCrossRefGoogle Scholar
  11. Bode L (2006) Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr 136(8):2127–2130PubMedCrossRefGoogle Scholar
  12. Bøgh KL, Bilsen J, Głogowski R, López-Expósito I, Bouchaud G, Blanchard C, Bodinier M, Smit J, Pieters R, Bastiaan-Net S (2016) Current challenges facing the assessment of the allergenic capacity of food allergens in animal models. Clin Trans Allergy 6(1):21CrossRefGoogle Scholar
  13. Camps-Bossacoma M, Franch À, Pérez-Cano FJ, Castell M (2017a) Influence of hesperidin on the systemic and intestinal rat immune response. Nutrients 9(6):580PubMedCentralCrossRefGoogle Scholar
  14. Camps-Bossacoma M, Pérez-Cano FJ, Franch À, Castell M (2017b) Gut microbiota in a rat oral sensitization model: effect of a cocoa-enriched diet. Oxid Med Cell Longev 2017:1–12CrossRefGoogle Scholar
  15. Camps-Bossacoma M, Pérez-Cano FJ, Franch À, Untersmayr E, Castell M (2017c) Effect of a cocoa diet on the small intestine and gut-associated lymphoid tissue composition in an oral sensitization model in rats. J Nutr Biochem 42:182–193PubMedPubMedCentralCrossRefGoogle Scholar
  16. Castillo-Courtade L, Han S, Lee S, Mian F, Buck R, Forsythe P (2015) Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 70(9):1091–1102PubMedCrossRefGoogle Scholar
  17. Charve J, Chen C, Hegeman AD, Reineccius GA (2011) Evaluation of instrumental methods for the untargeted analysis of chemical stimuli of orange juice flavour. Flavour Fragr J 26(6):429–440.  https://doi.org/10.1002/ffj.2078 CrossRefGoogle Scholar
  18. Cheng J-Y, Ng L-T, Lin C-L, Jan T-R (2013) Pacific oyster-derived polysaccharides enhance antigen-specific T helper (Th) 1 immunity in vitro and in vivo. Immunopharmacol Immunotoxicol 35(2):235–240PubMedCrossRefGoogle Scholar
  19. Cheng C-H, Wu H-Y, Wu C-F, Jan T-R (2016) Pacific oyster-derived polysaccharides attenuate allergen-induced intestinal inflammation in a murine model of food allergy. J Food Drug Anal 24(1):121–128PubMedCrossRefGoogle Scholar
  20. Chirumbolo S (2014) Dietary assumption of plant polyphenols and prevention of allergy. Curr Pharm Des 20(6):811–839PubMedCrossRefGoogle Scholar
  21. Chung MY, Shin HS, Choi DW, Shon DH (2016) Citrus Tachibana leaf extract mitigates symptoms of food allergy by inhibiting Th2-associated responses. J Food Sci 81(6):H1537PubMedCrossRefGoogle Scholar
  22. Chung J-H, Kong J-N, Choi H-E, Kong K-H (2017) Antioxidant, anti-inflammatory, and anti-allergic activities of the sweet-tasting protein brazzein. Food ChemGoogle Scholar
  23. Clausen M, Jonasson K, Keil T, Beyer K, Sigurdardottir ST (2018) Fish oil in infancy protects against food allergy in Iceland-results from a birth cohort study. Allergy 73:1305PubMedPubMedCentralCrossRefGoogle Scholar
  24. Colegate SM, Molyneux RJ (2007) Bioactive natural products: detection, isolation, and structural determination. CRC Press, Boca RatonGoogle Scholar
  25. de Theije CGM, van den Elsen LWJ, Willemsen LEM, Milosevic V, Korte-Bouws GAH, Lopes da Silva S, Broersen LM, Korte SM, Olivier B, Garssen J, Kraneveld AD (2015) Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice. Neuropharmacology 90:15–22.  https://doi.org/10.1016/j.neuropharm.2014.11.001 PubMedCrossRefGoogle Scholar
  26. Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB (2014) Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Technol 51(6):1021–1040PubMedCrossRefGoogle Scholar
  27. Diesner SC, Bergmayr C, Pfitzner B, Assmann V, Krishnamurthy D, Starkl P, Endesfelder D, Rothballer M, Welzl G, Rattei T, Eiwegger T, Szepfalusi Z, Fehrenbach H, Jensen-Jarolim E, Hartmann A, Pali-Scholl I, Untersmayr E (2016) A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin Immunol 173:10–18.  https://doi.org/10.1016/j.clim.2016.10.009 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fan X, Bai L, Zhu L, Yang L, Zhang X (2014) Marine algae-derived bioactive peptides for human nutrition and health. J Agric Food Chem 62(38):9211–9222PubMedCrossRefGoogle Scholar
  29. Fu L, Song J, Wang C, Fu S, Wang Y (2017a) Bifidobacterium infantis potentially alleviates shrimp tropomyosin-induced allergy by tolerogenic dendritic cell-dependent induction of regulatory T cells and alterations in gut microbiota. Front Immunol 8.  https://doi.org/10.3389/fimmu.2017.01536
  30. Fu Y, Zhao C, Lu X, Xu G (2017b) Nontargeted screening of chemical contaminants and illegal additives in food based on liquid chromatography-high resolution mass spectrometry. TrAC Trends Anal Chem 96:89–98.  https://doi.org/10.1016/j.trac.2017.07.014 CrossRefGoogle Scholar
  31. Fuda H, Watanabe M, Hui S-P, Joko S, Okabe H, Jin S, Takeda S, Miki E, Watanabe T, Chiba H (2015) Anti-apoptotic effects of novel phenolic antioxidant isolated from the Pacific oyster (Crassostrea gigas) on cultured human hepatocytes under oxidative stress. Food Chem 176:226–233PubMedCrossRefGoogle Scholar
  32. Fujii K, Fujiki T, Koiso A, Hirakawa K, Yamashita M, Matsumoto T, Hasegawa T, Morimatsu F, Katakura Y (2014) Identification of anti-allergic lactic acid bacteria that suppress Ca2+ influx and histamine release in human basophilic cells. J Funct Foods 10:370–376.  https://doi.org/10.1016/j.jff.2014.07.006 CrossRefGoogle Scholar
  33. Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454:445.  https://doi.org/10.1038/nature07204 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gao Z, Li J, Song X, Zhang J, Wang X, Jing H, Ren Z, Li S, Zhang C, Jia L (2017) Antioxidative, anti-inflammation and lung-protective effects of mycelia selenium polysaccharides from Oudemansiella radicata. Int J Biol Macromol 104:1158–1164.  https://doi.org/10.1016/j.ijbiomac.2017.07.029 PubMedCrossRefGoogle Scholar
  35. Gonçalves P, Araújo JR, Di Santo JP (2018) A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis 24(3):558–572PubMedCrossRefGoogle Scholar
  36. Gonia S, Tuepker M, Heisel T, Autran C, Bode L, Gale CA (2015) Human milk oligosaccharides inhibit Candida albicans invasion of human premature intestinal epithelial cells, 2. J Nutr 145(9):1992–1998PubMedCrossRefGoogle Scholar
  37. González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ (2014) Chapter 32: Anti-inflammatory and immunomodulatory properties of dietary flavonoids. In: Polyphenols in human health and disease. Academic, San Diego, pp 435–452.  https://doi.org/10.1016/B978-0-12-398456-2.00032-3 CrossRefGoogle Scholar
  38. Gorzynik-Debicka M, Przychodzen P, Cappello F, Kuban-Jankowska A, Marino Gammazza A, Knap N, Wozniak M, Gorska-Ponikowska M (2018) Potential health benefits of olive oil and plant polyphenols. Int J Mol Sci 19(3):686.  https://doi.org/10.3390/ijms19030686 PubMedCentralCrossRefGoogle Scholar
  39. Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538PubMedPubMedCentralCrossRefGoogle Scholar
  40. Goverse G, Molenaar R, Macia L, Tan J, Erkelens MN, Konijn T, Knippenberg M, Cook EC, Hanekamp D, Veldhoen M (2017) Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol 198(5):2172–2181PubMedCrossRefGoogle Scholar
  41. Gunaratne AW, Makrides M, Collins CT (2015) Maternal prenatal and/or postnatal n-3 long chain polyunsaturated fatty acids (LCPUFA) supplementation for preventing allergies in early childhood. Cochrane LibrGoogle Scholar
  42. Hansen S, Strøm M, Maslova E, Dahl R, Hoffmann HJ, Rytter D, Bech BH, Henriksen TB, Granström C, Halldorsson TI (2017) Fish oil supplementation during pregnancy and allergic respiratory disease in the adult offspring. J Allergy Clin Immunol 139(1):104–111. e104PubMedCrossRefGoogle Scholar
  43. Heine RG (2018) Food allergy prevention and treatment by targeted nutrition. Ann Nutr Metab 72(3):26–38CrossRefGoogle Scholar
  44. Hu Y, Chen J, Hu G, Yu J, Zhu X, Lin Y, Chen S, Yuan J (2015) Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs 13(1):202–221PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jang S, Lakshman S, Molokin A, Urban JF, Davis CD, Solano-Aguilar G (2016) Lactobacillus rhamnosus and flavanol-enriched cocoa powder altered the immune response to infection with the parasitic nematode ascaris suum in a pig model. FASEB J 30(1 Supplement):1176.1114–1176.1114Google Scholar
  46. Ji C, Han J, Zhang J, Hu J, Fu Y, Qi H, Sun Y, Yu C (2018) Omics-prediction of bioactive peptides from the edible cyanobacterium Arthrospira platensis proteome. J Sci Food Agric 98(3):984–990PubMedCrossRefGoogle Scholar
  47. Kim CH (2018) Immune regulation by microbiome metabolites. Immunology 154:220PubMedCrossRefGoogle Scholar
  48. Kim J-H, Jeun E-J, Hong C-P, Kim S-H, Jang MS, Lee E-J, Moon SJ, Yun CH, Im S-H, Jeong S-G (2016) Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression. J Allergy Clin Immunol 137(2):507–516. e508PubMedCrossRefGoogle Scholar
  49. Kimiya T, Ohtani K, Satoh S, Abe Y, Ogita Y, Kawakita H, Hamada H, Konishi Y, Kubota S, Tominaga A (2008) Inhibitory effects of edible marine algae extracts on degranulation of RBL-2H3 cells and mouse eosinophils. Fish Sci 74(5):1157–1165CrossRefGoogle Scholar
  50. Kinney SR, Carlson L, Ser-Dolansky J, Thompson C, Shah S, Gambrah A, Xing W, Schneider SS, Mathias CB (2015) Curcumin ingestion inhibits mastocytosis and suppresses intestinal anaphylaxis in a murine model of food allergy. PLoS One 10(7):e0132467PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kivit S, Kostadinova AI, Kerperien J, Morgan ME, Muruzabal VA, Hofman GA, Knippels LM, Kraneveld AD, Garssen J, Willemsen LE (2017) Dietary, nondigestible oligosaccharides and Bifidobacterium breve M-16V suppress allergic inflammation in intestine via targeting dendritic cell maturation. J Leukoc Biol 102(1):105–115PubMedCrossRefGoogle Scholar
  52. Ko S-C, Lee D-S, Park WS, Yoo JS, Yim M-J, Qian Z-J, Lee C-M, Oh J, Jung W-K, Choi I-W (2016) Anti-allergic effects of a nonameric peptide isolated from the intestine gastrointestinal digests of abalone (Haliotis discus hannai) in activated HMC-1 human mast cells. Int J Mol Med 37(1):243–250PubMedCrossRefGoogle Scholar
  53. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345PubMedCrossRefGoogle Scholar
  54. Koplin JJ, Suaini NH, Vuillermin P, Ellis JA, Panjari M, Ponsonby A-L, Peters RL, Matheson MC, Martino D, Dang T (2016) Polymorphisms affecting vitamin D-binding protein modify the relationship between serum vitamin D (25 [OH] D3) and food allergy. J Allergy Clin Immunol 137(2):500–506. e504PubMedCrossRefGoogle Scholar
  55. Korinek M, Tsai YH, El-Shazly M, Lai KH, Backlund A, Wu SF, Lai WC, Wu TY, Chen SL, Wu YC, Cheng YB, Hwang TL, Chen BH, Chang FR (2017) Anti-allergic hydroxy fatty acids from Typhonium blumei explored through ChemGPS-NP. Front Pharmacol 8:356.  https://doi.org/10.3389/fphar.2017.00356 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kostadinova AI, Pablos-Tanarro A, Diks MA, Van Esch BC, Garssen J, Knippels LM, Willemsen LE (2017) Dietary intervention with β-lactoglobulin-derived peptides and a specific mixture of fructo-oligosaccharides and Bifidobacterium breve M-16V facilitates the prevention of whey-induced allergy in mice by supporting a tolerance-prone immune environment. Front Immunol 8:1303PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kralovec J, Power M, Liu F, Maydanski E, Ewart H, Watson L, Barrow C, Lin T (2005) An aqueous Chlorella extract inhibits IL-5 production by mast cells in vitro and reduces ovalbumin-induced eosinophil infiltration in the airway in mice in vivo. Int Immunopharmacol 5(4):689–698PubMedCrossRefGoogle Scholar
  58. Kunisawa J, Arita M, Hayasaka T, Harada T, Iwamoto R, Nagasawa R, Shikata S, Nagatake T, Suzuki H, Hashimoto E (2015) Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17, 18-epoxyeicosatetraenoic acid in the gut. Sci Rep 5:9750PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lee S, Gim H, Shim JH, Kim HJ, Lee JR, Kim SC, Kwon YK, Ha K-T, So I, Kim BJ (2015) The traditional herbal medicine, Ge-Gen-Tang, inhibits pacemaker potentials by nitric oxide/cGMP dependent ATP-sensitive K+ channels in cultured interstitial cells of Cajal from mouse small intestine. J Ethnopharmacol 170:201–209PubMedCrossRefGoogle Scholar
  60. Leeb E, Holder A, Letzel T, Cheison SC, Kulozik U, Hinrichs J (2014) Fractionation of dairy based functional peptides using ion-exchange membrane adsorption chromatography and cross-flow electro membrane filtration. Int Dairy J 38(2):116–123CrossRefGoogle Scholar
  61. Li M, Chen L-X, Chen S-R, Deng Y, Zhao J, Wang Y, Li S-P (2017) Non-starch polysaccharide from Chinese yam activated RAW 264.7 macrophages through the toll-like receptor 4 (TLR4)-NF-κB signaling pathway. J Funct Foods 37:491–500CrossRefGoogle Scholar
  62. Liu Q, Wang Y, Cao M, Pan T, Yang Y, Mao H, Sun L, Liu G (2015) Anti-allergic activity of R-phycocyanin from Porphyra haitanensis in antigen-sensitized mice and mast cells. Int Immunopharmacol 25(2):465–473.  https://doi.org/10.1016/j.intimp.2015.02.032 PubMedCrossRefGoogle Scholar
  63. Liu Q-M, Yang Y, Maleki SJ, Alcocer M, Xu S-S, Shi C-L, Cao M-J, Liu G-M (2016a) Anti-food allergic activity of sulfated polysaccharide from Gracilaria lemaneiformis is dependent on immunosuppression and inhibition of p38 MAPK. J Agric Food Chem 64(22):4536–4544PubMedCrossRefGoogle Scholar
  64. Liu T, Navarro S, Lopata AL (2016b) Current advances of murine models for food allergy. Mol Immunol 70:104–117.  https://doi.org/10.1016/j.molimm.2015.11.011 PubMedCrossRefGoogle Scholar
  65. Liu Q-M, Xu S-S, Li L, Pan T-M, Shi C-L, Liu H, Cao M-J, Su W-J, Liu G-M (2017) In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydr Polym 165:189–196PubMedCrossRefGoogle Scholar
  66. Liu Q, Xie C-L, Gao Y, Liu B, Lin W, Liu H, Cao M-J, Su W-J, Yang X, Liu G-M (2018) Deep-sea-derived butyrolactone I suppresses ovalbumin-induced anaphylaxis by regulating mast cell function in a murine model. J Agric Food Chem 66:5581PubMedCrossRefGoogle Scholar
  67. Lucas CD, Dorward DA, Sharma S, Rennie J, Felton JM, Alessandri AL, Duffin R, Schwarze J, Haslett C, Rossi AG (2015) Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation. Am J Respir Crit Care Med 191(6):626–636.  https://doi.org/10.1164/rccm.201408-1565OC PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mariño E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, McKenzie C, Kranich J, Oliveira AC, Rossello FJ (2017) Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 18(5):552PubMedCrossRefGoogle Scholar
  69. Marsella R (2015) Experimental model for peanut allergy by epicutaneous sensitization in atopic beagle dogs. Exp Dermatol 24(9):711–712PubMedCrossRefGoogle Scholar
  70. Massot-Cladera M, Abril-Gil M, Torres S, Franch A, Castell M, Pérez-Cano FJ (2014) Impact of cocoa polyphenol extracts on the immune system and microbiota in two strains of young rats. Br J Nutr 112(12):1944–1954PubMedCrossRefGoogle Scholar
  71. Mitoshi M, Kuriyama I, Nakayama H, Miyazato H, Sugimoto K, Kobayashi Y, Jippo T, Kuramochi K, Yoshida H, Mizushina Y (2014) Suppression of allergic and inflammatory responses by essential oils derived from herbal plants and citrus fruits. Int J Mol Med 33(6):1643–1651.  https://doi.org/10.3892/ijmm.2014.1720 PubMedCrossRefGoogle Scholar
  72. Molloy J, Koplin J, Allen K, Tang M, Collier F, Carlin J, Saffery R, Burgner D, Ranganathan S, Dwyer T (2017) Vitamin D insufficiency in the first 6 months of infancy and challenge-proven IgE-mediated food allergy at 1 year of age: a case-cohort study. Allergy 72(8):1222–1231PubMedCrossRefGoogle Scholar
  73. Moronta J, Smaldini PL, Docena GH, Añón MC (2016a) Peptides of amaranth were targeted as containing sequences with potential anti-inflammatory properties. J Funct Foods 21:463–473.  https://doi.org/10.1016/j.jff.2015.12.022 CrossRefGoogle Scholar
  74. Moronta J, Smaldini PL, Fossati CA, Añon MC, Docena GH (2016b) The anti-inflammatory SSEDIKE peptide from Amaranth seeds modulates IgE-mediated food allergy. J Funct Foods 25:579–587.  https://doi.org/10.1016/j.jff.2016.06.031 CrossRefGoogle Scholar
  75. Niu S, Liu Q, Xia J-M, Xie C-L, Luo Z-H, Shao Z, Liu G-M, Yang X-W (2018) Polyketides from the deep-sea-derived fungus Graphostroma sp. MCCC 3A00421 showed potent anti-food allergic activities. J Agric Food Chem 66:1369PubMedCrossRefGoogle Scholar
  76. Okada Y, Oh-oka K, Nakamura Y, Ishimaru K, Matsuoka S, Okumura K, Ogawa H, Hisamoto M, Okuda T, Nakao A (2012) Dietary resveratrol prevents the development of food allergy in mice. PLoS One 7(9):e44338.  https://doi.org/10.1371/journal.pone.0044338 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Paparo L, Nocerino R, Aitoro R, Granata V, Cosenza L, Langella I, Amoroso A, Gioielli G, Canani RB (2015) Epigenetic mechanisms elicited by butyrate in peripheral blood mononuclear cells from children with IGE-mediated cow milk allergy. Dig Liver Dis 47:e274CrossRefGoogle Scholar
  78. Rahelivao MP, Gruner M, Andriamanantoanina H, Andriamihaja B, Bauer I, Knölker H-J (2015) Red algae (Rhodophyta) from the coast of Madagascar: preliminary bioactivity studies and isolation of natural products. Mar Drugs 13(7):4197–4216PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ren Y, Zheng G, You L, Wen L, Li C, Fu X, Zhou L (2017) Structural characterization and macrophage immunomodulatory activity of a polysaccharide isolated from Gracilaria lemaneiformis. J Funct Foods 33:286–296CrossRefGoogle Scholar
  80. Richard C, Lewis ED, Field CJ (2016) Evidence for the essentiality of arachidonic and docosahexaenoic acid in the postnatal maternal and infant diet for the development of the infant’s immune system early in life. Appl Physiol Nutr Metab 41(5):461–475PubMedCrossRefGoogle Scholar
  81. Saidova A, Hershkop AM, Ponce M, Eiwegger T (2017) Allergen-specific T cells in IgE-mediated food allergy. Arch Immunol Ther Exp 1–10Google Scholar
  82. Sanjeewa KKA, Kim EA, Son KT, Jeon YJ (2016) Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: a review. J Photochem Photobiol B 162:100–105.  https://doi.org/10.1016/j.jphotobiol.2016.06.027 PubMedCrossRefGoogle Scholar
  83. Sasidharan S, Chen Y, Saravanan D, Sundram K, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8(1):1PubMedGoogle Scholar
  84. Shi C, Pan T, Cao M, Liu Q, Zhang L, Liu G (2015) Suppression of Th2 immune responses by the sulfated polysaccharide from Porphyra haitanensis in tropomyosin-sensitized mice. Int Immunopharmacol 24(2):211–218.  https://doi.org/10.1016/j.intimp.2014.11.019 PubMedCrossRefGoogle Scholar
  85. Shim SY, Lee M, Lee KD (2016) Achyranthes japonica Nakai water extract suppresses binding of IgE antibody to cell surface FcɛRI. Prev Nutr Food Sci 21(4):323PubMedPubMedCentralCrossRefGoogle Scholar
  86. Shim SY, Lee KD, Lee M (2017) Vaccinium angustifolium root extract suppresses FcɛRI expression in human basophilic KU812F cells. Prev Nutr Food Sci 22(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  87. Shin HS, Bae M-J, Jung SY, Shon D-H (2014) Preventive effects of skullcap (Scutellaria baicalensis) extract in a mouse model of food allergy. J Ethnopharmacol 153(3):667–673PubMedCrossRefGoogle Scholar
  88. Singh A, Holvoet S, Mercenier A (2011) Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 41(10):1346–1359PubMedCrossRefGoogle Scholar
  89. Singh A, Demont A, Actis-Goretta L, Holvoet S, Leveques A, Lepage M, Nutten S, Mercenier A (2014) Identification of epicatechin as one of the key bioactive constituents of polyphenol-enriched extracts that demonstrate an anti-allergic effect in a murine model of food allergy. Br J Nutr 112(3):358–368.  https://doi.org/10.1017/S0007114514000877 PubMedCrossRefGoogle Scholar
  90. Srivastava KD, Siefert A, Fahmy TM, Caplan MJ, Li X-M, Sampson HA (2016) Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine model of peanut allergy. J Allergy Clin Immunol 138(2):536–543. e534PubMedCrossRefGoogle Scholar
  91. Suaini NH, Zhang Y, Vuillermin PJ, Allen KJ, Harrison LC (2015) Immune modulation by vitamin D and its relevance to food allergy. Nutrients 7(8):6088–6108PubMedPubMedCentralCrossRefGoogle Scholar
  92. Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, Macia L, Mackay CR (2016) Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep 15(12):2809–2824.  https://doi.org/10.1016/j.celrep.2016.05.047 PubMedCrossRefGoogle Scholar
  93. Thomas NV, Kim SK (2011) Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ Toxicol Pharmacol 32(3):325–335.  https://doi.org/10.1016/j.etap.2011.09.004 PubMedCrossRefGoogle Scholar
  94. Tsuda M, Arakawa H, Ishii N, Ubukata C, Michimori M, Noda M, Takahashi K, Kaminogawa S, Hosono A (2017) Dietary fructo-oligosaccharides attenuate early activation of CD4+ T cells which produce both Th1 and Th2 cytokines in the intestinal lymphoid tissues of a murine food allergy model. Int Arch Allergy Immunol 174(3–4):121–132PubMedCrossRefGoogle Scholar
  95. Van Den Elsen LW, Poyntz HC, Weyrich LS, Young W, Forbes-Blom EE (2017) Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases. Clin Transl Immunol 6(1):e125CrossRefGoogle Scholar
  96. van Esch BCAM, Kostadinova AI, Garssen J, Willemsen LEM, Knippels LMJ (2017) A dietary intervention with non-digestible oligosaccharides and partial hydrolysed whey protein prevents the onset of food allergic symptoms in mice. Pharma Nutr 5(1):1–7.  https://doi.org/10.1016/j.phanu.2016.11.001 CrossRefGoogle Scholar
  97. Veronese N, Solmi M, Caruso MG, Giannelli G, Osella AR, Evangelou E, Maggi S, Fontana L, Stubbs B, Tzoulaki I (2018) Dietary fiber and health outcomes: an umbrella review of systematic reviews and meta-analyses. Am J Clin Nutr 107(3):436–444.  https://doi.org/10.1093/ajcn/nqx082 PubMedCrossRefGoogle Scholar
  98. Vijayalakshmi A, Ravichandiran V, Velraj M, Hemalatha S, Sudharani G, Jayakumari S (2011) Anti-anaphylactic and anti-inflammatory activities of a bioactive alkaloid from the root bark of Plumeria acutifolia Poir. Asian Pac J Trop Biomed 1(5):401–405.  https://doi.org/10.1016/s2221-1691(11)60088-9 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Vo T-S, Kim S-K (2013) Fucoidans as a natural bioactive ingredient for functional foods. J Funct Foods 5(1):16–27.  https://doi.org/10.1016/j.jff.2012.08.007 CrossRefGoogle Scholar
  100. Vo T-S, Ngo D-H, Kim S-K (2012) Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Process Biochem 47(3):386–394.  https://doi.org/10.1016/j.procbio.2011.12.014 CrossRefGoogle Scholar
  101. Wang X, Hayashi S, Umezaki M, Yamamoto T, Kageyama-Yahara N, Kondo T, Kadowaki M (2014) Shikonin, a constituent of Lithospermum erythrorhizon exhibits anti-allergic effects by suppressing orphan nuclear receptor Nr4a family gene expression as a new prototype of calcineurin inhibitors in mast cells. Chem Biol Interact 224:117–127.  https://doi.org/10.1016/j.cbi.2014.10.021 PubMedCrossRefGoogle Scholar
  102. Wang HD, Li XC, Lee DJ, Chang JS (2017) Potential biomedical applications of marine algae. Bioresour Technol 244(Pt 2):1407–1415.  https://doi.org/10.1016/j.biortech.2017.05.198 PubMedCrossRefGoogle Scholar
  103. Wang Y, Tian Y, Shao J, Shu X, Jia J, Ren X, Guan Y (2018) Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom. Int J Biol Macromol 108:300–306.  https://doi.org/10.1016/j.ijbiomac.2017.12.025 PubMedCrossRefGoogle Scholar
  104. Watanabe M, Fuda H, Jin S, Sakurai T, Ohkawa F, Hui S-P, Takeda S, Watanabe T, Koike T, Chiba H (2012) Isolation and characterization of a phenolic antioxidant from the Pacific oyster (Crassostrea gigas). J Agric Food Chem 60(3):830–835PubMedCrossRefGoogle Scholar
  105. Yamamoto T, Fujiwara K, Yoshida M, Kageyama-Yahara N, Kuramoto H, Shibahara N, Kadowaki M (2009) Therapeutic effect of kakkonto in a mouse model of food allergy with gastrointestinal symptoms. Int Arch Allergy Immunol 148(3):175–185PubMedCrossRefGoogle Scholar
  106. Yamamoto T, Fujiwara K, Tsubota Y, Kageyama-Yahara N, Hayashi S, Kadowaki M (2016) Induction of regulatory T cells as a novel mechanism underlying the therapeutic action of kakkonto, a traditional Japanese herbal medicine, in a murine food allergy model. Int Arch Allergy Immunol 169(3):146–156PubMedCrossRefGoogle Scholar
  107. Yang J-H, Do HJ, Lee E, Yim N-H, Cho W-K, Park K-I, Ma JY (2018) Jageum-Jung improves 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice and suppresses pro-inflammatory chemokine production by inhibiting TNF-α/IFN-γ-induced STAT-1 and NFκB signaling in HaCaT cells. J Ethnopharmacol.  https://doi.org/10.1016/j.jep.2018.04.016
  108. Yano S, Umeda D, Yamashita T, Ninomiya Y, Sumida M, Fujimura Y, Yamada K, Tachibana H (2007) Dietary flavones suppresses IgE and Th2 cytokines in OVA-immunized BALB/c mice. Eur J Nutr 46(5):257–263PubMedCrossRefGoogle Scholar
  109. Zhang Y, Li X, Ciric B, Ma CG, Gran B, Rostami A, Zhang GX (2015) Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway. Sci Rep 5:17407.  https://doi.org/10.1038/srep17407 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zhang J, Su H, Li Q, Wu H, Liu M, Huang J, Zeng M, Zheng Y, Sun X (2017) Oral administration of Clostridium butyricum CGMCC0313-1 inhibits β-lactoglobulin-induced intestinal anaphylaxis in a mouse model of food allergy. Gut Pathogens 9(1):11PubMedPubMedCentralCrossRefGoogle Scholar
  111. Zhu Z, Yu J, Niu Y, Sun S, Liu Y, Saxon A, Zhang K, Li W (2016) Enhanced prophylactic and therapeutic effects of polylysine-modified Ara h 2 DNA vaccine in a mouse model of peanut allergy. Int Arch Allergy Immunol 171(3–4):241–250PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Linglin Fu
    • 1
  • Bobby J. Cherayil
    • 2
  • Haining Shi
    • 2
  • Yanbo Wang
    • 1
  • Yang Zhu
    • 3
  1. 1.School of Food Science and BiotechnologyZhejiang Gongshang UniversityHanghzouChina
  2. 2.Mucosal Immunology and Biology ResearchHarvard Medical SchoolCharlestownUSA
  3. 3.Bioprocess Engineering Group, Agrotechnology and Food SciencesWageningen University and ResearchWageningenThe Netherlands

Personalised recommendations