Advertisement

Species and Structure of Food Allergens: Epitopes and Cross-Reactivity

  • Linglin Fu
  • Bobby J. Cherayil
  • Haining Shi
  • Yanbo Wang
  • Yang Zhu
Chapter

Abstract

In recent years, with the improvement of food production and industrialization as well as the development of transgenic technology and the popularization of genetically modified food, the incidence of food allergic diseases is on the rise and has become a common chronic disease that endangers people’s physical and mental health, especially those of children’s. The World Health Organization (WHO) has listed food allergy as the sixth problem affecting people’s health, and the research on food allergen has become one of the public issues of global concern. This chapter will discuss multiple allergens in the “big eight” categories of food allergens. Biochemical characteristics associated with food allergens like the presence of multiple, linear IgE-binding epitopes seem to predominate among food allergens, more so than common structural features. Here, the recent studies on the identification of structure and potential epitopes of food allergens are also presented. Due to the high sequence homology and structural similarity of food allergens in different species, especially the major allergens, cross-reactivity is common; therefore a comprehensive introduction to the cross-reactivity among different origins of allergens is also reviewed.

References

  1. Abdel Rahman AM, Kamath SD, Gagné S, Lopata AL, Helleur R (2013) Comprehensive proteomics approach in characterizing and quantifying allergenic proteins from northern shrimp: toward better occupational asthma prevention. J Proteome Res 12:647–656PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aisen P, Leibman A, Reich H (1966) Studies on the binding of iron to transferrin and conalbumin. J Biol Chem 241:1666PubMedPubMedCentralGoogle Scholar
  3. Alenius H, Kalkkinen N, Reunala T, Turjanmaa K, Palosuo T (1996) The main IgE-binding epitope of a major latex allergen, prohevein, is present in its N-terminal 43-amino acid fragment, hevein. J Immunol 156:1618–1625PubMedPubMedCentralGoogle Scholar
  4. Amo A, Rodríguezpérez R, Blanco J, Villota J, Juste S, Moneo I, Caballero ML (2010) Gal d 6 is the second allergen characterized from egg yolk. J Agric Food Chem 58:7453–7457PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arnon R, Maron E, Sela M, Anfinsen C (1971) Antibodies reactive with native lysozyme elicited by a completely synthetic antigen. Proc Natl Acad Sci U S A 68:1450–1455PubMedPubMedCentralCrossRefGoogle Scholar
  6. Asero R, Mistrello G, Amato S, Zanoni D, Barocci F, Caldironi G (2003) Detection of clinical markers of sensitization to profilin in patients allergic to plant-derived foods. J Allergy Clin Immunol 112:427–432PubMedCrossRefPubMedCentralGoogle Scholar
  7. Atassi M, Lee C (1978) The precise and entire antigenic structure of native lysozyme. Biochem J 171:429–434PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ayuso R, Grishina Gibanez MD (2009) Sarcoplasmic calcium-binding protein is an EF-hand-type protein identified as a new shrimp allergen. J Allergy Clin Immunol 124:114–120PubMedCrossRefPubMedCentralGoogle Scholar
  9. Ayuso R, Lehrer S, Reese G (2002a) Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin). Int Arch Allergy Immunol 127:27–37PubMedCrossRefPubMedCentralGoogle Scholar
  10. Ayuso R, Reese G, Leong-Kee S, Plante M, Lehrer S (2002b) Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol 129:38–48PubMedCrossRefGoogle Scholar
  11. Ayuso R et al (2008) Myosin light chain is a novel shrimp allergen, Lit v 3. J Allergy Clin Immunol 122:795–802PubMedCrossRefGoogle Scholar
  12. Ayuso R et al (2010) Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age. J Allergy Clin Immunol 125:1286–1293.e1283PubMedCrossRefGoogle Scholar
  13. Ball G, Shelton M, Walsh B, Hill D, Hosking C, Howden M (2010) A major continuous allergenic epitope of bovine beta-lactoglobulin recognized by human IgE binding. Clin Exp Allergy 24:758–764CrossRefGoogle Scholar
  14. Barre A, Sordet C, Culerrier R, Rancé F, Didier A, Rougé P (2008) Vicilin allergens of peanut and tree nuts (walnut, hazelnut and cashew nut) share structurally related IgE-binding epitopes. Mol Immunol 45:1231–1240PubMedCrossRefGoogle Scholar
  15. Battais F et al (2015) Identification of IgE-binding epitopes on gliadins for patients with food allergy to wheat. Allergy 60:815–821CrossRefGoogle Scholar
  16. Bauermeister K et al (2011) Generation of a comprehensive panel of crustacean allergens from the North Sea shrimp Crangon crangon. Mol Immunol 48:1983–1992PubMedCrossRefGoogle Scholar
  17. Bernard H et al (2000) Molecular basis of IgE cross-reactivity between human beta-casein and bovine beta-casein, a major allergen of milk. Mol Immunol 37:161–167PubMedCrossRefGoogle Scholar
  18. Bernhiselbroadbent J, Dintzis H, Dintzis R, Sampson H (1994) Allergenicity and antigenicity of chicken egg ovomucoid (gal d iii) compared with ovalbumin (gal d i) in children with egg allergy and in mice. J Allergy Clin Immunol 93:1047–1059CrossRefGoogle Scholar
  19. Blanco C, Carrillo T, Castillo R, Quiralte J, Cuevas M (1994) Avocado hypersensitivity. Allergy 49:454PubMedCrossRefGoogle Scholar
  20. Bleumink E, Young E (1971) Studies on the atopic allergen in hen’s egg. II. Further characterization of the skin-reactive fraction in egg-white; immuno-electrophoretic studies. Int Arch Allergy Appl Immunol 40:72PubMedCrossRefGoogle Scholar
  21. Breiteneder H (2004) Thaumatin-like proteins – a new family of pollen and fruit allergens. Allergy 59:479PubMedCrossRefGoogle Scholar
  22. Brown JH, Cohen C (2005) Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. Adv Protein Chem 71:121PubMedCrossRefGoogle Scholar
  23. Cai QF, Liu GM, Li T, Hara K, Wang XC, Su WJ, Cao MJ (2010) Purification and characterization of parvalbumins, the major allergens in red stingray (Dasyatis akajei). J Agric Food Chem 58:12964PubMedCrossRefGoogle Scholar
  24. Cantisani A et al (1997) Detection of specific IgE to human milk proteins in sera of atopic infants. FEBS Lett 412:515–517PubMedCrossRefGoogle Scholar
  25. Caubet J, Wang J (2011) Current understanding of egg allergy. Pediatr Clin N Am 58:427–443CrossRefGoogle Scholar
  26. Chapman MD, Wood RA (2001) The role and remediation of animal allergens in allergic diseases. J Allergy Clin Immunol 107:S414–S421PubMedCrossRefGoogle Scholar
  27. Chatchatee P, Järvinen K, Bardina L, Beyer K, Sampson H (2001) Identification of IgE- and IgG-binding epitopes on alpha(s1)-casein: differences in patients with persistent and transient cow’s milk allergy. J Allergy Clin Immunol 107:379–383PubMedCrossRefGoogle Scholar
  28. Chen HL, Cao MJ, Cai QF, Su WJ, Mao HY, Liu GM (2013) Purification and characterisation of sarcoplasmic calcium-binding protein, a novel allergen of red swamp crayfish (Procambarus clarkii). Food Chem 139:213–223PubMedCrossRefGoogle Scholar
  29. Curioni A, Santucci B, Cristaudo A, Canistraci C, Pietravalle M, Simonato B, Giannattasio M (2010) Urticaria from beer: an immediate hypersensitivity reaction due to a 10-kDa protein derived from barley. Clin Exp Allergy 29:407–413CrossRefGoogle Scholar
  30. Daul C, Slattery M, Reese G, Lehrer S (1994) Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. Int Arch Allergy Immunol 105:49–55PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dunwell J (1998) Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol Genet Eng Rev 15:1–32.  https://doi.org/10.1080/02648725.1998.10647950 CrossRefPubMedGoogle Scholar
  32. Dunwell J, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65:7–17.  https://doi.org/10.1016/j.phytochem.2003.08.016 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Egger M, Hauser M, Mari A, Ferreira F, Gadermaier G (2010) The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep 10:326–335PubMedCrossRefGoogle Scholar
  34. Elsayed S, Apold J (2010) Immunochemical analysis of cod fish allergen M: locations of the immunoglobulin binding sites as demonstrated by the native and synthetic peptides. Allergy 38:449–459CrossRefGoogle Scholar
  35. Gammon G, Shastri N, Cogswell J, Wilbltr S, Sadegh-Nasseri S, Krzych U (2010) The choice of T-cell epitopes utilized on a protein antigen depends on multiple factors distant from, as well as at the determinant site. Immunol Rev 98:54–73CrossRefGoogle Scholar
  36. Geroldinger-Simic M et al (2011) Birch pollen-related food allergy: clinical aspects and the role of allergen-specific IgE and IgG 4 antibodies. J Allergy Clin Immunol 127:616–622.e611PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hamada Y, Nagashima Y, Shiomi K (2001) Identification of collagen as a new fish allergen. J Agric Chem Soc Jpn 65:285–291Google Scholar
  38. Hoffman DR (1983) Immunochemical identification of the allergens in egg white. J Allergy Clin Immunol 71:481–486PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hoffman D, Day JE, Miller J (1981) The major heat stable allergen of shrimp. Ann Allergy 47:17PubMedPubMedCentralGoogle Scholar
  40. Hoffmannsommergruber K (2000) Plant allergens and pathogenesis-related proteins. What do they have in common? Int Arch Allergy Immunol 122:155–166CrossRefGoogle Scholar
  41. Hopp T, Woods K (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A 78:3824–3828PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hopp T, Woods K (1982) Immunochemical studies on alpha-lactalbumin. Mol Immunol 19:1453PubMedCrossRefGoogle Scholar
  43. Huggett A, Hischenhuber C (1998) Food manufacturing initiatives to protect the allergic consumer. Allergy 53:89–92PubMedCrossRefGoogle Scholar
  44. Ibrahimi I, Eder J, Prager E, Wilson A, Arnon R (1980) The effect of a single amino acid substitution on the antigenic specificity of the loop region of lysozyme. Mol Immunol 17:37–46PubMedCrossRefGoogle Scholar
  45. Ishikawa M, Suzuki F, Ishida M, Nagashima Y, Shiomi K (2010) Identification of tropomyosin as a major allergen in the octopus Octopus vulgaris and elucidation of its IgE-binding epitopes. Fish Sci 67:934–942CrossRefGoogle Scholar
  46. Jacobsen B et al (2008) The panel of egg allergens, Gal d 1-Gal d 5: their improved purification and characterization. Mol Nutr Food Res 52:S176–S185PubMedPubMedCentralGoogle Scholar
  47. Jain S, Srivastava S, Sarin NB, Kav NN (2006) Proteomics reveals elevated levels of PR 10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. Plant Physiol Biochem PPB 44:253–259.  https://doi.org/10.1016/j.plaphy.2006.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jang Y, Lim K, Kim B (2010) Analysis of T cell reactivities to phosphorylcholine-conjugated hen egg lysozyme in C57BL/6 mice: hapten-conjugate specificity reflects an altered expression of a major carrier epitope. Eur J Immunol 21:1303–1310CrossRefGoogle Scholar
  49. Jankovicova B et al (2008) Epitope mapping of allergen ovalbumin using biofunctionalized magnetic beads packed in microfluidic channels the first step towards epitope-based vaccines. J Chromatogr A 1206:64–71PubMedCrossRefGoogle Scholar
  50. Jarolim E, Rumpold H, Endler A, Ebner H, Breitenbach M, Scheiner O, Kraft D (2010) IgE and IgG antibodies of patients with allergy to birch pollen as tools to define the allergen profile of Betula verrucosa *. Allergy 44:385–395CrossRefGoogle Scholar
  51. Javier MF, Alfonso C (2008) 2S albumin storage proteins: what makes them food allergens? Open Biochem J 2:16–28CrossRefGoogle Scholar
  52. Jenkins J, Breiteneder H, Mills E (2007) Evolutionary distance from human homologs reflects allergenicity of animal food proteins. J Allergy Clin Immunol 120:1399–1405PubMedCrossRefGoogle Scholar
  53. Jeong K, Hong C, Yong T (2006) Allergenic tropomyosins and their cross-reactivities. Protein Pept Lett 13:835–845PubMedCrossRefGoogle Scholar
  54. Jiingguang C, Su SN, Borluen C, Howjing L, Luping C (2011) Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics 5:202–202Google Scholar
  55. Kahlert H, Petersen A, Becker W, Schlaak M (1992) Epitope analysis of the allergen ovalbumin (Gal d II) with monoclonal antibodies and patients’ IgE. Mol Immunol 29:1191–1201PubMedCrossRefGoogle Scholar
  56. Kanduc D, Lucchese A, Mittelman A (2001) Individuation of monoclonal anti-HPV16 E7 antibody linear peptide epitope by computational biology. Peptides 22:1981–1985PubMedCrossRefGoogle Scholar
  57. Kato I, Schrode J, Kohr W, Laskowski M Jr (1987) Chicken ovomucoid: determination of its amino acid sequence, determination of the trypsin reactive site, and preparation of all three of its domains. Biochemistry 26:193PubMedCrossRefGoogle Scholar
  58. Knobeloch D et al (2010) A coleopteran triosephosphate isomerase: X-ray structure and phylogenetic impact of insect sequences. Insect Mol Biol 19:35–48PubMedCrossRefGoogle Scholar
  59. Kreis M, Forde B, Rahman S, Miflin B, Shewry P (1985) Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol 183:499–502PubMedCrossRefGoogle Scholar
  60. Leone P et al (2006) Resolution of the structure of the allergenic and antifungal banana fruit thaumatin-like protein at 1.7-A. Biochimie 88:45–52PubMedCrossRefPubMedCentralGoogle Scholar
  61. Leung P et al (1994) Cloning, expression, and primary structure of Metapenaeus ensis tropomyosin, the major heat-stable shrimp allergen. J Allergy Clin Immunol 94:882PubMedCrossRefPubMedCentralGoogle Scholar
  62. Liscombe DK, Macleod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66:1374–1393PubMedCrossRefPubMedCentralGoogle Scholar
  63. Liu J, Ekramoddoullah A, Piggott N, Zamani A (2005) Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants. Planta 221:159–169PubMedCrossRefPubMedCentralGoogle Scholar
  64. Liu R, Krishnan HB, Xue W, Liu C (2011) Characterization of allergens isolated from the freshwater fish blunt snout bream (Megalobrama amblycephala). J Agric Food Chem 59:458–463PubMedCrossRefPubMedCentralGoogle Scholar
  65. Liu CY, Tao S, Xue JY, Zhang H, Xue WT, Chen FS (2014) Identification and purification of a novel fish allergen from largemouth bass (Micropterus salmoides). Food Agric Immunol 25:70–81CrossRefGoogle Scholar
  66. Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G (2015) Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot 66:5663–5681.  https://doi.org/10.1093/jxb/erv313 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lonnerdal B, Lien E (2010) Nutritional and physiologic significance of alpha-lactalbumin in infants. Nutr Rev 61:295–305CrossRefGoogle Scholar
  68. Lópeztorrejón G, Crespo JF, Sánchezmonge R, Sánchezjiménez M, Alvarez J, Rodriguez J, Salcedo G (2010) Allergenic reactivity of the melon profilin Cuc m 2 and its identification as major allergen. Clin Exp Allergy 35:1065–1072CrossRefGoogle Scholar
  69. Ma Y et al (2010) Characterization of recombinant Mal d 4 and its application for component-resolved diagnosis of apple allergy. Clin Exp Allergy 36:1087–1096CrossRefGoogle Scholar
  70. Mackenzie K, Fitch P, Leech M, Ilchmann A, Wilson C, Mcfarlane A (2013) Combination peptide immunotherapy based on T-cell epitope mapping reduces allergen-specific IgE and eosinophilia in allergic airway inflammation. Immunology 138:258–268PubMedPubMedCentralCrossRefGoogle Scholar
  71. Maizels R, Clarke J, Harvey M, Miller A, Sercarz E (2010) Epitope specificity of the T cell proliferative response to lysozyme: proliferative T cells react predominantly to different determinants from those recognized by B cells. Eur J Immunol 10:509–515CrossRefGoogle Scholar
  72. Mao HY, Cao MJ, Maleki SJ, Cai QF, Su WJ, Yang Y, Liu GM (2013) Structural characterization and IgE epitope analysis of arginine kinase from Scylla paramamosain. Mol Immunol 56:463–470PubMedCrossRefPubMedCentralGoogle Scholar
  73. Martos G, Pineda-Vadillo C, Miralles B, Alonso-Lebrero E, López-Fandiño R, Molina E, Belloque J (2012) Identification of an IgE reactive peptide in hen egg riboflavin binding protein subjected to simulated gastrointestinal digestion. J Agric Food Chem 60:5215–5220PubMedCrossRefPubMedCentralGoogle Scholar
  74. Maruyama N et al (1998) Identification of major wheat allergens by means of the Escherichia coli expression system. Eur J Biochem 255:739–745PubMedCrossRefPubMedCentralGoogle Scholar
  75. Matsuo H et al (2004) Identification of the IgE-binding epitope in ω-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis. J Biol Chem 279:12135–12140PubMedCrossRefPubMedCentralGoogle Scholar
  76. Mauch F, Staehelin L (1989) Functional implications of the subcellular localization of ethylene-induced chitinase and [beta]-1,3-glucanase in bean leaves. Plant Cell 1:447–457PubMedPubMedCentralGoogle Scholar
  77. Maynard F, Jost R, Wal J (1997) Human IgE binding capacity of tryptic peptides from bovine alpha-lactalbumin. Int Arch Allergy Immunol 113:478–488PubMedCrossRefPubMedCentralGoogle Scholar
  78. Mills EN, Jenkins JA, Alcocer MJ, Shewry PR (2004) Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Crit Rev Food Sci Nutr 44:379–407PubMedCrossRefPubMedCentralGoogle Scholar
  79. Mills E et al (2007) The prevalence, cost and basis of food allergy across. Eur Allergy 62:717–722.  https://doi.org/10.1111/j.1398-9995.2007.01425.x CrossRefGoogle Scholar
  80. Mine Y, Rupa P (2003) Fine mapping and structural analysis of immunodominant IgE allergenic epitopes in chicken egg ovalbumin. Protein Eng 16:747–752PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mine Y, Zhang J (2002) Identification and fine mapping of IgG and IgE epitopes in ovomucoid. Biochem Biophys Res Commun 292:1070–1074PubMedCrossRefPubMedCentralGoogle Scholar
  82. Misra A, Kumar R, Mishra V, Chaudhari BP, Tripathi A, Das M, Dwivedi PD (2010) Partial characterization of red gram (Cajanus cajan L. Millsp) polypeptides recognized by patients exhibiting rhinitis and bronchial asthma. Food Chem Toxicol 48:2725–2736PubMedCrossRefPubMedCentralGoogle Scholar
  83. Misra A, Kumar R, Mishra V, Chaudhari BP, Raisuddin S, Das M, Dwivedi PD (2011) Potential allergens of green gram (Vigna radiata L. Millsp) identified as members of cupin superfamily and seed albumin. Clin Exp Allergy 41:1157–1168PubMedCrossRefPubMedCentralGoogle Scholar
  84. Moreno F, Clemente A (2008) 2S albumin storage proteins: what makes them food allergens? Open Biochem J 2:16–28PubMedPubMedCentralCrossRefGoogle Scholar
  85. Nakase M et al (1996) Cloning of the rice seed alpha-globulin-encoding gene: sequence similarity of the 5′-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein. Gene 170:223–226PubMedCrossRefPubMedCentralGoogle Scholar
  86. Nam Y, Tichit L, Leperlier M, Cuerq B, Marty I, Lelièvre J (1999) Isolation and characterization of mRNAs differentially expressed during ripening of wild strawberry (Fragaria vesca L.) fruits. Plant Mol Biol 39:629–636PubMedCrossRefPubMedCentralGoogle Scholar
  87. Nessler CL, Allen RD, Galewsky S (1985) Identification and characterization of latex-specific proteins in opium poppy. Plant Physiol 79:499–504PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nisbet AD, Saundry RH, Moir AJ, Fothergill LA, Fothergill JE (2010) The complete amino-acid sequence of hen ovalbumin. Eur J Biochem 115:335–345CrossRefGoogle Scholar
  89. Osuga DT, Feeney RE (1968) Biochemistry of the egg-white proteins of the ratite group. Arch Biochem Biophys 124:560–574PubMedCrossRefPubMedCentralGoogle Scholar
  90. Padlan EA, Silverton EW, Sheriff S, Cohen GH, Smith-Gill SJ, Davies DR (1989) Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 fab-lysozyme complex. Proc Natl Acad Sci U S A 86:5938–5942PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pan BQ, Su WJ, Cao MJ, Cai QF, Weng WY, Liu GM (2012) IgE reactivity to type I collagen and its subunits from tilapia (Tilapia zillii). Food Chem 130:127–133CrossRefGoogle Scholar
  92. Pasternak O, Bujacz G, Fujimoto Y, Hashimoto Y, Jelen F, Otlewski J (2006) Crystal structure of Vigna radiata cytokinin-specific binding protein in complex with zeatin. Plant Cell 18:2622–2634PubMedPubMedCentralCrossRefGoogle Scholar
  93. Pastorello E et al (2003) Lipid-transfer protein is the major maize allergen maintaining IgE-binding activity after cooking at 100 degrees C, as demonstrated in anaphylactic patients and patients with positive double-blind, placebo-controlled food challenge results. J Allergy Clin Immunol 112:775–783PubMedCrossRefGoogle Scholar
  94. Pedrosa M, Boyano-Martínez T, García-Ara C, Quirce S (2015) Shellfish allergy: a comprehensive review. Clin Rev Allergy Immunol 49:1–14CrossRefGoogle Scholar
  95. Perlmann GE (1950) Enzymatic dephosphorylation of ovalbumin and plakalbumin. Nature 166:870–871PubMedCrossRefGoogle Scholar
  96. Piboonpocanun S, Jirapongsananuruk O, Tipayanon T, Boonchoo S, Goodman RE (2011) Identification of hemocyanin as a novel non-cross-reactive allergen from the giant freshwater shrimp Macrobrachium rosenbergii. Mol Nutr Food Res 55:1492–1498PubMedCrossRefGoogle Scholar
  97. Poms R, Klein C, Anklam E (2004) Methods for allergen analysis in food: a review. Food Addit Contam 21:1–31.  https://doi.org/10.1080/02652030310001620423 CrossRefPubMedGoogle Scholar
  98. Radauer C, Breiteneder H (2007) Evolutionary biology of plant food allergens. J Allergy Clin Immunol 120:518–525.  https://doi.org/10.1016/j.jaci.2007.07.024 CrossRefPubMedGoogle Scholar
  99. Radauer C, Lackner P, Breiteneder H (2008) The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands BMC. Evol Biol 8:286Google Scholar
  100. Ren X, Xin Z, Li Y, Wang Z (2010) Epitope mapping and immunological characterization of a major allergen TBa in tartary buckwheat. Biotechnol Lett 32:1317PubMedCrossRefGoogle Scholar
  101. Robotham JM, Hoffman GG, Teuber SS, Beyer K, Sampson HA, Sathe SK, Roux KH (2009) Linear IgE-epitope mapping and comparative structural homology modeling of hazelnut and English walnut 11S globulins. Mol Immunol 46:2975–2984PubMedCrossRefGoogle Scholar
  102. Rona R, Keil T, Summers C, Gislason D, Zuidmeer L, Sodergren E (2007) The prevalence of food allergy: a meta-analysis. J Allergy Clin Immunol 120:638–646PubMedCrossRefGoogle Scholar
  103. Rougé P, Culerrier R, Sabatier V, Granier C, Rancé F, Barre A (2009) Mapping and conformational analysis of IgE-binding epitopic regions on the molecular surface of the major Ara h 3 legumin allergen of peanut (Arachis hypogaea). Mol Immunol 46:1067–1075PubMedCrossRefGoogle Scholar
  104. Sampson HA (1992) The immunopathogenic role of food hypersensitivity in atopic dermatitis. Acta Derm Venereol Suppl (Stockh) 176:34–37Google Scholar
  105. Sampson H, Cooke S (1990) Food allergy and the potential allergenicity-antigenicity of microparticulated egg and cow’s milk proteins. J Am Coll Nutr 9:410–417PubMedCrossRefGoogle Scholar
  106. Schenk MF, Gilissen LJ, Esselink GD, Smulders MJ (2006) Seven different genes encode a diverse mixture of isoforms of Bet v 1, the major birch pollen allergen. BMC Genomics 7:168–168PubMedPubMedCentralCrossRefGoogle Scholar
  107. Sélo I, Clément G, Bernard H, Chatel J, Créminon C, Peltre G, Wal J (2010) Allergy to bovine beta-lactoglobulin: specificity of human IgE to tryptic peptides. Clin Exp Allergy 29:1055–1063CrossRefGoogle Scholar
  108. Seussbaum I, Nau F, Guérin C (2017) The nutritional quality of eggs. Improving the safety and quality of eggs and egg products, vol 2. Egg safety and nutritional qualityGoogle Scholar
  109. Shanti K, Martin B, Nagpal S, Metcalfe D, Rao P (1993) Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J Immunol 151:5354PubMedGoogle Scholar
  110. Smith-Gill S, Wilson A, Potter M, Prager E, Feldmann R, Mainhart C (1982) Mapping the antigenic epitope for a monoclonal antibody against lysozyme. J Immunol 128:314PubMedGoogle Scholar
  111. Spuergin P, Mueller H, Walter M, Schiltz E, Forster J (1996) Allergenic epitopes of bovine αs1-casein recognized by human IgE and IiG. Allergy 51:306PubMedPubMedCentralGoogle Scholar
  112. Spuergin P, Walter M, Schiltz E, Deichmann K, Forster J, Mueller H (1997) Allergenicity of alpha-caseins from cow, sheep, and goat. Allergy 52:293PubMedCrossRefPubMedCentralGoogle Scholar
  113. Stanic-Vucinic D et al (2012) Structural changes and allergenic properties of β-lactoglobulin upon exposure to high-intensity ultrasound. Mol Nutr Food Res 56:1894–1905PubMedCrossRefPubMedCentralGoogle Scholar
  114. Strömvik M, Sundararaman V, Vodkin L (1999) A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs. Plant Mol Biol 41:217–231PubMedCrossRefPubMedCentralGoogle Scholar
  115. Suzuki M, Kobayashi Y, Hiraki Y, Nakata H, Shiomi K (2011) Paramyosin of the disc abalone Haliotis discus discus: identification as a new allergen and cross-reactivity with tropomyosin. Food Chem 124:921–926CrossRefGoogle Scholar
  116. Swoboda I, Scheiner O, Heberle-Bors E, Vicente O (2010) cDNA cloning and characterization of three genes in the Bet v 1 gene family that encode pathogenesis-related proteins. Plant Cell Environ 18:865–874CrossRefGoogle Scholar
  117. Takagaki Y, Hirayama A, Fujio H, Amano T (1980) Antibodies to a continuous region at residues 38–54 of hen egg white lysozyme found in a small fraction of anti-hen egg white lysozyme antibodies. Biochemistry 19:2498PubMedCrossRefPubMedCentralGoogle Scholar
  118. Tanabe S (2004) IgE-binding abilities of pentapeptides, QQPFP and PQQPF, in wheat gliadin. J Nutr Sci Vitaminol 50:367–370PubMedCrossRefPubMedCentralGoogle Scholar
  119. Tanabe S, Shibata R, Nishimura T (2004) Hypoallergenic and T cell reactive analogue peptides of bovine serum albumin, the major beef allergen. Mol Immunol 41:885–890PubMedCrossRefPubMedCentralGoogle Scholar
  120. Toda M et al (2011) Protein unfolding strongly modulates the allergenicity and immunogenicity of Pru p 3, the major peach allergen. J Allergy Clin Immunol 128:1022–1030.e1027PubMedCrossRefPubMedCentralGoogle Scholar
  121. Tyrer S, Mccarthy M, Shopsin B, Schacht R (2002) Recombinant carp parvalbumin, the major cross-reactive fish allergen: a tool for diagnosis and therapy of fish allergy. J Immunol 168:4576–4584CrossRefGoogle Scholar
  122. Untersmayr E, Poulsen L, Platzer M, Pedersen M, Boltz-Nitulescu G, Skov P, Jensen-Jarolim E (2005) The effects of gastric digestion on codfish allergenicity. J Allergy Clin Immunol 115:377–382PubMedCrossRefGoogle Scholar
  123. Untersmayr E et al (2006) Mimotopes identify conformational epitopes on parvalbumin, the major fish allergen. Mol Immunol 43:1454–1461PubMedCrossRefPubMedCentralGoogle Scholar
  124. Van LL, Rep M, Pieterse C (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162CrossRefGoogle Scholar
  125. Vieths S, Scheurer S, Ballmerweber B (2010) Current understanding of cross-reactivity of food allergens and pollen. Ann N Y Acad Sci 964:47–68CrossRefGoogle Scholar
  126. Vila L, Beyer K, Järvinen K, Chatchatee P, Bardina L, Sampson H (2010) Role of conformational and linear epitopes in the achievement of tolerance in cow’s milk allergy. Clin Exp Allergy 31:1599–1606CrossRefGoogle Scholar
  127. Wal J (1998) Cow’s milk allergens. Allergy 53:1013–1022PubMedCrossRefPubMedCentralGoogle Scholar
  128. Wal J (2002) Cow’s milk proteins/allergens. Ann Allergy Asthma Immunol 89:3–10PubMedCrossRefPubMedCentralGoogle Scholar
  129. Wang C, Huang J, Hu J (1999) Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol Biol 40:807–814PubMedCrossRefGoogle Scholar
  130. Wang B, Zhenxing L, Zheng L, Liu Y, Hong L (2011) Identification and characterization of a new IgE-binding protein in mackerel (Scomber japonicus) by MALDI-TOF-MS. J Ocean Univ China 10:93–98CrossRefGoogle Scholar
  131. Wen J, Vanekkrebitz M, Hoffmannsommergruber K, Scheiner O, Breiteneder H (1997) The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in flowering plants. Mol Phylogenet Evol 8:317–333PubMedCrossRefPubMedCentralGoogle Scholar
  132. Williams J, Elleman T, Kingston I, Wilkins A, Kuhn K (2010) The primary structure of hen ovotransferrin. FEBS J 122:297–303Google Scholar
  133. Woo EJ, Marshall J, Bauly J, Chen JG, Venis M, Napier RM, Pickersgill RW (2014) Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J 21:2877–2885CrossRefGoogle Scholar
  134. Yagami T, Osuna H, Kouno M, Haishima Y, Nakamura A, Ikezawa Z (2002) Significance of carbohydrate epitopes in a latex allergen with beta-1,3-glucanase activity. Int Arch Allergy Immunol 129:27–37PubMedCrossRefGoogle Scholar
  135. Yamashita K, Kamerling JP, Kobata A (1982) Structural study of the carbohydrate moiety of hen ovomucoid. Occurrence of a series of pentaantennary complex-type asparagine-linked sugar chains. J Biol Chem 257:12809PubMedGoogle Scholar
  136. Yet M, Chin C, Wold F (1988) The covalent structure of individual N-linked glycopeptides from ovomucoid and asialofetuin. J Biol Chem 263:111PubMedGoogle Scholar
  137. Yoshida S, Ichimura A, Shiomi K (2008) Elucidation of a major IgE epitope of Pacific mackerel parvalbumin. Food Chem 111:857–861CrossRefGoogle Scholar
  138. Yu X, Ekramoddoullah A, Misra S (2000) Characterization of Pin m III cDNA in western white pine tree. Physiology 20:663–671Google Scholar
  139. Yu C, Lin Y, Chiang B, Chow L (2003) Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol 170:445–453PubMedCrossRefGoogle Scholar
  140. Zheng L, Lin H, Pawar R, Li Z, Li M (2011) Mapping IgE binding epitopes of major shrimp (Penaeus monodon) allergen with immunoinformatics tools. Food Chem Toxicol 49:2954–2960PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Linglin Fu
    • 1
  • Bobby J. Cherayil
    • 2
  • Haining Shi
    • 2
  • Yanbo Wang
    • 1
  • Yang Zhu
    • 3
  1. 1.School of Food Science and BiotechnologyZhejiang Gongshang UniversityHanghzouChina
  2. 2.Mucosal Immunology and Biology ResearchHarvard Medical SchoolCharlestownUSA
  3. 3.Bioprocess Engineering Group, Agrotechnology and Food SciencesWageningen University and ResearchWageningenThe Netherlands

Personalised recommendations