Phytochemicals, Cancer and miRNAs: An in-silico Approach

  • Neha Kashyap
  • Prem P. Kushwaha
  • Atul K. Singh
  • Santosh Maurya
  • Ashish K. Sahoo
  • Shashank Kumar


Computer based drug design is an important tool nowadays save time and money in the research. Various online and offline computer based tools are available to predict the disease mitigating potential of phytochemicals as well as the role of miRNAs in various disease through signaling pathways. Cancer, a deadliest disease kills major population of humans. The processes involved in cancer development include metastasis, invasion, angiogenesis, and inflammation. These processes are regulated by microRNAs and different signaling pathways (Wnt/β-catenin, Notch, Sonic hedgehog, COX-2, EGFR, MAPK-ERK, JAK-STAT, Akt/PI3K/mTOR, NF-κB, AP-1, etc.). Phytochemicals such as dietary polyphenols play an efficient role in reducing the pace of cancer metastasis and other hallmarks of cancer as it modulates miRNAs associated with various signaling pathways involved in cancer. Phytochemicals controls epigenetic events (non-coding miRNAs, histone modification, DNA methylation) and indirectly affect multiple signaling pathways. Phytochemicals exert inhibitory effect on each step of metastasis and has anticancer potential by inducing apoptosis and by inhibiting cell growth, migration, invasion and apoptosis. The present chapter highlights the cancer signaling pathways and their mitigation by phytochemicals. Role of miRNAs in various signaling pathways and hall marks of cancer is also discussed. The most interesting part of the chapter include step by step tutorial to study the association of phytochemical modulated miRNAs in various signaling pathways related to cancer.


Dietary phytochemicals Micro-RNAs Epigenetic modifications Signaling pathways Cancer Metastasis 



NK acknowledges Central University of Punjab for providing infrastructure facility. PPK and AKS acknowledge financial support from University Grants Commission, India in the form of CSIR-UGC Senior/Junior Research fellowship. SK acknowledges Department of Science and Technology, India, for providing financial support in the form of DST-SERB Grant [EEQ/2016/000350].


  1. Adams LS, Phung S, Yee N, Seeram NP, Li L, Chen S. Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res. 2010;70:3594–605.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006;71(10):1397–421.PubMedCrossRefGoogle Scholar
  3. Aggarwal BB, Ichikawa H, Garodia P, Weerasinghe P, Sethi G, Bhatt ID, Pandey MK, Shishodia S, Nair MG. From traditional Ayurvedic medicine to modern medicine: identification of therapeutic targets for suppression of inflammation and cancer. Expert Opin Ther Targets. 2006;10(1):87–118.PubMedCrossRefGoogle Scholar
  4. Ahmad N, Gupta S, Mukhtar H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor κB in cancer cells versus normal cells. Arch Biochem Biophys. 2000;376(2):338–46.PubMedCrossRefGoogle Scholar
  5. Ahn JI, Jeong KJ, Ko MJ, Shin HJ, Kim HS, Chung HJ, Jeong HS. Changes of miRNA and mRNA expression in HepG2 cells treated by epigallocatechin gallate. Mol Cell Toxicol. 2010;6(2):169–77.CrossRefGoogle Scholar
  6. Aithal MG, Rajeswari N. Role of notch signalling pathway in cancer and its association with DNA methylation. J Genet. 2013;92(3):667–75.PubMedCrossRefGoogle Scholar
  7. Alam MN, Almoyad M, Huq F. Polyphenols in colorectal cancer: current state of knowledge including clinical trials and molecular mechanism of action. Biomed Res Int. 2018;2018:4154185.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, Wang Z, Philip PA, Sarkar FH. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010;13:0008–5472.Google Scholar
  9. Amoyel M, Anderson AM, Bach EA. JAK/STAT pathway dysregulation in tumors: a drosophila perspective. Semin Cell Dev Biol. 2014;28:96–103. AcademicPubMedCrossRefGoogle Scholar
  10. Annabi B, Lachambre MP, Bousquet-Gagnon N, Pagé M, Gingras D, Bëliveau R. Green tea polyphenol (−)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochim Biophys Acta (BBA)-Mol Cell Res. 2002;1542(1–3):209–20.CrossRefGoogle Scholar
  11. Azmi AS, Bhat SH, Hadi SM. Resveratrol–Cu (II) induced DNA breakage in human peripheral lymphocytes: implications for anticancer properties. FEBS Lett. 2005;579(14):3131–5.PubMedCrossRefGoogle Scholar
  12. Azmi AS, Bhat SH, Hanif S, Hadi SM. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett. 2006;580(2):533–8.PubMedCrossRefGoogle Scholar
  13. Bachmeier B, Nerlich A, Iancu C, Cilli M, Schleicher E, Vené R, Dell’Eva R, Jochum M, Albini A, Pfeffer U. The chemopreventive polyphenol curcumin prevents hematogenous breast cancer metastases in immunodeficient mice. Cell Physiol Biochem. 2007;19(1–4):137–52.PubMedCrossRefGoogle Scholar
  14. Bagchi D, Sen CK, Bagchi M, Atalay M. Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Moscow). 2004;69(1):75–80.CrossRefGoogle Scholar
  15. Bai Y, Bai Y, Dong J, Li Q, Jin Y, Chen B, Zhou M. Hedgehog signaling in pancreatic fibrosis and cancer. Medicine. 2016;95(10):e2996.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem. 2008;103(2):509–19.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Beyer S, Fleming J, Meng W, Singh R, Haque SJ, Chakravarti A. The role of miRNAs in angiogenesis, invasion and metabolism and their therapeutic implications in gliomas. Cancers. 2017;9(7):85.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Bhat SH, Azmi AS, Hanif S, Hadi SM. Ascorbic acid mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. Int J Biochem Cell Biol. 2006;38(12):2074–81.PubMedCrossRefGoogle Scholar
  20. Bhat SH, Azmi AS, Hadi SM. Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: involvement of endogenous copper and a putative mechanism for anticancer properties. Toxicol Appl Pharmacol. 2007;218(3):249–55.PubMedCrossRefGoogle Scholar
  21. Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C, Srivastava M, Pollard HB, Biswas R. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyper-expression of interleukin-8. J Biol Chem. 2011;286:11604–15.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bhattacharyya S, Sul K, Krukovets I, Nestor C, Li J, Adognravi OS. Novel tissue-specific mechanism of regulation of angiogenesis and cancer growth in response to hyperglycemia. J Am Heart Assoc. 2012;1(6):e005967.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Braune EB, Lendahl U. Notch—a goldilocks signaling pathway in disease and cancer therapy. Discov Med. 2016;21(115):189–96.PubMedGoogle Scholar
  24. Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC, Simpson DA, Leonard MO, Tambuwala MM, Cummins EP, Taylor CT. MicroRNA-155 promotes resolution of hypoxia-inducible factor-1α activity during prolonged hypoxia. Mol Cell Biol. 2011;31:4087–96. MCB-01276PubMedPubMedCentralCrossRefGoogle Scholar
  25. Campagnolo P, Hong X, Di Bernardini E, Smyrnias I, Hu Y, Xu Q. Resveratrol-induced vascular progenitor differentiation towards endothelial lineage via MiR-21/Akt/β-catenin is protective in vessel graft models. PLoS One. 2015;10(5):e0125122.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM, Ragoussis J. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008;14(5):1340–8.PubMedCrossRefGoogle Scholar
  27. Caporali A, Emanueli C. MicroRNA regulation in angiogenesis. Vasc Pharmacol. 2011;55(4):79–86.CrossRefGoogle Scholar
  28. Carotenuto F, Albertini MC, Coletti D, Vilmercati A, Campanella L, Darzynkiewicz Z, Teodori L. How diet intervention via modulation of DNA damage response through microRNAs may have an effect on cancer prevention and aging, an in silico study. Int J Mol Sci. 2016;17(5):752.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Cascio S, D’Andrea A, Ferla R, Surmacz E, Gulotta E, Amodeo V, Bazan V, Gebbia N, Russo A. miR-20b modulates VEGF expression by targeting HIF-1α and STAT3 in MCF-7 breast cancer cells. J Cell Physiol. 2010;224(1):242–9.PubMedGoogle Scholar
  30. Cha ST, Chen PS, Johansson G, Chu CY, Wang MY, Jeng YM, Yu SL, Chen JS, Chang KJ, Jee SH, Tan CT. MicroRNA-519c suppresses hypoxia-inducible factor-1α expression and tumor angiogenesis. Cancer Res. 2010;16:0008–5472.Google Scholar
  31. Chai ZT, Kong J, Zhu XD, Zhang YY, Lu L, Zhou JM, Wang LR, Zhang KZ, Zhang QB, Ao JY, Wang M. MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2α/Akt/HIF-1α pathway in hepatocellular carcinoma. PLoS One. 2013;8(10):e77957.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chan SY, Loscalzo J. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle. 2010;9(6):1072–83.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chan YC, Khanna S, Roy S, Sen CK. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem. 2011;286(3):2047–56.PubMedCrossRefGoogle Scholar
  34. Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J, Tanaka Y, Dahiya R. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res. 2011;4(1):76–86.CrossRefGoogle Scholar
  35. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, Delgado-Olguin P, Cybulsky MI, Fish JE. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5(7):1017–34.PubMedCrossRefGoogle Scholar
  36. Chiang CH, Chu PY, Hou MF, Hung WC. MiR-182 promotes proliferation and invasion and elevates the HIF-1α-VEGF-A axis in breast cancer cells by targeting FBXW7. Am J Cancer Res. 2016;6(8):1785.PubMedPubMedCentralGoogle Scholar
  37. Chiu J, Khan ZA, Farhangkhoee H, Chakrabarti S. Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-κB. Nutrition. 2009;25(9):964–72.PubMedCrossRefGoogle Scholar
  38. Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, Kim MJ, Cha JH, Kim YJ, Jun WJ, Lee JM. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res. 2009;69(2):583–92.PubMedCrossRefGoogle Scholar
  39. Chung MY, Lim TG, Lee KW. Molecular mechanisms of chemopreventive phytochemicals against gastroenterological cancer development. World J Gastroenterol: WJG. 2013;19(7):984.PubMedCrossRefGoogle Scholar
  40. Dai C, Li B, Zhou Y, Li D, Zhang S, Li H, Xiao X, Tang S. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells. Food Chem Toxicol. 2016;95:52–63.PubMedCrossRefGoogle Scholar
  41. Ermakova S, Choi BY, Choi HS, Kang BS, Bode AM, Dong Z. The intermediate filament protein vimentin is a new target for epigallocatechin gallate. J Biol Chem. 2005;280(17):16882–90.PubMedCrossRefGoogle Scholar
  42. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci. 2007;104(40):15805–10.PubMedCrossRefGoogle Scholar
  43. Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 2012;19(6):586.PubMedCrossRefGoogle Scholar
  44. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63(22):7563–70.PubMedGoogle Scholar
  45. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2004;63(22):7563–70.Google Scholar
  46. Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137(1):223S–8S.PubMedCrossRefGoogle Scholar
  47. Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol. 2011;223(2):102–15.PubMedCrossRefGoogle Scholar
  48. Favot L, Martin S, Keravis T, Andriantsitohaina R, Lugnier C. Involvement of cyclin-dependent pathway in the inhibitory effect of delphinidin on angiogenesis. Cardiovasc Res. 2003;59(2):479–87.PubMedCrossRefGoogle Scholar
  49. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37(4):391.PubMedCrossRefGoogle Scholar
  50. Fujiki H, Suganuma M, Kurusu M, Okabe S, Imayoshi Y, Taniguchi S, Yoshida T. New TNF-α releasing inhibitors as cancer preventive agents from traditional herbal medicine and combination cancer prevention study with EGCG and sulindac or tamoxifen. Mutat Rese/Fundam Mol Mech Mutagen. 2003;523:119–25.CrossRefGoogle Scholar
  51. Gao ZH, Xu Z, Hung MS, Lin YC, Wang T, Gong MI, Zhi X, Jablon DM, You L. Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells. Anticancer Res. 2009;29(6):2025–30.PubMedGoogle Scholar
  52. Gonnissen A, Isebaert S, Haustermans K. Targeting the hedgehog signaling pathway in cancer: beyond smoothened. Oncotarget. 2015;6(16):13899.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gorojankina T. Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction. Cell Mol Life Sci. 2016;73(7):1317–32.PubMedCrossRefGoogle Scholar
  54. Goropevšek A, Holcar M, Avčin T. The role of STAT signaling pathways in the pathogenesis of systemic lupus erythematosus. Clin Rev Allergy Immunol. 2017;52(2):164–81.PubMedCrossRefGoogle Scholar
  55. Guan B, Wu K, Zeng J, Xu S, Mu L, Gao Y, Wang K, Ma Z, Tian J, Shi Q, Guo P. Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer. Oncotarget. 2017;8(5):8162.PubMedCrossRefGoogle Scholar
  56. Gunther S, Ruhe C, Derikito MG, Böse G, Sauer H, Wartenberg M. Polyphenols prevent cell shedding from mouse mammary cancer spheroids and inhibit cancer cell invasion in confrontation cultures derived from embryonic stem cells. Cancer Lett. 2007;250(1):25–35.PubMedCrossRefGoogle Scholar
  57. Hadi SM, Asad SF, Singh S, Ahmad A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life. 2000;50(3):167–71.PubMedCrossRefGoogle Scholar
  58. Hadi SM, Bhat SH, Azmi AS, Hanif S, Shamim U, Ullah MF. Oxidative breakage of cellular DNA by plant polyphenols: a putative mechanism for anticancer properties. Semin Cancer Biol. 2007;17(5):370–6. AcademicPubMedCrossRefGoogle Scholar
  59. Hori K, Sen A, Artavanis-Tsakonas S. Notch signaling at a glance. J Cell Sci. 2013;126:2135–40.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hu Y, Li Y, Wu C, Zhou L, Han X, Wang Q, Xie X, Zhou Y, Du Z. MicroRNA-140-5p inhibits cell proliferation and invasion by regulating VEGFA/MMP2 signaling in glioma. Tumor Biol. 2017;39(4):1010428317697558.Google Scholar
  61. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One. 2006;1(1):e116.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, Kandaswami C, Middleton E, Lee MT. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol. 1999;128(5):999–1010.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hung CF, Huang TF, Chiang HS, Wu WB. (−)-Epigallocatechin-3-gallate, a polyphenolic compound from green tea, inhibits fibroblast adhesion and migration through multiple mechanisms. J Cell Biochem. 2005;96(1):183–97.PubMedCrossRefGoogle Scholar
  64. Izzotti A, Calin GA, Steele VE, Cartiglia C, Longobardi M, Croce CM, De Flora S. Chemoprevention of cigarette smoke–induced alterations of microRNA expression in rat lungs. Cancer Prev Res. 2010;3(1):62–72.CrossRefGoogle Scholar
  65. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590–610.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jia L, Chen J, Xie C, Shao L, Xu Z, Zhang L. microRNA-1228⁎ impairs the pro-angiogenic activity of gastric cancer cells by targeting macrophage migration inhibitory factor. Life Sci. 2017;180:9–16.PubMedCrossRefGoogle Scholar
  67. Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF, Wang ED. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;30:0008–5472.Google Scholar
  68. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell S, Napper A, Curtis R, Di Stefano PS, Fields S, Bedalov A. Substrate specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280:17038–45.PubMedCrossRefGoogle Scholar
  70. Kang SK, Cha SH, Jeon HG. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 2006;15(2):165–74.PubMedCrossRefGoogle Scholar
  71. Kanitz A, Imig J, Dziunycz PJ, Primorac A, Galgano A, Hofbauer GF, Gerber AP, Detmar M. The expression levels of microRNA-361-5p and its target VEGFA are inversely correlated in human cutaneous squamous cell carcinoma. PLoS One. 2012;7(11):e49568.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kato K, Long NK, Makita H, Toida M, Yamashita T, Hatakeyama D, Hara A, Mori H, Shibata T. Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer. 2008;99(4):647.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kim WK, Bang MH, Kim ES, Kang NE, Jung KC, Cho HJ, Park JH. Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J Nutr Biochem. 2005;16(3):155–62.PubMedCrossRefGoogle Scholar
  74. Kim JD, Liu L, Guo W, Meydani M. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion. J Nutr Biochem. 2006;17(3):165–76.PubMedCrossRefGoogle Scholar
  75. Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, Lancaster JM, Coppola D, Sellers TA, Djeu JY, Cheng JQ. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2014;33(6):679.PubMedCrossRefGoogle Scholar
  76. Kong R, Ma Y, Feng J, Li S, Zhang W, Jiang J, Zhang J, Qiao Z, Yang X, Zhou B. The crucial role of miR-126 on suppressing progression of esophageal cancer by targeting VEGF-A. Cell Mol Biol Lett. 2016;21(1):3.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kovall RA, Blacklow SC. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr Top Dev Biol. 2010;92:31–71. Academic PressPubMedCrossRefGoogle Scholar
  78. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101(1):59–68.PubMedCrossRefGoogle Scholar
  79. Kumar A, Rimando AM, Levenson AS. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann N Y Acad Sci. 2017;1403(1):15–26.PubMedCrossRefGoogle Scholar
  80. Kumazaki M, Noguchi S, Yasui Y, Iwasaki J, Shinohara H, Yamada N, Akao Y. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J Nutr Biochem. 2013;24(11):1849–58.PubMedCrossRefGoogle Scholar
  81. Labrecque L, Lamy S, Chapus A, Mihoubi S, Durocher Y, Cass B, Bojanowski MW, Gingras D, Béliveau R. Combined inhibition of PDGF and VEGF receptors by ellagic acid, a dietary-derived phenolic compound. Carcinogenesis. 2005;26(4):821–6.PubMedCrossRefGoogle Scholar
  82. Lançon A, Michaille JJ, Latruffe N. Effects of dietary phytophenols on the expression of microRNAs involved in mammalian cell homeostasis. J Sci Food Agric. 2013;93(13):3155–64.PubMedCrossRefGoogle Scholar
  83. Le Marchand L, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN. Intake of flavonoids and lung cancer. J Natl Cancer Inst. 2000;92(2):154–60.PubMedCrossRefGoogle Scholar
  84. Lee LT, Huang YT, Hwang JJ, Lee AY, Ke FC, Huang CJ, Kandaswami C, Lee PP, Lee MT. Transinactivation of the epidermal growth factor receptor tyrosine kinase and focal adhesion kinase phosphorylation by dietary flavonoids: effect on invasive potential of human carcinoma cells. Biochem Pharmacol. 2004;67(11):2103–14.PubMedCrossRefGoogle Scholar
  85. Lee DY, Deng Z, Wang CH, Yang BB. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A. 2007;104(51):20350–5.CrossRefGoogle Scholar
  86. Lee ST, Chu K, Jung KH, Yoon HJ, Jeon D, Kang KM, Park KH, Bae EK, Kim M, Lee SK, Roh JK. MicroRNAs induced during ischemic preconditioning. Stroke. 2010;41(8):1646–51.PubMedCrossRefGoogle Scholar
  87. Lee WJ, Zhu BT. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis. 2006;27(2):269–77.PubMedCrossRefGoogle Scholar
  88. Lei Z, Li BO, Yang Z, Fang H, Zhang GM, Feng ZH, Huang B. Regulation of HIF-1α and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One. 2009;4(10):e7629.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–12.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Li Y, VandenBoom TG, Wang Z, Kong D, Ali S, Philip PA, Sarkar FH. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70:1486–95.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Li F, Liang X, Chen Y, Li S, Liu J. Role of microRNA-93 in regulation of angiogenesis. Tumour Biol. 2014;35(11):10609–13.PubMedCrossRefGoogle Scholar
  92. Li Y, Cai B, Shen L, Dong Y, Lu Q, Sun S, Liu S, Ma S, Ma PX, Chen J. MiRNA-29b suppresses tumor growth through simultaneously inhibiting angiogenesis and tumorigenesis by targeting Akt3. Cancer Lett. 2017a;397:111–9.PubMedCrossRefGoogle Scholar
  93. Li B, Xu WW, Han L, Chan KT, Tsao SW, Lee NP, Law S, Xu LY, Li EM, Chan KW, Qin YR. MicroRNA-377 suppresses initiation and progression of esophageal cancer by inhibiting CD133 and VEGF. Oncogene. 2017b;36(28):3986.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Li L, Tang P, Li S, Qin X, Yang H, Wu C, Liu Y. Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy. Med Oncol. 2017c;34(10):180.PubMedCrossRefGoogle Scholar
  95. Liang Z, Bian X, Shim H. Downregulation of microRNA-206 promotes invasion and angiogenesis of triple negative breast cancer. Biochem Biophys Res Commun. 2016;477(3):461–6.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lin SC, Wang CC, Wu MH, Yang SH, Li YH, Tsai SJ. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J Clin Endocrinol Metabol. 2012;97(8):E1515–23.CrossRefGoogle Scholar
  97. Lin HY, Yang SH, Tang HY, Cheng GY, Davis PJ, Grasso P. Biologically active leptin-related synthetic peptides activate STAT3 via phosphorylation of ERK1/2 and PI-3K. Peptides. 2014;57:95–100.PubMedCrossRefGoogle Scholar
  98. Linder MC. The relationship of copper to DNA damage and damage prevention in humans. Mutat Res-Fund Mol M. 2012;733(1–2):83–91.PubMedCrossRefGoogle Scholar
  99. Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, Kung HF, Lai L, Jiang BH. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One. 2011;6(4):e19139.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol Cancer Res. 2006;4(4):221–33.PubMedCrossRefGoogle Scholar
  101. Ma H, Pan JS, Jin LX, Wu J, Ren YD, Chen P, Xiao C, Han J. MicroRNA-17~ 92 inhibits colorectal cancer progression by targeting angiogenesis. Cancer Lett. 2016;376(2):293–302.PubMedCrossRefGoogle Scholar
  102. Madanecki P, Kapoor N, Bebok Z, Ochocka R, Collawn JF, Bartoszewski R. Regulation of angiogenesis by hypoxia: the role of microRNA. Cell Mol Biol Lett. 2013;18(1):47.PubMedCrossRefGoogle Scholar
  103. Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li LC, Zhao H, Okino ST, Place RF. Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res. 2008;68(8):2736–44.PubMedCrossRefGoogle Scholar
  104. Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V, Saini S, Tanaka Y, Dahiya AV, Khatri G, Dahiya R. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis. 2009;30(4):662–70.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Manson MM. Cancer prevention–the potential for diet to modulate molecular signalling. Trends Mol Med. 2003;9(1):11–8.PubMedCrossRefGoogle Scholar
  106. Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin L, Liu X, Wang N. Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis. 2015;18(3):373–82.PubMedCrossRefGoogle Scholar
  107. Marí-Alexandre J, García-Oms J, Barceló-Molina M, Gilabert-Aguilar J, Estellés A, Braza-Boíls A, Gilabert-Estellés J. MicroRNAs and angiogenesis in endometriosis. Thromb Res. 2015;135:S38–40.PubMedCrossRefGoogle Scholar
  108. Maroof H, Salajegheh A, Smith RA, Lam AK. Role of microRNA-34 family in cancer with particular reference to cancer angiogenesis. Exp Mol Pathol. 2014;97(2):298–304.PubMedCrossRefGoogle Scholar
  109. Mathew LK, Skuli N, Mucaj V, Lee SS, Zinn PO, Sathyan P, Imtiyaz HZ, Zhang Z, Davuluri RV, Rao S, Venneti S. miR-218 opposes a critical RTK-HIF pathway in mesenchymal glioblastoma. Proc Natl Acad Sci. 2014;111(1):291–6.PubMedCrossRefGoogle Scholar
  110. Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One. 2010a;5(7):e11457.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Meeran SM, Ahmed A, Tollefsbol TO. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics. 2010b;1(3):101.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):227–41.PubMedCrossRefGoogle Scholar
  113. Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD, Allgayer H. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep. 2011;31(3):185–97.PubMedCrossRefGoogle Scholar
  114. Myzak MC, Karplus PA, Chung FL, Dashwood RH. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res. 2004;64(16):5767–74.PubMedCrossRefGoogle Scholar
  115. Nakachi K, Suemasu K, Suga K, Takeo T, Imai K, Higashi Y. Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn J Cancer Res. 1998;89(3):254–61.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Nazeem S, Azmi AS, Hanif S, Ahmad A, Mohammad RM, Hadi SM, Kumar KS. Plumbagin induces cell death through a copper-redox cycle mechanism in human cancer cells. Mutagenesis. 2009;24(5):413–8.PubMedCrossRefGoogle Scholar
  117. Neergheen VS, Bahorun T, Taylor EW, Jen LS, Aruoma OI. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology. 2014;278(2):229–41.CrossRefGoogle Scholar
  118. Nihal M, Roelke CT, Wood GS. Anti-melanoma effects of vorinostat in combination with polyphenolic antioxidant (−)-epigallocatechin-3-gallate (EGCG). Pharm Res. 2010;27(6):1103–14.PubMedCrossRefGoogle Scholar
  119. Nikaki A, Piperi C, Papavassiliou AG. Role of microRNAs in gliomagenesis: targeting miRNAs in glioblastoma multiforme therapy. Expert Opin Investig Drugs. 2012;21(10):1475–88.PubMedCrossRefGoogle Scholar
  120. Nwaeburu CC, Bauer N, Zhao Z, Abukiwan A, Gladkich J, Benner A, Herr I. Up-regulation of microRNA Let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget. 2016;7(36):58367.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Ohlsson Teague EM, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update. 2010;16(2):142–65.CrossRefGoogle Scholar
  122. Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N, Javan M. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol. 2017;40(5):457–70.CrossRefGoogle Scholar
  123. Pandey M, Shukla S, Gupta S. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer. 2010;126(11):2520–33.PubMedPubMedCentralGoogle Scholar
  124. Papoutsis AJ, Lamore SD, Wondrak GT, Selmin OI, Romagnolo DF. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr. 2010;140(9):1607–14.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Parasramka MA, Ho E, Williams DE, Dashwood RH. MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog. 2012;51(3):213–30.PubMedCrossRefGoogle Scholar
  126. Park HK, Han DW, Park YH, Park JC. Differential biological responses of green tea polyphenol in normal cells vs. cancer cells. Curr Appl Phys. 2005;5(5):449–52.CrossRefGoogle Scholar
  127. Peng G, Dixon DA, Muga SJ, Smith TJ, Wargovich MJ. Green tea polyphenol (−)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol Carcinog. 2006;45(5):309–19.PubMedCrossRefGoogle Scholar
  128. Petric RC, Braicu C, Raduly L, Zanoaga O, Dragos N, Monroig P, Dumitrascu D, Berindan-Neagoe I. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. Onco Targets Ther. 2015;8:2053.CrossRefGoogle Scholar
  129. Petricci E, Manetti F. Targeting the hedgehog signaling pathway with small molecules from natural sources. Curr Med Chem. 2015;22(35):4058–90.PubMedCrossRefGoogle Scholar
  130. Pollack BP, Sapkota B, Boss JM. Ultraviolet radiation-induced transcription is associated with gene-specific histone acetylation. Photochem Photobiol. 2009;85(3):652–62.PubMedCrossRefGoogle Scholar
  131. Raffoul JJ, Wang Y, Kucuk O, Forman JD, Sarkar FH, Hillman GG. Genistein inhibits radiation-induced activation of NF-κB in prostate cancer cells promoting apoptosis and G 2/M cell cycle arrest. BMC Cancer. 2006;6(1):107.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Ramon LA, Braza-Boïls A, Gilabert-Estellés J, Gilabert J, España F, Chirivella M, Estellés A. microRNAs expression in endometriosis and their relation to angiogenic factors. Hum Reprod. 2011;26(5):1082–90.PubMedCrossRefGoogle Scholar
  133. Ramón LA, Braza-Boïls A, Gilabert J, Chirivella M, Espana F, Estellés A, Gilabert-Estelles J. microRNAs related to angiogenesis are dysregulated in endometrioid endometrial cancer. Hum Reprod. 2012;27(10):3036–45.PubMedCrossRefGoogle Scholar
  134. Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem. 2007;18(7):427–42.PubMedCrossRefGoogle Scholar
  135. Ramos S. Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res. 2008;52(5):507–26.PubMedCrossRefGoogle Scholar
  136. Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M. Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009;104(7):879–86.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Ren J, Singh BN, Huang Q, Li Z, Gao Y, Mishra P, Hwa YL, Li J, Dowdy SC, Jiang SW. DNA hypermethylation as a chemotherapy target. Cell Signal. 2011;23(7):1082–93.PubMedCrossRefGoogle Scholar
  138. Ribas J, Lupold E. The transcriptional regulation of miR-21, its multiple transcripts and their implication in prostate cancer. Cell Cycle. 2010;9(5):923–9.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez ML, Colige A, Rakic JM, Noël A, Martial JA, Struman I. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One. 2011;6(2):e16979.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Saito K, Kondo E, Matsushita M. MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic Acids Res. 2011;39(14):6086–99.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Saj A, Lai EC. Control of microRNA biogenesis and transcription by cell signaling pathways. Curr Opin Genet Dev. 2011;21(4):504–10.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sarkar FH. Nutraceuticals and cancer. Preface. Cancer Metastasis Rev. 2010;29(3):381–2.PubMedCrossRefGoogle Scholar
  143. Sarkar FH, Li Y, Wang Z, Kong D. Cellular signaling perturbation by natural products. Cell Signal. 2009;21(11):1541–7.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sasahira T, Kurihara M, Bhawal UK, Ueda N, Shimomoto T, Yamamoto K, Kirita T, Kuniyasu H. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer. 2012;107(4):700.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Schmidt MF. Drug target miRNAs: chances and challenges. Trends Biotechnol. 2014;32(11):578–85.PubMedCrossRefGoogle Scholar
  146. Seok JK, Lee SH, Kim MJ, Lee YM. MicroRNA-382 induced by HIF-1α is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res. 2014;42(12):8062–72.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sethi S, Kong D, Land S, Dyson G, Sakr WA, Sarkar FH. Comprehensive molecular oncogenomic profiling and miRNA analysis of prostate cancer. Am J Transl Res. 2013;5(2):200.PubMedPubMedCentralGoogle Scholar
  148. Shi L, Zhang S, Wu H, Zhang L, Dai X, Hu J, Xue J, Liu T, Liang Y, Wu G. MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway. PLoS One. 2013;8(10):e78344.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Shu L, Khor TO, Lee JH, Boyanapalli SS, Huang Y, Wu TY, Saw CL, Cheung KL, Kong AN. Epigenetic CpG demethylation of the promoter and reactivation of the expression of Neurog1 by curcumin in prostate LNCaP cells. AAPS J. 2011;13(4):606–14.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Siddiqui IA, Asim M, Hafeez BB, Adhami VM, Tarapore RS, Mukhtar H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J. 2011;25(4):1198–207.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade. Cancer Metastasis Rev. 2014;33(1):41–85.PubMedCrossRefGoogle Scholar
  152. Sinha M, Ghatak S, Roy S, Sen CK. microRNA–200b as a switch for inducible adult angiogenesis. Antioxid Redox Signal. 2015;22(14):1257–72.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Struhl G, Greenwald I. Presenilin is required for activity and nuclear access of notch in drosophila. Nature. 1999;398(6727):522.PubMedCrossRefGoogle Scholar
  154. Subbaramaiah K, Dannenberg AJ. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci. 2003;24(2):96–102.PubMedCrossRefGoogle Scholar
  155. Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther. 2008;7(3):464–73.PubMedCrossRefGoogle Scholar
  156. Sun Q, Cong R, Yan H, Gu H, Zeng Y, Liu N, Chen J, Wang B. Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol Rep. 2009;22(3):563–7.PubMedGoogle Scholar
  157. Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, Hunninghake GM, Vera MP, Blackwell TS, Baron RM, Feinberg MW. MicroRNA-181b regulates NF-κB–mediated vascular inflammation. J Clin Invest. 2012;122(6):1973–90.PubMedPubMedCentralGoogle Scholar
  158. Sundaram P, Hultine S, Smith LM, Dews M, Fox JL, Biyashev D, Schelter JM, Huang Q, Cleary MA, Volpert OV, Thomas-Tikhonenko A. p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res. 2011;71:7490–501. canres-1124PubMedPubMedCentralCrossRefGoogle Scholar
  159. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3(10):768.PubMedCrossRefGoogle Scholar
  160. Szade A, Grochot-Przeczek A, Florczyk U, Jozkowicz A, Dulak J. Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life. 2015;67(3):145–59.PubMedCrossRefGoogle Scholar
  161. Tanimura S, Kadomoto R, Tanaka T, Zhang YJ, Kouno I, Kohno M. Suppression of tumor cell invasiveness by hydrolyzable tannins (plant polyphenols) via the inhibition of matrix metalloproteinase-2/-9 activity. Biochem Biophys Res Commun. 2005;330(4):1306–13.PubMedCrossRefGoogle Scholar
  162. Tili E, Michaille JJ, Alder H, Volinia S, Delmas D, Latruffe N, Croce CM. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol. 2010a;80(12):2057–65.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Tili E, Michaille JJ, Adair B, Alder H, Limagne E, Taccioli C, Ferracin M, Delmas D, Latruffe N, Croce CM. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis. 2010b;31(9):1561–6.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Tsang WP, Kwok TT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem. 2010;21(2):140–6.PubMedCrossRefGoogle Scholar
  165. Tu Y, Liu L, Zhao D, Liu Y, Ma X, Fan Y, Wan L, Huang T, Cheng Z, Shen B. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2. Sci Rep. 2015;5:13827.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Uddin Q, Malik A, Azam S, Hadi N, Azmi AS, Parveen N, et al. The biflavonoid, amentoflavone degrades DNA in the presence of copper ions. Toxicol In Vitro. 2004;18(4):435–40.PubMedCrossRefGoogle Scholar
  167. Ueda R, Kohanbash G, Sasaki K, Fujita M, Zhu X, Kastenhuber ER, McDonald HA, Potter DM, Hamilton RL, Lotze MT, Khan SA. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci. 2009;106(26):10746–51.PubMedCrossRefGoogle Scholar
  168. Ullah MF, Khan HY, Zubair H, Shamim U, Hadi SM. The antioxidant ascorbic acid mobilizes nuclear copper leading to a prooxidant breakage of cellular DNA: implications for chemotherapeutic action against cancer. Cancer Chemother Pharmacol. 2011;67(1):103–10.PubMedCrossRefGoogle Scholar
  169. Umeda D, Tachibana H, Yamada K. Epigallocatechin-3O-gallate disrupts stress fibers and the contractile ring by reducing myosin regulatory light chain phosphorylation mediated through the target molecule 67 k Da laminin receptor. Biochem Biophys Res Comm. 2005;333:628–35.PubMedCrossRefGoogle Scholar
  170. Urbich C, Kaluza D, Frömel T, Knau A, Bennewitz K, Boon RA, Bonauer A, Doebele C, Boeckel JN, Hergenreider E, Zeiher AM. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 2012;119(6):1607–16.PubMedCrossRefGoogle Scholar
  171. Vijayababu MR, Arunkumar A, Kanagaraj P, Venkataraman P, Krishnamoorthy G, Arunakaran J. Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Mol Cell Biochem. 2006;287(1–2):109–16.PubMedCrossRefGoogle Scholar
  172. Villarino AV, Kanno Y, Ferdinand JR, O’Shea JJ. Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol. 2015;194(1):21–7.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wagner MA, Siddiqui MA. The JAK-STAT pathway in hypertrophic stress signaling and genomic stress response. Jak-Stat. 2012;1(2):131–41.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Wang LX, Wang YP, Chen Z, Liu XY, Liu XH, Liu L, Chen WJ, Liu LB. Exendin-4 protects murine pancreatic β-cells from dexamethasone-induced apoptosis through PKA and PI-3K signaling. Diabetes Res Clin Pract. 2010;90(3):297–304.PubMedCrossRefGoogle Scholar
  176. Wang W, Ren F, Wu Q, Jiang D, Li H, Shi H. MicroRNA-497 suppresses angiogenesis by targeting vascular endothelial growth factor A through the PI3K/AKT and MAPK/ERK pathways in ovarian cancer. Oncol Rep. 2014;32(5):2127–33.PubMedCrossRefGoogle Scholar
  177. Wang W, Zhang E, Lin C. MicroRNAs in tumor angiogenesis. Life Sci. 2015a;136:28–35.PubMedCrossRefGoogle Scholar
  178. Wang G, Dai F, Yu K, Jia Z, Zhang A, Huang Q, Kang C, Jiang H, Pu P. Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways. Int J Oncol. 2015b;46(4):1739–47.PubMedCrossRefGoogle Scholar
  179. Wen XY, Wu SY, Li ZQ, Liu ZQ, Zhang JJ, Wang GF, Jiang ZH, Wu SG. Ellagitannin (BJA3121), an anti-proliferative natural polyphenol compound, can regulate the expression of MiRNAs in HepG2 cancer cells. Phytother Res: Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv. 2009;23(6):778–84.CrossRefGoogle Scholar
  180. Wenzel U, Kuntz S, Brendel MD, Daniel H. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Res. 2000;60(14):3823–31.PubMedGoogle Scholar
  181. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer: Interdiscip Int J Am Cancer Soc. 1997;80(S8):1529–37.CrossRefGoogle Scholar
  182. Wu M, Huang C, Huang X, Liang R, Feng Y, Luo X. MicroRNA-144-3p suppresses tumor growth and angiogenesis by targeting SGK3 in hepatocellular carcinoma. Oncol Rep. 2017;38(4):2173–81.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wurdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, Weissleder R, Breakefield XO, Krichevsky AM. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell. 2008;14(5):382–93.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Xu Q, Liu LZ, Qian X, Chen Q, Jiang Y, Li D, Lai L, Jiang BH. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res. 2011;40(2):761–74.PubMedPubMedCentralCrossRefGoogle Scholar
  185. Yamakawa S, Asai T, Uchida T, Matsukawa M, Akizawa T, Oku N. (−)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Lett. 2004;210(1):47–55.PubMedCrossRefGoogle Scholar
  186. Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D, Lowenstein CJ. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci. 2010;107(14):6334–9.PubMedCrossRefGoogle Scholar
  187. Yamamoto S, Schulze KL, Bellen HJ. Introduction to Notch signaling. In: Notch signaling. New York: Humana Press; 2014. p. 1–14.Google Scholar
  188. Yang J, Cao Y, Sun J, Zhang Y. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol. 2010;27(4):1114–8.PubMedCrossRefGoogle Scholar
  189. Yang Y, Zhang J, Xia T, Li G, Tian T, Wang M, Wang R, Zhao L, Yang Y, Lan K, Zhou W. MicroRNA-210 promotes cancer angiogenesis by targeting fibroblast growth factor receptor-like 1 in hepatocellular carcinoma. Oncol Rep. 2016;36(5):2553–62.PubMedCrossRefGoogle Scholar
  190. Ye F, Wu J, Dunn T, Yi J, Tong X, Zhang D. Inhibition of cyclooxygenase-2 activity in head and neck cancer cells by genistein. Cancer Lett. 2004;211(1):39–46.PubMedCrossRefGoogle Scholar
  191. Yin KJ, Hamblin M, Eugene Chen Y. Angiogenesis-regulating microRNAs and ischemic stroke. Curr Vasc Pharmacol. 2015;13(3):352–65.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X, Yin H. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun. 2010a;399(1):1–6.PubMedCrossRefGoogle Scholar
  193. Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J, Zhao F, Yin H. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep. 2010b;24(5):1217–23.PubMedGoogle Scholar
  194. Zhang X, Ng WL, Wang P, Tian L, Werner E, Wang H, Doetsch P, Wang Y. MicroRNA-21 modulates the levels of reactive oxygen species by targeting SOD3 and TNFα. Cancer Res. 2012;72:4707–13.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Zhang L, Lv Z, Xu J, Chen C, Ge Q, Li P, Wei D, Wu Z, Sun X. Micro RNA-134 inhibits osteosarcoma angiogenesis and proliferation by targeting the VEGFA/VEGFR 1 pathway. FEBS J. 2018;285(7):1359–71.PubMedCrossRefGoogle Scholar
  196. Zhen MC, Huang XH, Wang Q, Sun K, Liu YJ, Li W, Zhang LJ, Cao LQ, Chen XL. Green tea polyphenol epigallocatechin-3-gallate suppresses rat hepatic stellate cell invasion by inhibition of MMP-2 expression and its activation. Acta Pharmacol Sin. 2006;27(12):1600.PubMedCrossRefGoogle Scholar
  197. Zheng Y, Li S, Ding Y, Wang Q, Luo H, Shi Q, Hao Z, Xiao G, Tong S. The role of miR-18a in gastric cancer angiogenesis. Hepato-Gastroenterology. 2013;60(127):1809–13.PubMedGoogle Scholar
  198. Zhou B, Ma R, Si W, Li S, Xu Y, Tu X, Wang Q. MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett. 2013;333(2):159–69.PubMedCrossRefGoogle Scholar
  199. Zhou Y, Li S, Li J, Wang D, Li Q. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer. Cell Physiol Biochem. 2017;42(4):1431–46.PubMedCrossRefGoogle Scholar
  200. Zhu K, Pan Q, Zhang X, Kong LQ, Fan J, Dai Z, Wang L, Yang XR, Hu J, Wan JL, Zhao YM. MiR-146a enhances angiogenic activity of endothelial cells in hepatocellular carcinoma by promoting PDGFRA expression. Carcinogenesis. 2013;34(9):2071–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Neha Kashyap
    • 1
  • Prem P. Kushwaha
    • 1
  • Atul K. Singh
    • 1
  • Santosh Maurya
    • 1
  • Ashish K. Sahoo
    • 1
  • Shashank Kumar
    • 1
  1. 1.Department of Biochemistry and Microbial SciencesCentral University of PunjabBathindaIndia

Personalised recommendations