In-silico Targets in Neurodegenerative Disorders

  • Aniko Nagy
  • Timea Polgar


Parkinson’s disease (PD), Alzheimer’s disease (AD) are very frequent human neurodegenerative diseases. Their pharmacological treatment has not been solved; therefore, there is a need to investigate and discover new drug candidates and new targets. Modification of endogenous chemicals can offer new candidates with improved therapeutic outcomes. Computational chemistry can support the discovery of such candidates and can further improve the execution speed, decrease cost and the usage of test animals. These methods for example can include cheminformatics, docking and molecular dynamics. Computational biology offers a way for discovery of novel pharmacological targets and can pinpoint the genetic background of such diseases. In this chapter, we would like to discuss the possible targets of the two most common neurological diseases, AD and PD. The known and the possible new targets are shown and their therapeutic importance is also detailed. In addition, the methods of their discovery is highlighted demonstrating the importance of the in silico discovery of new targets in neurological diseases.


Alzheimer’s disease Parkinson’s disease In silico targets Drug development Computational sciences 


  1. Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer’s disease. Biomed Pharmacother. 2018;106:553–65.CrossRefGoogle Scholar
  2. Almasi F, Mohammadipanah F, Adhami HR, Hamedi J. Introduction of marine-derived Streptomyces sp. UTMC 1334 as a source of pyrrole derivatives with anti-acetylcholinesterase activity. J Appl Microbiol. 2018;5:1370–82.CrossRefGoogle Scholar
  3. Alzheimer’s association. FDA approved treatments for Alzheimer’s 800.272.3900 ®. 2017.
  4. Azarakhsh Y, Mohammadipanah F, Nassiri SM, Siavashi V, Hamedi J. Isolation and screening of proangiogenic and antiangiogenic metabolites producing rare actinobacteria from soil. J Appl Microbiol. 2017;122:1595–602.CrossRefGoogle Scholar
  5. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet (London, UK). 2006;368:387–403.CrossRefGoogle Scholar
  6. Cell Signaling Technology, Inc. ( Scholar
  7. Chandra KA, Bharadwaj S, Kumar S, Wei DQ. Nano-particle mediated inhibition of Parkinson’s disease using computational biology approach. PMC Sci Rep. 2018;8:9169.CrossRefGoogle Scholar
  8. Combarros O, Rodríguez-Rodríguez E, Mateo I, Vázquez-Higuera JL, Infante J, Berciano J, Sánchez-Juan P. APOE dependent-association of PPAR- genetic variants with Alzheimer’s disease risk. Neurobiol Aging. 2011;(3):547.e1–6.CrossRefGoogle Scholar
  9. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311:1670–83.CrossRefGoogle Scholar
  10. Dauer W, Przedborski S. Parkinson’s disease, mechanisms and models. Neuron. 2003;39:889–909.CrossRefGoogle Scholar
  11. Deora GS, Kantham S, Chan S, Dighe SN, Veliyath SK, McColl G, Parat MO, McGeary RP, Ross BP. Multifunctional analogs of kynurenic acid for the treatment of Alzheimer’s disease: synthesis, pharmacology and molecular modeling studies. ACS Chem Neurosci. 2017;8(12):2667–75.CrossRefGoogle Scholar
  12. Dias Viegas FP, de Freitas Silva M, Divino da Rocha M, Castelli MR, Riquiel MM, Machado RP, et al. Design, synthesis and pharmacological evaluation of N-benzyl-piperidinyl-aryl-acylhydrazonederivatives as donepezil hybrids: discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur J Med Chem. 2018;147:48–65.CrossRefGoogle Scholar
  13. Epperly T, Dunay MA, Boice JL. Alzheimer disease: pharmacologic and nonpharmacologic therapies for cognitive and functional symptoms. Am Fam Physician. 2017;95:771–8.PubMedGoogle Scholar
  14. Fernández-Suárez D, Celorrio M, Riezu-Boj JI, Ugarte A, Pacheco R, González H, Oyarzabal J, Hillard CJ, Franco R, Aymerich MS. The monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiol Aging. 2014;35:2603–16.CrossRefGoogle Scholar
  15. Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P, Bi-Park 1 Investigators. Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: a randomised, doubleblind, controlled trial. Lancet Neurol. 2016;15:154–65.CrossRefGoogle Scholar
  16. Flynn JM, Melov S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med. 2013;62:4–12.CrossRefGoogle Scholar
  17. Gao L, Fang JS, Bai XY, Zhou D, Wang YT, Liu AL, Du GH. In silico target fishing for the potential targets and molecular mechanisms of baicalein as an antiparkinsonian agent: discovery of the protective effects on NMDA receptor-mediated neurotoxicity. Chem Biol Drug Des. 2013;81:675–87.CrossRefGoogle Scholar
  18. Haghighijoo Z, Firuzi O, Hemmateenejad B, Emami S, Edraki N, Miri R. Synthesis and biological evaluation of quinazolinone-based hydrazones with potential use in Alzheimer’s disease. Bioorg Chem. 2017;74:126–33.CrossRefGoogle Scholar
  19. Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015;18:794–9.CrossRefGoogle Scholar
  20. Houghton D, Hurtig H, Metz S, Giroux M, Petzinger G, Fisher B, Hawthorne L, Jakowec M. Parkinson’s disease medications. National Parkinson Foundation. 2018.
  21. Imada C. Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie Van Leeuwenhoek. 2005;87:59–63.CrossRefGoogle Scholar
  22. Jalili-Baleh L, Forootanfar H, Küçükkılınç TT, Nadri H, Abdolahi Z, Ameri A, Jafari M, Ayazgok B, Baeeri M, Rahimifard M, Abbas Bukhari SN, Abdollahi M, Ganjali MR, Emami S, Khoobi M, Foroumadi A. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. Eur J Med Chem. 2018;152:600–14.CrossRefGoogle Scholar
  23. Kalash L, Val C, Azuaje J, Loza MI, Svensson F, Zoufir A, Mervin L, Ladds G, Brea J, Glen R, Sotelo E, Bender A. Computer-aided design of multi-target ligands at A1R, A2AR and PDE10A, key proteins in neurodegenerative diseases. J Cheminform. 2017;30:67.CrossRefGoogle Scholar
  24. Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord. 2013;28:131–44.CrossRefGoogle Scholar
  25. Katzman R. The prevalence and malignancy of Alzheimer disease: a major killer. Arch Neurol. 1976;33:217–8.CrossRefGoogle Scholar
  26. Koldamova RP, Lefterov IM, Staufenbiel M, Wolfe D, Huang S, Glorioso JC, et al. The liver X receptor ligand T0901317 decreases amyloid β production in vitro and in a mouse model of Alzheimer’s disease. J Biol Chem. 2005;280:4079–88.CrossRefGoogle Scholar
  27. Kumar A, Nisha CM, Silakari C, Sharma I, Anusha K, Gupta N, Nair P, Tripathi T, Kumar A. Current and novel therapeutic molecules and targets in Alzheimer’s disease. J Formos Med Assoc. 2016;115:3–10.CrossRefGoogle Scholar
  28. Lin MK, Farrer MJ. Genetics and genomics of Parkinson’s disease. Genome Med. 2014;6:48.CrossRefGoogle Scholar
  29. Mandrekar-Colucci S, Landreth GE. Nuclear receptors as therapeutic targets for Alzheimer’s disease. Expert Opin Ther Targets. 2011;15:1085–97.CrossRefGoogle Scholar
  30. Masoumi J, Abbasloui M, Parvan R, Mohammadnejad D, Pavon-Djavid G, Barzegari A, Abdolalizadeh J. Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides. 2018;70:76–86.CrossRefGoogle Scholar
  31. Mohammadipanah F, Matasyoh J, Hamedi J, Klenk HP, Laatsch H. Persipeptides A and B, two cyclic peptides from Streptomyces sp. UTMC 1154. Bioorg Med Chem. 2012;20:335–9.CrossRefGoogle Scholar
  32. Nastase AF, Boyd DB. Simple structure-based approach for predicting the activity of inhibitors of beta-secretase (BACE1) associated with Alzheimer’s disease. J Chem Inf Model. 2012;52:3302–7.CrossRefGoogle Scholar
  33. Pandey S, Singh B, Yadav SK, Mahdi AA. Novel biomarker for neurodegenerative diseases- motor neuron disease (MND), cerebellar ataxia (CA) and Parkinson’s disease (PD). Clin Chim Acta. 2018;485:258–61.CrossRefGoogle Scholar
  34. Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatr Clin Neurosci. 2002;14:223–36.CrossRefGoogle Scholar
  35. PD Med Collaborative Group, Gray R, Ives N, Rick C, Patel S, Gray A, Jenkinson C, McIntosh E, Wheatley K, Williams A, Clarke CE. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014;384:1196–205.CrossRefGoogle Scholar
  36. Poewe W. Non-motor symptoms in Parkinson’s disease. Eur J Neurol Suppl. 2008;1:14–20.CrossRefGoogle Scholar
  37. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE. Parkinson disease. Nat Rev Dis Prim. 2017;3:17013.CrossRefGoogle Scholar
  38. Qian S, He L, Wang Q, Wong YC, Mak M, Ho CY, Han Y, Zuo Z. Intranasal delivery of a novel acetylcholinesterase inhibitor HLS-3 for treatment of Alzheimer’s disease. Life Sci. 2018;207:428–35.CrossRefGoogle Scholar
  39. Sang Z, Wang K, Wang H, Wang H, Ma Q, Han X, Ye M, Yu L, Liu W. Design, synthesis and biological evaluation of 2-acetyl-5-O-(aminoalkyl) phenol derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett. 2017;27:5046–52.CrossRefGoogle Scholar
  40. Schapira AH. Monoamine oxidase B inhibitors for the treatment of Parkinson’s disease: a review of symptomatic and potential disease-modifying effects. CNS Drugs. 2011;25:1061–71.CrossRefGoogle Scholar
  41. Seppi K, Weintraub D, Coelho M, Perez-Lloret S, Fox SH, Katzenschlager R, Hametner EM, Poewe W, Rascol O, Goetz CG, Sampaio C. The Movement Disorder Society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord. 2011;26:S42–80.CrossRefGoogle Scholar
  42. Silva GS, Figueiró M, Tormena CF, Coelho F, Almeida WP. Effects of novel acylhydrazones derived from 4-quinolone on the acetylcholinesterase activity and Aβ 42 peptide fibrils formation. J Enzyme Inhib Med Chem. 2016;6366:1–7.Google Scholar
  43. Sun Y, Zhu R, Ye H, Tang K, Zhao J, Chen Y, Liu Q, Cao Z. Towards a bioinformatics analysis of anti-Alzheimer’s herbal medicines from a target network perspective. Brief Bioinform. 2013;14:327–43.CrossRefGoogle Scholar
  44. Tarozzi A, Bartolini M, Piazzi L, Valgimigli L, Amorati R, Bolondi C, et al. From the dual function lead AP2238 to AP2469, a multi-target-directed ligand for the treatment of Alzheimer’s disease. Pharmacol Res Perspect. 2014;2:e00023.CrossRefGoogle Scholar
  45. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251:471–6.CrossRefGoogle Scholar
  46. Thai NQ, Nguyen HL, Linh HQ, Li MS. Protocol for fast screening of multi-target drug candidates: application to Alzheimer’s disease. J Mol Graph Model. 2017;77:121–9.CrossRefGoogle Scholar
  47. Turnaturi R, Oliveri V, Vecchio G. Biotin-8-hydroxyquinoline conjugates and their metal complexes: exploring the chemical properties and the antioxidant activity. Polyhedron. 2016;110:254–60.CrossRefGoogle Scholar
  48. Wenzel TJ, Klegeris A. Novel multi-target directed ligand based strategies for reducing neuroinflammation in Alzheimer’s disease. Life Sci. 2018;207:314–22.CrossRefGoogle Scholar
  49. Wu L, Chen L, Li L. Apelin/APJ system: a novel promising therapy target for pathological angiogenesis. Clin Chim Acta. 2017;466:78–84.CrossRefGoogle Scholar
  50. Yang GX, Ge SL, Wu Y, Huang J, Li SL, Wang R, Ma L. Design, synthesis and biological evaluation of 3-piperazinecarboxylate sarsasapogenin derivatives as potential multifunctional anti-Alzheimer agents. Eur J Med Chem. 2018;156:206–15.CrossRefGoogle Scholar
  51. Zanforlin E, Zagotto G, Ribaudo G. The medicinal chemistry of natural and semisynthetic compounds against Parkinson’s and Huntington’s diseases. ACS Chem Neurosci. 2017;11:2356–68.CrossRefGoogle Scholar
  52. Zimmerman G, Lehar J, Keith C. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today. 2007;12:34–42.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Aniko Nagy
    • 1
  • Timea Polgar
    • 1
    • 2
  1. 1.NaturAI IncGrandvilleUSA
  2. 2.Globe Program AssociationFort CollinsUSA

Personalised recommendations