Advertisement

Phytotherapy in Inflammatory Lung Diseases: An Emerging Therapeutic Interventional Approach

  • Ridhima Wadhwa
  • Shakti Dhar Shukla
  • Dinesh Kumar Chellappan
  • Gaurav Gupta
  • Trudi Collet
  • Nicole Hansbro
  • Brian Oliver
  • Kylie Williams
  • Philip Michael Hansbro
  • Kamal Dua
  • Pawan K. MauryaEmail author
Chapter

Abstract

Chronic obstructive pulmonary disease (COPD) and asthma are the most common inflammatory respiratory diseases related to an increase in mortality and morbidity. Generally, bronchodilators, ß- agonists, anticholinergics and theophylline used for treatment in these conditions and administered by inhalation for delivery, have localized and systematic effects. The adverse effects are due to pharmacodynamic and pharmacokinetic changes and especially drug-drug and drug-disease interactions. However, phytotherapy is classical and widespread throughout the world for the treatment of ailments. This chapter highlights cellular and molecular mediators involved in COPD and asthma, the shortcomings of current therapies and the emerging need of phytomedicines. Phytomedicine supports respiratory physiology, bronchial action and possesses antioxidants to maintain homeostasis.

Keywords

Phytomedicine Inflammatory diseases Chronic obstructive pulmonary disease Asthma 

References

  1. Agustí A, Celli B. Natural history of COPD: gaps and opportunities. ERJ Open Res. 2017;3(4).  https://doi.org/10.1183/23120541.00117-2017.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Asher I, Pearce N. Global burden of asthma among children. Int J Tuberc Lung Dis. 2014;18(11):1269–78.PubMedCrossRefGoogle Scholar
  3. Atkinson JJ, Lutey BA, Suzuki Y, Toennies HM, Kelley DG, Kobayashi DK, Ijem WG, Deslee G, Moore CH, Jacobs ME, Conradi SH, Gierada DS, Pierce RA, Betsuyaku T, Senior RM. The role of matrix metalloproteinase-9 in cigarette smoke-induced emphysema. Am J Respir Crit Care Med. 2011;183(7):876–84.  https://doi.org/10.1164/rccm.201005-0718OC.PubMedCrossRefGoogle Scholar
  4. Barisione G, Baroffio M, Crimi E, Brusasco V. Beta-adrenergic agonists. Pharmaceuticals. 2010;3(4):1016–44.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci. 1998;94(6):557–72.PubMedCrossRefGoogle Scholar
  6. Barnes PJ. New concepts in chronic obstructive pulmonary disease. Annu Rev Med. 2003;54(1):113–29.PubMedCrossRefGoogle Scholar
  7. Barnes PJ. Chronic obstructive pulmonary disease: a growing but neglected global epidemic. PLoS Med. 2007;4(5):e112.  https://doi.org/10.1371/journal.pmed.0040112.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8:183.  https://doi.org/10.1038/nri2254.PubMedCrossRefGoogle Scholar
  9. Barnes PJ. Similarities and differences in inflammatory mechanisms of asthma and COPD. Breathe. 2011;7(3):229–38.  https://doi.org/10.1183/20734735.026410.CrossRefGoogle Scholar
  10. Barnes PJ, Shapiro S, Pauwels R. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 2003;22(4):672–88.PubMedCrossRefGoogle Scholar
  11. Barnes PJ, Drazen JM, Rennard SI, Thomson NC. Asthma and COPD: basic mechanisms and clinical management. Amsterdam: Elsevier; 2009.Google Scholar
  12. Barr RG, Rowe BH, Camargo CA. Methylxanthines for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2003; 2: CD002168.  https://doi.org/10.1002/14651858.CD002168.
  13. Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald JM, Gibson P, Ohta K, O’Byrne P, Pedersen SE, Pizzichini E, Sullivan SD, Wenzel SE, Zar HJ. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31(1):143–78.  https://doi.org/10.1183/09031936.00138707.PubMedCrossRefGoogle Scholar
  14. Bender BG. Overcoming barriers to nonadherence in asthma treatment. J Allergy Clin Immunol. 2002;109(6):S554–9.PubMedCrossRefGoogle Scholar
  15. Boukhenouna S, Wilson MA, Bahmed K, Kosmider B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxidative Med Cell Longev. 2018;2018:5730395.  https://doi.org/10.1155/2018/5730395.CrossRefGoogle Scholar
  16. Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med. 2002;346(22):1699–705.  https://doi.org/10.1056/NEJMoa012705.PubMedCrossRefGoogle Scholar
  17. Brooks CR, van Dalen CJ, Hermans IF, Gibson PG, Simpson JL, Douwes J. Sputum basophils are increased in eosinophilic asthma compared with non-eosinophilic asthma phenotypes. Allergy. 2017;72(10):1583–6.  https://doi.org/10.1111/all.13185.PubMedCrossRefGoogle Scholar
  18. Comer DM, Kidney JC, Ennis M, Elborn JS. Airway epithelial cell apoptosis and inflammation in COPD, smokers and nonsmokers. Eur Respir J. 2013;41(5):1058–67.  https://doi.org/10.1183/09031936.00063112.PubMedCrossRefGoogle Scholar
  19. Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med. 2009;360(23):2445–54.  https://doi.org/10.1056/NEJMra0804752.PubMedCrossRefGoogle Scholar
  20. Cruz AA. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. Geneva: World Health Organization; 2007.Google Scholar
  21. Cukic V, Lovre V, Dragisic D, Ustamujic A. Asthma and chronic obstructive pulmonary disease (COPD) – differences and similarities. Mater Sociomed. 2012;24(2):100–5.  https://doi.org/10.5455/msm.2012.24.100-105.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Davies DE. The role of the epithelium in airway remodeling in asthma. Proc Am Thorac Soc. 2009;6(8):678–82.PubMedPubMedCentralCrossRefGoogle Scholar
  23. De Vries F, Bracke M, Leufkens HG, Lammers JWJ, Cooper C, Van Staa TP. Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthritis Rheum. 2007;56(1):208–14.PubMedCrossRefGoogle Scholar
  24. Divekar R, Kita H. Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and allergic inflammation. Curr Opin Allergy Clin Immunol. 2015;15(1):98–103.  https://doi.org/10.1097/aci.0000000000000133.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Eapen MS, Hansbro PM, McAlinden K, Kim RY, Ward C, Hackett TL, Walters EH, Sohal SS. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Sci Rep. 2017;7(1):13392.  https://doi.org/10.1038/s41598-017-13888-x.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fischer BM, Voynow JA. Neutrophil elastase induces MUC 5AC gene expression in airway epithelium via a pathway involving reactive oxygen species. Am J Respir Cell Mol Biol. 2002;26(4):447–52.PubMedCrossRefGoogle Scholar
  27. Foster PS, Rosenberg HF, Asquith KL, Kumar RK. Targeting eosinophils in asthma. Curr Mol Med. 2008;8(6):585–90.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Freeman L, Lawlis G. Exercise as an alternative therapy. Mosby’s complementary and alternative medicine: a research-based approach. 2nd ed. St Louis: Mosby; 2004. p. 481–518.Google Scholar
  29. GOLD. Global initiative for chronic obstructive lung disease-global strategy for the diagnosis, management, and prevention of COPD. 2019.Google Scholar
  30. Gross NJ. Anticholinergic agents in asthma and COPD. Eur J Pharmacol. 2006;533(1–3):36–9.PubMedCrossRefGoogle Scholar
  31. Gupta P, O’Mahony MS. Potential adverse effects of bronchodilators in the treatment of airways obstruction in older people. Drugs Aging. 2008;25(5):415–43.PubMedCrossRefGoogle Scholar
  32. Hamilton WL, Doyle C, Halliwell-Ewen M, Lambert G. Public health interventions to protect against falsified medicines: a systematic review of international, national and local policies. Health Policy Plan. 2016;31(10):1448–66.PubMedCrossRefGoogle Scholar
  33. Ihn H. Pathogenesis of fibrosis: role of TGF-β and CTGF. Curr Opin Rheumatol. 2002;14(6):681–5.PubMedCrossRefGoogle Scholar
  34. Ismail I, Chan S. Knowledge and practice of complementary medicine amongst public primary care clinic doctors in Kinta district, Perak. Med J Malaysia. 2004;59(1):4–10.PubMedGoogle Scholar
  35. Ito K, Watanabe S, Kharitonov S, Hanazawa T, Adcock I, Barnes P. Histone deacetylase activity and gene expression in COPD patients. Eur Respir J. 2001;18:316S.CrossRefGoogle Scholar
  36. Kaplan AG, Balter MS, Bell AD, Kim H, McIvor RA. Diagnosis of asthma in adults. CMAJ Can Med Ass J. 2009;181(10):E210–20.  https://doi.org/10.1503/cmaj.080006.CrossRefGoogle Scholar
  37. Kay AB, Menzies-Gow A. Eosinophils and interleukin-5: the debate continues. Am J Respir Crit Care Med. 2003;167:1586–7.PubMedCrossRefGoogle Scholar
  38. Kayne SB. Complementary therapies for pharmacists. London: Pharmaceutical Press; 2002.Google Scholar
  39. Kendall DE. National Center for Complementary and Alternative Medicine (NCCAM) introduction to acupuncture with disclaimer. Schweiz Z Ganzheitsmedizin Swiss J Integr Med. 2013;25(4):241–6.Google Scholar
  40. King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med. 2015;4(1):68.  https://doi.org/10.1186/s40169-015-0068-z.PubMedCrossRefGoogle Scholar
  41. Koo HK, Vasilescu DM, Booth S, Hsieh A, Katsamenis OL, Fishbane N, Elliott WM, Kirby M, Lackie P, Sinclair I, Warner JA, Cooper JD, Coxson HO, Pare PD, Hogg JC, Hackett TL. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. Lancet Respir Med. 2018;6(8):591–602.  https://doi.org/10.1016/s2213-2600(18)30196-6.PubMedCrossRefGoogle Scholar
  42. Korosec P, Gibbs BF, Rijavec M, Custovic A, Turner PJ. Important and specific role for basophils in acute allergic reactions. Clin Exp Allergy. 2018;48(5):502–12.  https://doi.org/10.1111/cea.13117.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Laidlaw TM, Boyce JA. Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin Exp Allergy. 2012;42(9):1313–20.  https://doi.org/10.1111/j.1365-2222.2012.03982.x.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Larsson K. Aspects on pathophysiological mechanisms in COPD. J Intern Med. 2007;262(3):311–40.PubMedCrossRefGoogle Scholar
  45. Lee I-T, Yang C-M. Inflammatory signalings involved in airway and pulmonary diseases. Mediat Inflamm. 2013;2013:12.  https://doi.org/10.1155/2013/791231.CrossRefGoogle Scholar
  46. Lee H, Kim Y, Kim HJ, Park S, Jang YP, Jung S, Jung H, Bae H. Herbal formula, PM014, attenuates lung inflammation in a murine model of chronic obstructive pulmonary disease. Evid Based Complement Alternat Med: eCAM. 2012;2012:769830.  https://doi.org/10.1155/2012/769830.PubMedCrossRefGoogle Scholar
  47. Lee JW, Shin NR, Park JW, Park SY, Kwon OK, Lee HS, Hee Kim J, Lee HJ, Lee J, Zhang ZY, Oh SR, Ahn KS. Callicarpa japonica Thunb. attenuates cigarette smoke-induced neutrophil inflammation and mucus secretion. J Ethnopharmacol. 2015;175:1–8.  https://doi.org/10.1016/j.jep.2015.08.056.PubMedCrossRefGoogle Scholar
  48. Liu T, Wu J, Zhao J, Wang J, Zhang Y, Liu L, Cao L, Liu Y, Dong L. Type 2 innate lymphoid cells: a novel biomarker of eosinophilic airway inflammation in patients with mild to moderate asthma. Respir Med. 2015;109(11):1391–6.  https://doi.org/10.1016/j.rmed.2015.09.016.PubMedCrossRefGoogle Scholar
  49. Lomas DA. Does protease-antiprotease imbalance explain chronic obstructive pulmonary disease? Ann Am Thorac Soc. 2016;13(Suppl 2):S130–7.  https://doi.org/10.1513/AnnalsATS.201504-196KV.PubMedCrossRefGoogle Scholar
  50. Masala S, Magrini A, Taglieri A, Nano G, Chiaravalloti A, Calabria E, Di Trapano R, Pietroiusti A, Simonetti G. Chronic obstructive pulmonary disease (COPD) patients with osteoporotic vertebral compression fractures (OVCFs): improvement of pulmonary function after percutaneous vertebroplasty (VTP). Eur Radiol. 2014;24(7):1577–85.PubMedCrossRefGoogle Scholar
  51. May SM, Li JTC. Burden of chronic obstructive pulmonary disease: healthcare costs and beyond. Allergy Asthma Proc. 2015;36(1):4–10.  https://doi.org/10.2500/aap.2015.36.3812.PubMedPubMedCentralCrossRefGoogle Scholar
  52. McLean AJ, Le Couteur DG. Aging biology and geriatric clinical pharmacology. Pharmacol Rev. 2004;56(2):163–84.PubMedCrossRefGoogle Scholar
  53. Merican I. Traditional/complementary medicine: the way ahead. Med J Malays. 2002;57(3):261–5.Google Scholar
  54. Mitchell PD, O’Byrne PM. Epithelial-derived cytokines in asthma. Chest. 2017;151(6):1338–44.  https://doi.org/10.1016/j.chest.2016.10.042.PubMedCrossRefGoogle Scholar
  55. Montuschi P. Pharmacological treatment of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2006;1(4):409–23.PubMedPubMedCentralGoogle Scholar
  56. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–73.  https://doi.org/10.1146/annurev.iy.07.040189.001045.PubMedCrossRefGoogle Scholar
  57. Nahin RL, Dahlhamer JM, Stussman BJ. Health need and the use of alternative medicine among adults who do not use conventional medicine. BMC Health Serv Res. 2010;10(1):220.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. Anticancer efficacy of polyphenols and their combinations. Nutrients. 2016;8(9):552.  https://doi.org/10.3390/nu8090552.PubMedCentralCrossRefGoogle Scholar
  59. Nowak D, Kasielski M, Antczak A, Pietras T, Bialasiewicz P. Increased content of thiobarbituric acid-reactive substances and hydrogen peroxide in the expired breath condensate of patients with stable chronic obstructive pulmonary disease: no significant effect of cigarette smoking. Respir Med. 1999;93(6):389–96.PubMedCrossRefGoogle Scholar
  60. O’Donnell R, Breen D, Wilson S, Djukanovic R. Inflammatory cells in the airways in COPD. Thorax. 2006;61(5):448–54.  https://doi.org/10.1136/thx.2004.024463.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ohno I, Nitta Y, Yamauchi K, Hoshi H, Honma M, Woolley K, O’Byrne P, Dolovich J, Jordana M, Tamura G. Eosinophils as a potential source of platelet-derived growth factor B-chain (PDGF-B) in nasal polyposis and bronchial asthma. Am J Respir Cell Mol Biol. 1995;13(6):639–47.PubMedCrossRefGoogle Scholar
  62. Pabreja K, Gibson P, Lochrin AJ, Wood L, Baines KJ, Simpson JL. Sputum colour can identify patients with neutrophilic inflammation in asthma. BMJ Open Respir Res. 2017;4(1):e000236.  https://doi.org/10.1136/bmjresp-2017-000236.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.  https://doi.org/10.1017/jns.2016.41.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Pandey KC, De S, Mishra PK. Role of proteases in chronic obstructive pulmonary disease. Front Pharmacol. 2017;8:512.  https://doi.org/10.3389/fphar.2017.00512.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Patel SS, Savjani JK. Systematic review of plant steroids as potential antiinflammatory agents: current status and future perspectives. J Phytopharmacol. 2015;4(2):121–5.Google Scholar
  66. PBRN A. Pharmacotherapy: a pathophysiologic approach. 2011.Google Scholar
  67. PraticÒ D, Basili S, Vieri M, Cordova C, Violi F, Fitzgerald GA. Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F2 α-III, an index of oxidant stress. Am J Respir Crit Care Med. 1998;158(6):1709–14.PubMedCrossRefGoogle Scholar
  68. Qureshi H, Sharafkhaneh A, Hanania NA. Chronic obstructive pulmonary disease exacerbations: latest evidence and clinical implications. Ther Adv Chronic Dis. 2014;5(5):212–27.  https://doi.org/10.1177/2040622314532862.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rahman I. Antioxidant therapies in COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(1):15–29.PubMedPubMedCentralGoogle Scholar
  70. Rahman I, van Schadewijk AA, Crowther AJ, Hiemstra PS, Stolk J, MacNee W, De Boer WI. 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166(4):490–5.PubMedCrossRefGoogle Scholar
  71. Renzella J, Townsend N, Jewell J, Breda J, Roberts N, Rayner M, Wickramasinghe K. What national and subnational interventions and policies based on Mediterranean and Nordic diets are recommended or implemented in the WHO European Region, and is there evidence of effectiveness in reducing noncommunicable diseases? 2018.Google Scholar
  72. Reynolds HY. Lung inflammation: normal host defense or a complication of some diseases? Annu Rev Med. 1987;38:295–323.  https://doi.org/10.1146/annurev.me.38.020187.001455.PubMedCrossRefGoogle Scholar
  73. Rho HS, Ghimeray AK, Yoo DS, Ahn SM, Kwon SS, Lee KH, Cho DH, Cho JY. Kaempferol and kaempferol rhamnosides with depigmenting and anti-inflammatory properties. Molecules (Basel, Switzerland). 2011;16(4):3338–44.  https://doi.org/10.3390/molecules16043338.CrossRefGoogle Scholar
  74. Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, Corrigan C, Durham SR, Kay AB. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992;326(5):298–304.  https://doi.org/10.1056/nejm199201303260504.PubMedCrossRefGoogle Scholar
  75. Santana FPR, Pinheiro NM, Mernak MIB, Righetti RF, Martins MA, Lago JHG, Lopes FDTQDS, Tibério IFLC, Prado CM. Evidences of herbal medicine-derived natural products effects in inflammatory lung diseases. Mediat Inflamm. 2016;2016:2348968.  https://doi.org/10.1155/2016/2348968.CrossRefGoogle Scholar
  76. Senguttuvan J, Paulsamy S, Karthika K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac J Trop Biomed. 2014;4(Suppl 1):S359–67.  https://doi.org/10.12980/APJTB.4.2014C1030.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Sessler CN. Theophylline toxicity: clinical features of 116 consecutive cases. Am J Med. 1990;88(6):567–76.PubMedCrossRefGoogle Scholar
  78. Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology (Carlton, Vic). 2006;11(1):54–61.  https://doi.org/10.1111/j.1440-1843.2006.00784.x.CrossRefGoogle Scholar
  79. Suissa S, Dell’Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax. 2012;67(11):957–63.  https://doi.org/10.1136/thoraxjnl-2011-201518.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Suzuki Y, Wakahara K, Nishio T, Ito S, Hasegawa Y. Airway basophils are increased and activated in eosinophilic asthma. Allergy. 2017;72(10):1532–9.  https://doi.org/10.1111/all.13197.PubMedCrossRefGoogle Scholar
  81. Toledo AC, Sakoda CPP, Perini A, Pinheiro NM, Magalhães RM, Grecco S, Tibério IFLC, Câmara NO, Martins MA, Lago JHG, Prado CM. Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model. Br J Pharmacol. 2013;168(7):1736–49.  https://doi.org/10.1111/bph.12062.PubMedPubMedCentralCrossRefGoogle Scholar
  82. U.S. Food and Drug Administration. FDA Drug Safety Communication: drug labels now contain updated recommendations on the appropriate use of long-acting inhaled asthma medications called Long-Acting Beta-Agonists (LABAs). 2010. Retrieved from URL.Google Scholar
  83. Ukena D, Fishman L, Niebling W-B. Bronchial asthma: diagnosis and long-term treatment in adults. Deutsches Arzteblatt Int. 2008;105(21):385–94.  https://doi.org/10.3238/arztebl.2008.0385.CrossRefGoogle Scholar
  84. van Eeden SF, Sin DD. Chronic obstructive pulmonary disease: a chronic systemic inflammatory disease. Respir Int Rev Thorac Dis. 2008;75(2):224–38.  https://doi.org/10.1159/000111820.CrossRefGoogle Scholar
  85. Wang J, Fang X, Ge L, Cao F, Zhao L, Wang Z, Xiao W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One. 2018;13(5):–e0197563.  https://doi.org/10.1371/journal.pone.0197563.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999;160(3):1001–8.  https://doi.org/10.1164/ajrccm.160.3.9812110.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ridhima Wadhwa
    • 1
  • Shakti Dhar Shukla
    • 2
  • Dinesh Kumar Chellappan
    • 3
  • Gaurav Gupta
    • 4
  • Trudi Collet
    • 5
  • Nicole Hansbro
    • 2
    • 6
  • Brian Oliver
    • 6
  • Kylie Williams
    • 7
  • Philip Michael Hansbro
    • 2
    • 6
    • 8
  • Kamal Dua
    • 2
    • 7
    • 8
  • Pawan K. Maurya
    • 9
    Email author
  1. 1.Faculty of Life Sciences and BiotechnologySouth Asian UniversityChanakyapuri, New DelhiIndia
  2. 2.Priority Research Centre for Healthy LungsUniversity of Newcastle & Hunter Medical Research InstituteCallaghanAustralia
  3. 3.Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
  4. 4.School of Pharmaceutical SciencesJaipur National UniversityJaipurIndia
  5. 5.Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical SciencesQueensland University of TechnologyBrisbaneAustralia
  6. 6.School of Life Sciences, Faculty of ScienceUniversity of Technology Sydney (UTS)UltimoAustralia
  7. 7.Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
  8. 8.Centre for InflammationCentenary InstituteSydneyAustralia
  9. 9.Department of BiochemistryCentral University of HaryanaMahendergarhIndia

Personalised recommendations