In-vitro Assays for Antimicrobial Assessment

  • Jaya Kurhekar
  • Genevieve D. Tupas
  • Maria Catherine B. Otero


In vitro antimicrobial assessment of natural extracts or pure compounds involves the use of assays to evaluate their potential to kill or inhibit microbial growth in a laboratory setting. Several methods have been developed for this purpose, which include Agar Well Diffusion and Disc Diffusion methods, Dynamic Contact assay, Thin-Layer Chromatography-Bioautography, Time-Kill assay and Biofilm assays, Microdilution methods and broth assays for Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Doubling Time/Growth Curve (MDT), Flow Cytofluorometric Assay and Bioluminescence Assay. This chapter will provide the readers a brief but comprehensive methodology of these in-vitro assays along with their advantages and disadvantages. It will serve as a guide in choosing the most appropriate antimicrobial assay for their research objectives.


Antimicrobial assessment Antimicrobial assay In vitro methods 


  1. Abate F, Jewell E. The new Oxford American dictionary. 1st ed. Oxford: Oxford University Press; 2001.Google Scholar
  2. Antimicrobial Drugs. Testing the effectiveness of antimicrobials, lumen, microbiology.Google Scholar
  3. ASTM E2149 – 13a. Standard test method for determining the antimicrobial activity of antimicrobial agents under dynamic contact conditions, active standard ASTM E2149 | Developed by Subcommittee: E35.15, Book of Standards Volume: 11.08.2018.
  4. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–9.CrossRefGoogle Scholar
  5. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol. 1966;36(3):49–52.PubMedGoogle Scholar
  6. Baumgartner V, Schwack W. Enhanced quantitative evaluation of the HPTLC-bioluminescence detection. J Liq Chromatogr Relat Technol. 2010;33(7–8):980–95.CrossRefGoogle Scholar
  7. Bonev B, Hooper J, Parisot J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J Antimicrob Chemother. 2008;61(6):1295–301.CrossRefGoogle Scholar
  8. Boston MA, Houghton M. The American heritage dictionary of the English language 4th ed.; 2006.Google Scholar
  9. Brunton LL, Chabner B, Knollmann BC. Goodman and Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: Mc Graw Hill Medical; 2017.Google Scholar
  10. Buommino E, Scognamiglio M, Donnarumma G, Fiorentino A, D’Abrosca B. Recent advances in natural product-based anti-biofilm approaches to control infections. Mini-Rev Med Chem. 2014;14(14):1169–82.CrossRefGoogle Scholar
  11. Cai Y, Leck H, Lim TP, Teo J, Lee W, Hsu LY, Kwa ALH. Using an adenosine triphosphate bioluminescent assay to determine effective antibiotic combinations against carbapenem-resistant gram negative bacteria within 24 hours. PLoS One. 2015;10(10):e0140446.CrossRefGoogle Scholar
  12. Choma IM, Jesionek W. TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography. 2015;2(2):225–38.CrossRefGoogle Scholar
  13. CLSI. CLSI document M26-A. Wayne: Clinical and Laboratory Standards Institute; 1998.Google Scholar
  14. CLSI. CLSI document M07-A9. Wayne: Clinical and Laboratory Standards Institute; 2012.Google Scholar
  15. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564–82.CrossRefGoogle Scholar
  16. Dalecki AG, Crawford CL, Wolschendorf F. Targeting biofilm associated Staphylococcus aureus using resazurin based drug-susceptibility assay. J Vis Exp 2016; (111).Google Scholar
  17. Davey H. Flow cytometry for clinical microbiology. CLI; (2–3), 12. 2004.Google Scholar
  18. Dewanjee S, Gangopadhyay M, Bhattacharya N, Khanra R, Dua TK. Bioautography and its scope in the field of natural product chemistry. J Pharm Anal. 2015;5(2):75–84.CrossRefGoogle Scholar
  19. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881.CrossRefGoogle Scholar
  20. Forbes BA, Sahm DF, Weissfeld AS. Bailey and Scott’s. Diagnostic microbiology. 12th ed. St Louis: Mosby Elsevier; 2007.Google Scholar
  21. Gaupp R, Lei S, Reed JM, Peisker H, Boyle-Vavra S, Bayer AS, Somerville GA. Staphylococcus aureus metabolic adaptations during the transition from a daptomycin susceptibility phenotype to a daptomycin non susceptibility phenotype. Antimicrob Agents Chemother. 2015;59(7):4226–38.CrossRefGoogle Scholar
  22. General Information/Reference Standards. JP XVII. 2017.Google Scholar
  23. Horváth G, Jámbor N, Végh A, Böszörményi A, Lemberkovics É, Héthelyi É, Kocsis B. Antimicrobial activity of essential oils: the possibilities of TLC–bioautography. Flavour Fragr J. 2010;25(3):178–82.CrossRefGoogle Scholar
  24. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49:1749–55.CrossRefGoogle Scholar
  25. Lalitha MK. Manual on antimicrobial susceptibility testing. Indian Association of Medical Microbiologists. 2004.Google Scholar
  26. Li J, Shuyu X, Saeed A, Funan W, Yufeng G, Chaonan Z, Ximan C, Yalan W, Jinxia C, Guyue C. Antimicrobial activity and resistance: influencing factors. Front Pharmacol. 2017;8:364.CrossRefGoogle Scholar
  27. Livermore DM. Discovery research: the scientific challenge of finding new antibiotic. J Antimicrob Chemother. 2011;66(9):1941–4.CrossRefGoogle Scholar
  28. Ncube NS, Afolayan AJ, Okoh AI. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol. 2008;7(12):1797–806.CrossRefGoogle Scholar
  29. Nuding S, Zabel LT. Detection, identification, and susceptibility testing of bacteria by flow cytometry. J Bacteriol Parasitol. 2013;S5:005. Scholar
  30. O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp; 2011; (47).Google Scholar
  31. Okusa P, Stevigny C, Devleeschouwer M, Duez P. Optimization of the culture medium used for direct TLC-bioautography. Application to the detection of antimicrobial compounds from Cordia gilletii De Wild (Boraginaceae). JPC-J Planar Chromatogr-Mod TLC. 2010;23(4):245–9.CrossRefGoogle Scholar
  32. Othman AS. Determination of the antibacterial effect of some natural products against some gram-positive and gram-negative bacteria. Egypt Pharm J. 2016;15(1):10.CrossRefGoogle Scholar
  33. Pfaller MA, Sheehan DJ, Rex JH. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev. 2004;17(2):268–80.CrossRefGoogle Scholar
  34. Pharmaceutical Microbiology Manual. ORA.007, Version 1.2 DATE: 03-30-2015 Chapter 1: antimicrobial effectiveness testing, Office of Regulatory Affairs Office of Regulatory Science Medical Products and Tobacco Scientific Staff. 2014.Google Scholar
  35. Ristić T, Lidija FZ, Monika N, Marjetka KK, Silva S, Nina GC, Simona S. Science against microbial pathogens: communicating current research and technological advances A. Méndez-Vilas (Ed.), Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles, ©FORMATEX; 2011. 36–51.Google Scholar
  36. Stevenson K, McVey AF, Clark IB, Swain PS, Pilizota T. General calibration of microbial growth in microplate readers. Sci Rep. 2016;6:38828.CrossRefGoogle Scholar
  37. Urbain A, Simões-Pires CA. Thin-layer chromatography of plants, with chemical and biological detection methods. Encyclopedia of Analytical Chemistry. 2014.Google Scholar
  38. Van Belkum A, Dunne WM. Next-generation antimicrobial susceptibility testing. J Clin Microbiol. 2013;51(7):2018–24.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jaya Kurhekar
    • 1
  • Genevieve D. Tupas
    • 2
  • Maria Catherine B. Otero
    • 3
  1. 1.Bharati Vidyapeeth’s Dr. Patangrao Kadam MahavidyalayaSangliIndia
  2. 2.College of Medicine, Department of PharmacologyDavao Medical School Foundation, Inc.Davao CityPhilippines
  3. 3.College of Medicine Research CenterDavao Medical School Foundation, Inc.Davao CityPhilippines

Personalised recommendations